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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

w is a witness of the fact that x is a yes-instance. It is called a certificate.

w is polynomially balanced.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Nondeterministic computation and NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n,

such that the input is a yes-instance if and only if there exists a computation path that
returns “yes.”

NP-completeness Computational Complexity



NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Nondeterministic computation and NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n,

such that the input is a yes-instance if and only if there exists a computation path that
returns “yes.”

NP-completeness Computational Complexity



NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Nondeterministic computation and NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n,

such that the input is a yes-instance if and only if there exists a computation path that
returns “yes.”

NP-completeness Computational Complexity



NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Nondeterministic computation and NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n,

such that the input is a yes-instance if and only if there exists a computation path that
returns “yes.”

NP-completeness Computational Complexity



NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1 ) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be appropriately circumscribed (log space,
polynomial time, etc.)

Definition

A polynomial-time reduction is a method of solving one problem by means of a
hypothetical subroutine for solving a different problem, that uses polynomial time
excluding the time within the subroutine.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A
to a problem B (both of which are usually required to be decision problems)

is a polynomial-time algorithm for transforming inputs to problem A into inputs to
problem B, such that the transformed problem has the same output as the original
problem.

Observation

1 An instance x of problem A can be solved by applying this transformation to
produce an instance y of problem B, giving y as the input to an algorithm for
problem B, and returning its output.

2 Polynomial-time many-one reductions are also be known as polynomial
transformations or Karp reductions, named after Richard Karp. A reduction of this
type may be denoted by the expression A ≤P

m B.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Turing Reductions

Definition

A polynomial-time Turing reduction from a problem A to a problem B is an algorithm
that solves problem A using a polynomial number of calls to a subroutine for problem
B, and polynomial time outside of those subroutine calls

Observation

Polynomial-time Turing reductions are also known as Cook reductions, named after
Stephen Cook.

A reduction of this type may be denoted by the expression A ≤P
T B.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Transitivity of Reductions

Proposition

If A ≤ B and B ≤ C, then A ≤ C. It is understood that both reductions are of the same
type.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if
1 A ∈ NP.
2 ∀B ∈ NP, B ≤ A.

Observations

1 If only the second condition is satisfied, then the problem is said to be NP-hard.
2 The reductions in question can be Karp or Turing, but we will use Karp for the rest

of this chapter.
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Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.
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Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.
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Size and Depth

Definition

The size of a boolean circuit is the number of gates in that circuit.

Definition

The depth of a circuit is the maximum distance from an input gate to the output gate.
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The first NP-complete problem
Satisfiability Problems

String acceptance

Definition

Consider an n-input boolean circuit. We say that a string x , with |x | = n and xi ∈ {0, 1}
is accepted by a circuit, if the output of the circuit is true, when presented with this
string.

The i th input is true if and only if xi = 1.
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Language Acceptance

Observations

1 The above definition holds only for fixed n.
2 We can generalize the definition to strings of arbitrary length.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Circuit Families

Definition

A family of circuits is an infinite sequence C = (C0,C1, . . .) of Boolean circuits, where
Cn has n input variables.

Definition

A language L ⊆ {0, 1}∗ has polynomial circuits, if there is a family of circuits
C = (C0,C1, . . .) such that:

1 The size of Cn is at most p(n), for some fixed polynomial p(n).
2 ∀x ∈ {0, 1}∗, x ∈ L if and only if, the output of C|x| is true, when the i th input

variable is true if xi = 1 and false otherwise.
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The first NP-complete problem
Satisfiability Problems

The first NP-complete problem

Motivation

1 How many languages are there in NP?
2 The task of proving a language to be NP-complete is formidable, because we

have to show that every language in NP reduces to the language in question.
3 However, once we have shown a language L to be NP-complete, we can show all

other languages to be NP-complete, by reducing L to these languages!
4 So which language (or problem) is the first NP-complete language (problem)?
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

CircuitSAT is clearly in NP.

1 Let A be any language in NP.
2 A must have a polynomial time verifier V , such that x ∈ A if and only if V accepts
〈x , y〉 for some polynomially balanced y .

3 Since V runs in polynomial time, we know that there exists a uniform family of
polynomial size circuits C that decides the language decided by V ; i.e., C is
equivalent to V .

4 The input of C is 〈x , y〉 and a specific C ∈ C can be constructed in time polynomial
in |x | and |y |.
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The first NP-complete problem
Satisfiability Problems

Completing the reduction

Proof (contd.)

The reduction from A to C is as follows:
1 Given an input x , output a description of the circuit C(x , y), with the x values set

to the given values and the y values left as variables.
2 The resulting circuit is satisfiable if and only if x ∈ A.
3 The reduction is clearly polynomial time, since C is uniform.
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NP and NP-completeness
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The first NP-complete problem
Satisfiability Problems

Witness Existence

Definition

Input: A program P(x ,w), an input x and an integer t given in unary.

Query: Does there exist a w , with |w | ≤ t , such that P(x ,w) returns “yes” after at
most t steps?

Observations

1 Why is the WITNESS-EXISTENCE problem NP-complete?
2 In the textbook, they reduce WITNESS-EXISTENCE to CircuitSAT.
3 In his seminal 1971 paper, Cook reduced the WITNESS-EXISTENCE problem

directly to SAT.
https://www.cs.toronto.edu/˜sacook/homepage/1971.pdf.

NP-completeness Computational Complexity
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Satisfiability (SAT)

Definition

Input: A boolean formula φ in CNF form over n variables and m clauses, i.e.,
φ = C1 ∧ C2 . . .Cm.

Query: Is φ satisfiable?

Theorem

SAT is NP-complete.

Proof

SAT is clearly in NP. (Why?)

Clearly, CircuitSAT ≤ SAT (Previous chapter).
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The first NP-complete problem
Satisfiability Problems

3SAT

Definition

Input: A boolean formula φ in 3CNF form over n variables and m clauses, i.e.,
φ = C1 ∧ C2 . . .Cm, with each clause having exactly 3 literals.

Query: Is φ satisfiable?

Observations

1 3SAT is clearly in NP.
2 Consider a clause in 1CNF form. Can you represent it using 3CNF form?
3 Consider a clause in 2CNF form. Can you represent it using 3CNF form?
4 Consider a clause in 4CNF form. Can you represent it using 3CNF form?
5 Generalize . . .!
6 3SAT is the most versatile of SAT problems.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if
1 It satisfies at least one literal in each clause.
2 It falsifies at least one literal in each clause.

Definition

Input: A boolean formula φ in CNF form over n variables and m clauses, i.e.,
φ = C1 ∧ C2 . . .Cm.

Query: Is φ nae-satisfiable?

Reduction

1 Construct a new formula φ′ by adding a new variable s to every single clause.
2 If φ is satisfiable, then φ′ is nae-satisfiable.
3 If φ′ is nae-satisfiable, then φ must be satisfiable. (Why?)
4 Thus, SAT ≤ NAESAT.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

NAE3SAT

Reduction

1 Using the technique, we can show that NAE4SAT is NP-complete. Why?
2 To show that NAE3SAT is NP-complete, we simply reduce NAE4SAT to it!
3 Consider a 4CNF clause l = (x , y , z,w). Argue that l is nae-satisfiable if and only

if the following pair of clauses are:

(x , y , s)

(z,w , s̄)

4 It follows that NAE3SAT is NP-complete, since 3SAT ≤ NAE4SAT ≤ NAE3SAT.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

MaxSAT

Definition

Input: A boolean formula φ in CNF form over n variables and m clauses, i.e.,
φ = C1 ∧ C2 . . .Cm and a number K ≤ m.

Query: Is there a subset of K or more clauses of φ which is satisfiable?

Observations

1 MaxSAT is trivially NP-complete. (Why?)
2 In general, if kSAT is NP-complete, so is MaxkSAT.
3 How about Max2SAT?
4 We will show that NAE3SAT ≤ Max2SAT.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Max2SAT

Definition

Input: A boolean formula φ in 2CNF form over n variables and m clauses, i.e.,
φ = C1 ∧ C2 . . .Cm, with each clause having exactly 2 literals and a number K ≤ m.

Query: Is there a subset of φ with cardinality at least K , which is satisfiable?

Reduction

1 Assume that you are given an instance of NAE3SAT over n variables and m
clauses.

2 Consider the clause l = (x , y , z) of the NAE3SAT instance. Replace it with the
following set:

(x , y) (y , z) (x , z)

(x̄ , ȳ) (ȳ , z̄) (x̄ , z̄)

3 Set K = 5 ·m.
4 In argument, note that any assignment satisfies 3 or 5 of the clause set,

depending on whether or not it nae-satisfies l .
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(x̄ , ȳ) (ȳ , z̄) (x̄ , z̄)

3 Set K = 5 ·m.
4 In argument, note that any assignment satisfies 3 or 5 of the clause set,

depending on whether or not it nae-satisfies l .

NP-completeness Computational Complexity



NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Max2SAT

Definition

Input: A boolean formula φ in 2CNF form over n variables and m clauses, i.e.,
φ = C1 ∧ C2 . . .Cm, with each clause having exactly 2 literals and a number K ≤ m.

Query: Is there a subset of φ with cardinality at least K , which is satisfiable?

Reduction

1 Assume that you are given an instance of NAE3SAT over n variables and m
clauses.

2 Consider the clause l = (x , y , z) of the NAE3SAT instance. Replace it with the
following set:

(x , y) (y , z) (x , z)
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

Integer Programming (IP)

Definition

Input: An integer matrix Am×n and an integer vector bm×1.

Query: Is there a lattice point r ∈ Zn
+, such that A · r ≥ b?

Observation

It is non-trivial to show that IP is in NP.

Hence, we will focus on a restriction called 0/1 IP, where each component of the
vector r is required to be 0 or 1.
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NP and NP-completeness
Boolean Circuits

The first NP-complete problem
Satisfiability Problems

0/1 IP

Theorem

0/1 IP is NP-complete.

Proof

1 0/1 IP is clearly in NP.
2 We will show that 3SAT ≤ 0/1 IP.
3 Take the clause l : (x , ȳ , z).
4 Replace it with the constraint: c : x + (1− y) + z ≥ 1.
5 Argue that if l has a satisfying assignment then do does c and vice versa.
6 The theorem follows.

Observations

Integer Programming rivals 3SAT in terms of versatility.
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