NP-completeness - Part I

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 30, 2015

Outline

2 Boolean Circuits

NP-completeness Computational Complexity

Outline

2 Boolean Circuits

Outline

2 Boolean Circuits

Certificate definition of NP

Certificate definition of NP

Definition

NP-completeness

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems *A* of the following form:

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems *A* of the following form:

x is a yes-instance of A if and only if there exists a w,

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w, such that (x, w) is is a yes-instance of B,

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w, such that (x, w) is is a yes-instance of B,

where *B* is a decision problem in **P** regarding pairs (x, w) and |w| = poly(|x|).

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w, such that (x, w) is is a yes-instance of B,

where *B* is a decision problem in **P** regarding pairs (x, w) and |w| = poly(|x|).

w is a witness of the fact that x is a yes-instance.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems *A* of the following form:

x is a yes-instance of A if and only if there exists a w, such that (x, w) is is a yes-instance of B,

where *B* is a decision problem in **P** regarding pairs (x, w) and |w| = poly(|x|).

w is a witness of the fact that x is a yes-instance. It is called a *certificate*.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Certificate definition of NP

Definition

NP is the class of problems *A* of the following form:

x is a yes-instance of A if and only if there exists a w, such that (x, w) is is a yes-instance of B,

where *B* is a decision problem in **P** regarding pairs (x, w) and |w| = poly(|x|).

w is a witness of the fact that x is a yes-instance. It is called a *certificate*.

w is polynomially balanced.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Nondeterministic computation and NP

Boolean Circuits The first NP-complete problem Satisfiability Problems

Nondeterministic computation and NP

Definition

NP-completeness Computational Complexity

Boolean Circuits The first NP-complete problem Satisfiability Problems

Nondeterministic computation and NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in time poly(n), on instances of length *n*,

Boolean Circuits The first NP-complete problem Satisfiability Problems

Nondeterministic computation and NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in time poly(n), on instances of length *n*,

such that the input is a yes-instance if and only if there exists a computation path that returns "yes."

Reductions

Boolean Circuits The first NP-complete problem Satisfiability Problems

Reductions

Definition

NP-completeness Computational Complexity

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

 $(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

$$(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$$

Furthermore, the function should be appropriately circumscribed

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

$$(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$$

Furthermore, the function should be appropriately circumscribed (log space,

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

 $(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$

Furthermore, the function should be appropriately circumscribed (log space, polynomial time, etc.)

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

 $(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$

Furthermore, the function should be appropriately circumscribed (log space, polynomial time, etc.)

Definition

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

 $(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$

Furthermore, the function should be appropriately circumscribed (log space, polynomial time, etc.)

Definition

A polynomial-time reduction is a method of solving one problem

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

 $(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$

Furthermore, the function should be appropriately circumscribed (log space, polynomial time, etc.)

Definition

A polynomial-time reduction is a method of solving one problem by means of a hypothetical subroutine for solving a different problem,

Reductions

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings of L_2 , such that

 $(\forall x \in \Sigma_1^*) \ x \in L_1 \leftrightarrow R(x) \in L_2.$

Furthermore, the function should be appropriately circumscribed (log space, polynomial time, etc.)

Definition

A polynomial-time reduction is a method of solving one problem by means of a hypothetical subroutine for solving a different problem, that uses polynomial time excluding the time within the subroutine.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Karp Reductions

Boolean Circuits The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

NP-completeness Computational Complexity

Boolean Circuits The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A to a problem B (both of which are usually required to be decision problems)

Boolean Circuits The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A to a problem B (both of which are usually required to be decision problems)

is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B,

Boolean Circuits The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A to a problem B (both of which are usually required to be decision problems)

is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.

The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A to a problem B (both of which are usually required to be decision problems)

is a polynomial-time algorithm for transforming inputs to problem *A* into inputs to problem *B*, such that the transformed problem has the same output as the original problem.

Observation

The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A to a problem B (both of which are usually required to be decision problems)

is a polynomial-time algorithm for transforming inputs to problem *A* into inputs to problem *B*, such that the transformed problem has the same output as the original problem.

Observation

An instance x of problem A can be solved by applying this transformation to produce an instance y of problem B, giving y as the input to an algorithm for problem B, and returning its output.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Karp Reductions

Definition

A polynomial-time many-one reduction (also called Karp reduction) from a problem A to a problem B (both of which are usually required to be decision problems)

is a polynomial-time algorithm for transforming inputs to problem *A* into inputs to problem *B*, such that the transformed problem has the same output as the original problem.

Observation

- An instance x of problem A can be solved by applying this transformation to produce an instance y of problem B, giving y as the input to an algorithm for problem B, and returning its output.
- **3** Polynomial-time many-one reductions are also be known as polynomial transformations or Karp reductions, named after Richard Karp. A reduction of this type may be denoted by the expression $A \leq_{m}^{P} B$.

Turing Reductions

NP and NP-completeness Boolean Circuits

Boolean Circuits The first NP-complete problem Satisfiability Problems

Turing Reductions

Definition

NP-completeness Computational Complexity

Boolean Circuits The first NP-complete problem Satisfiability Problems

Turing Reductions

Definition

A polynomial-time Turing reduction from a problem A to a problem B is an algorithm that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time outside of those subroutine calls

Boolean Circuits The first NP-complete problem Satisfiability Problems

Turing Reductions

Definition

A polynomial-time Turing reduction from a problem A to a problem B is an algorithm that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time outside of those subroutine calls

Observation

Boolean Circuits The first NP-complete problem Satisfiability Problems

Turing Reductions

Definition

A polynomial-time Turing reduction from a problem A to a problem B is an algorithm that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time outside of those subroutine calls

Observation

Polynomial-time Turing reductions are also known as Cook reductions, named after Stephen Cook.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Turing Reductions

Definition

A polynomial-time Turing reduction from a problem A to a problem B is an algorithm that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time outside of those subroutine calls

Observation

Polynomial-time Turing reductions are also known as Cook reductions, named after Stephen Cook.

A reduction of this type may be denoted by the expression $A \leq_T^P B$.

Transitivity of Reductions

Transitivity of Reductions

Proposition

NP-completeness

Transitivity of Reductions

Proposition

If $A \leq B$

Boolean Circuits The first NP-complete problem Satisfiability Problems

Transitivity of Reductions

Proposition

If $A \leq B$ and $B \leq C$,

Boolean Circuits The first NP-complete problem Satisfiability Problems

Transitivity of Reductions

Proposition

If $A \leq B$ and $B \leq C$, then $A \leq C$.

Boolean Circuits The first NP-complete problem Satisfiability Problems

Transitivity of Reductions

Proposition

If $A \leq B$ and $B \leq C$, then $A \leq C$. It is understood that both reductions are of the same type.

NP and NP-completeness Boolean Circuits

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

NP and NP-completeness Boolean Circuits

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

NP-completeness Computational Complexity

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

 $\bigcirc A \in \mathbf{NP}.$

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

- $\bigcirc A \in \mathbf{NP}.$
- $2 \quad \forall B \in \mathbf{NP},$

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

- $I \in \mathbf{NP}.$
- $(\textbf{2} \forall B \in \mathbf{NP}, B \leq A.$

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

- $I \in \mathbf{NP}.$
- **2** $\quad \forall B \in \mathbf{NP}, B \leq A.$

Observations

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

- $\bigcirc A \in \mathbf{NP}.$
- $2 \forall B \in \mathbf{NP}, B \leq A.$

Observations

If only the second condition is satisfied,

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

- $\bigcirc A \in \mathbf{NP}.$
- $2 \forall B \in \mathbf{NP}, B \leq A.$

Observations

If only the second condition is satisfied, then the problem is said to be NP-hard.

Boolean Circuits The first NP-complete problem Satisfiability Problems

NP-completeness

Definition

A problem A is said to be NP-complete, if

- $\bigcirc A \in \mathbf{NP}.$
- **2** $\forall B \in \mathbf{NP}, B \leq A.$

Observations

- If only the second condition is satisfied, then the problem is said to be **NP-hard**.
- Othe reductions in question can be Karp or Turing, but we will use Karp for the rest of this chapter.

Boolean Circuits (Syntax)

Boolean Circuits (Syntax)

Syntax

NP-completeness Computational Complexity

Boolean Circuits (Syntax)

Syntax

• A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of *C*.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of *C*.
- We can assume without loss of generality that the edges are of the form (*i*, *j*), where *i* < *j*.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of *C*.
- We can assume without loss of generality that the edges are of the form (i, j), where i < j.</p>
- Each gate *i* has a sort s(i) associated with it, where $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, ...\} \cup \{\lor, \land, \neg\}.$

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of C.
- We can assume without loss of generality that the edges are of the form (i, j), where i < j.</p>
- Each gate *i* has a sort s(i) associated with it, where $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, ...\} \cup \{\lor, \land, \neg\}.$
- **⑤** If $s(i) \in \{$ **true**, **false** $\} \cup \{x_1, x_2, ...\}$, then its in-degree is 0.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of C.
- We can assume without loss of generality that the edges are of the form (i, j), where i < j.</p>
- Each gate *i* has a sort s(i) associated with it, where $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, ...\} \cup \{\lor, \land, \neg\}.$
- **⑤** If $s(i) \in \{$ **true**, **false** $\} \cup \{x_1, x_2, ...\}$, then its in-degree is 0.
- If $s(i) \in \{\neg\}$, its in-degree is 1.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of *C*.
- We can assume without loss of generality that the edges are of the form (i, j), where i < j.</p>
- Each gate *i* has a sort s(i) associated with it, where $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, \ldots\} \cup \{\lor, \land, \neg\}.$
- **⑤** If $s(i) \in \{$ **true**, **false** $\} \cup \{x_1, x_2, ...\}$, then its in-degree is 0.
- If $s(i) \in \{\neg\}$, its in-degree is 1.
- All other gates have in-degree 2.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of *C*.
- We can assume without loss of generality that the edges are of the form (*i*, *j*), where *i* < *j*.
- Each gate *i* has a sort s(i) associated with it, where $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, \ldots\} \cup \{\lor, \land, \neg\}.$
- **⑤** If $s(i) \in \{$ **true**, **false** $\} \cup \{x_1, x_2, ...\}$, then its in-degree is 0.
- If $s(i) \in \{\neg\}$, its in-degree is 1.
- All other gates have in-degree 2.
- Output All gates except gate n have out-degree 1.

Boolean Circuits (Syntax)

- A boolean circuit *C* is a DAG $G = \langle V, E \rangle$.
- 2 The nodes $V = \{1, 2, ..., n\}$ are called the gates of *C*.
- We can assume without loss of generality that the edges are of the form (i, j), where i < j.</p>
- Each gate *i* has a sort s(i) associated with it, where $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, \ldots\} \cup \{\lor, \land, \neg\}.$
- If $s(i) \in \{$ true, false $\} \cup \{x_1, x_2, \ldots\}$, then its in-degree is 0.
- If $s(i) \in \{\neg\}$, its in-degree is 1.
- All other gates have in-degree 2.
- Output: All gates except gate n have out-degree 1.
- Gate n, is called the output gate and has out-degree 0.

Boolean Circuits (Semantics)

Boolean Circuits (Semantics)

Semantics

NP-completeness Computational Complexity

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

This value can be computed inductively as follows:

If the gate is **true** or **false**, then it retains that value.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

- If the gate is **true** or **false**, then it retains that value.
- If the gate is a variable, then its value is equal to its assignment.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

- If the gate is **true** or **false**, then it retains that value.
- If the gate is a variable, then its value is equal to its assignment.
- **③** If the gate has sort \neg , then its value is the complement of its input.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

- If the gate is **true** or **false**, then it retains that value.
- If the gate is a variable, then its value is equal to its assignment.
- If the gate has sort ¬, then its value is the complement of its input.
- If the gate has sort ∨, then its value is true if at least one of its two input gates has value true and is false otherwise.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

- If the gate is true or false, then it retains that value.
- If the gate is a variable, then its value is equal to its assignment.
- If the gate has sort ¬, then its value is the complement of its input.
- If the gate has sort ∨, then its value is true if at least one of its two input gates has value true and is false otherwise.
- If the gate has sort ∧, then its value is true if both its two input gates have value true and is false otherwise.

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each appropriate assignment.

- If the gate is true or false, then it retains that value.
- If the gate is a variable, then its value is equal to its assignment.
- If the gate has sort ¬, then its value is the complement of its input.
- If the gate has sort ∨, then its value is true if at least one of its two input gates has value true and is false otherwise.
- If the gate has sort ∧, then its value is true if both its two input gates have value true and is false otherwise.
- The value of the circuit is the value of the output gate.

Size and Depth

Size and Depth

Definition

NP-completeness Computational Complexity

Size and Depth

Definition

The size of a boolean circuit is the number of gates in that circuit.

Size and Depth

Definition

The size of a boolean circuit is the number of gates in that circuit.

Definition

Size and Depth

Definition

The size of a boolean circuit is the number of gates in that circuit.

Definition

The depth of a circuit is the maximum distance from an input gate to the output gate.

String acceptance

String acceptance

Definition

NP-completeness Computational Complexity

String acceptance

Definition

Consider an *n*-input boolean circuit.

String acceptance

Definition

Consider an *n*-input boolean circuit. We say that a string *x*, with |x| = n and $x_i \in \{0, 1\}$ is accepted by a circuit,

String acceptance

Definition

Consider an *n*-input boolean circuit. We say that a string *x*, with |x| = n and $x_i \in \{0, 1\}$ is accepted by a circuit, if the output of the circuit is **true**, when presented with this string.

String acceptance

Definition

Consider an *n*-input boolean circuit. We say that a string *x*, with |x| = n and $x_i \in \{0, 1\}$ is accepted by a circuit, if the output of the circuit is **true**, when presented with this string.

The *i*th input is **true** if and only if $x_i = 1$.

Language Acceptance

Language Acceptance

Observations

NP-completeness Computational Complexity

Language Acceptance

Observations

• The above definition holds only for fixed n.

Language Acceptance

Observations

- The above definition holds only for fixed n.
- 2 We can generalize the definition to strings of arbitrary length.

Circuit Families

Circuit Families

Definition

NP-completeness Computational Complexity

Circuit Families

Definition

A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of Boolean circuits, where C_n has *n* input variables.

Circuit Families

Definition

A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of Boolean circuits, where C_n has *n* input variables.

Definition

Circuit Families

Definition

A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of Boolean circuits, where C_n has *n* input variables.

Definition

A language $L \subseteq \{0, 1\}^*$ has polynomial circuits, if there is a family of circuits $C = (C_0, C_1, \ldots)$ such that:

Circuit Families

Definition

A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of Boolean circuits, where C_n has *n* input variables.

Definition

A language $L \subseteq \{0, 1\}^*$ has polynomial circuits, if there is a family of circuits $C = (C_0, C_1, \ldots)$ such that:

• The size of C_n is at most p(n), for some fixed polynomial p(n).

Circuit Families

Definition

A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of Boolean circuits, where C_n has *n* input variables.

Definition

A language $L \subseteq \{0, 1\}^*$ has polynomial circuits, if there is a family of circuits $C = (C_0, C_1, \ldots)$ such that:

• The size of C_n is at most p(n), for some fixed polynomial p(n).

3 $\forall x \in \{0, 1\}^*, x \in L$ if and only if, the output of $C_{|x|}$ is **true**, when the *i*th input variable is **true** if $x_i = 1$ and **false** otherwise.

Uniform circuit families

Uniform circuit families

Definition

NP-completeness Computational Complexity

Uniform circuit families

Definition

A family of circuits $C = (C_0, C_1, ...)$ is said to be *uniform* if there is log-space bounded algorithm which on input 1^{*n*} outputs C_n .

Uniform circuit families

Definition

A family of circuits $C = (C_0, C_1, ...)$ is said to be *uniform* if there is log-space bounded algorithm which on input 1^{*n*} outputs C_n .

Definition

Uniform circuit families

Definition

A family of circuits $C = (C_0, C_1, ...)$ is said to be *uniform* if there is log-space bounded algorithm which on input 1^{*n*} outputs C_n .

Definition

A language *L* has uniformly polynomial circuits if there is a uniform family of circuits that decides it.

P and uniform circuit families

P and uniform circuit families

Theorem

NP-completeness Computational Complexity

P and uniform circuit families

Theorem

A language L is in P if and only if it has uniformly polynomial circuits.

The first NP-complete problem

The first NP-complete problem

Motivation

NP-completeness Computational Complexity

The first NP-complete problem

Motivation

• How many languages are there in NP?

The first NP-complete problem

- How many languages are there in NP?
- 2 The task of proving a language to be **NP-complete** is formidable,

The first NP-complete problem

- O How many languages are there in NP?
- On the task of proving a language to be NP-complete is formidable, because we have to show that every language in NP reduces to the language in question.

The first NP-complete problem

- O How many languages are there in NP?
- On the task of proving a language to be NP-complete is formidable, because we have to show that every language in NP reduces to the language in question.
- O However, once we have shown a language L to be NP-complete, we can show all other languages to be NP-complete, by reducing L to these languages!

The first NP-complete problem

- How many languages are there in NP?
- On the task of proving a language to be NP-complete is formidable, because we have to show that every language in NP reduces to the language in question.
- O However, once we have shown a language L to be NP-complete, we can show all other languages to be NP-complete, by reducing L to these languages!
- So which language (or problem) is the first **NP-complete** language (problem)?

CircuitSAT

CircuitSAT

Theorem

CircuitSAT is NP-complete.

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

NP-completeness Computational Complexity

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

CircuitSAT is clearly in NP.

• Let A be any language in NP.

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

- Let A be any language in NP.
- **3** A must have a polynomial time verifier *V*, such that $x \in A$ if and only if *V* accepts $\langle x, y \rangle$ for some polynomially balanced *y*.

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

- Let A be any language in NP.
- **3** A must have a polynomial time verifier *V*, such that $x \in A$ if and only if *V* accepts $\langle x, y \rangle$ for some polynomially balanced *y*.
- Since V runs in polynomial time, we know that there exists a uniform family of polynomial size circuits C that decides the language decided by V;

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

- Let A be any language in NP.
- **3** A must have a polynomial time verifier *V*, such that $x \in A$ if and only if *V* accepts $\langle x, y \rangle$ for some polynomially balanced *y*.
- Since V runs in polynomial time, we know that there exists a uniform family of polynomial size circuits C that decides the language decided by V; i.e., C is equivalent to V.

CircuitSAT

Theorem

CircuitSAT is NP-complete.

Proof

- Let A be any language in NP.
- **3** A must have a polynomial time verifier *V*, such that $x \in A$ if and only if *V* accepts $\langle x, y \rangle$ for some polynomially balanced *y*.
- Since V runs in polynomial time, we know that there exists a uniform family of polynomial size circuits C that decides the language decided by V; i.e., C is equivalent to V.
- O The input of C is ⟨x, y⟩ and a specific C ∈ C can be constructed in time polynomial in |x| and |y|.

Completing the reduction

Completing the reduction

Proof (contd.)

NP-completeness Computational Complexity

Completing the reduction

Proof (contd.)

The reduction from A to C is as follows:

Completing the reduction

Proof (contd.)

The reduction from A to C is as follows:

Given an input x, output a description of the circuit C(x, y), with the x values set to the given values and the y values left as variables.

Completing the reduction

Proof (contd.)

The reduction from A to C is as follows:

- Given an input x, output a description of the circuit C(x, y), with the x values set to the given values and the y values left as variables.
- **2** The resulting circuit is satisfiable if and only if $x \in A$.

Completing the reduction

Proof (contd.)

The reduction from A to C is as follows:

- Given an input x, output a description of the circuit C(x, y), with the x values set to the given values and the y values left as variables.
- 2 The resulting circuit is satisfiable if and only if $x \in A$.
- **③** The reduction is clearly polynomial time, since C is uniform.

Witness Existence

Witness Existence

Definition

NP-completeness Computational Complexity

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a w,

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a *w*, with $|w| \le t$, such that P(x, w) returns "yes" after at most *t* steps?

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a *w*, with $|w| \le t$, such that P(x, w) returns "yes" after at most *t* steps?

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a *w*, with $|w| \le t$, such that P(x, w) returns "yes" after at most *t* steps?

Observations

Why is the WITNESS-EXISTENCE problem NP-complete?

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a *w*, with $|w| \le t$, such that P(x, w) returns "yes" after at most *t* steps?

- Why is the WITNESS-EXISTENCE problem NP-complete?
- In the textbook, they reduce WITNESS-EXISTENCE to CircuitSAT.

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a *w*, with $|w| \le t$, such that P(x, w) returns "yes" after at most *t* steps?

- Why is the WITNESS-EXISTENCE problem NP-complete?
- ❷ In the textbook, they reduce WITNESS-EXISTENCE to CircuitSAT.
- In his seminal 1971 paper, Cook reduced the WITNESS-EXISTENCE problem directly to SAT.

Witness Existence

Definition

Input: A program P(x, w), an input x and an integer t given in unary.

Query: Does there exist a *w*, with $|w| \le t$, such that P(x, w) returns "yes" after at most *t* steps?

- Why is the WITNESS-EXISTENCE problem NP-complete?
- ❷ In the textbook, they reduce WITNESS-EXISTENCE to CircuitSAT.
- In his seminal 1971 paper, Cook reduced the WITNESS-EXISTENCE problem directly to SAT. https://www.cs.toronto.edu/~sacook/homepage/1971.pdf.

Satisfiability (SAT)

Definition

NP-completeness Computational Complexity

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses,

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

SAT is NP-complete.

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

SAT is NP-complete.

Proof

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

SAT is NP-complete.

Proof

SAT is clearly in NP.

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

SAT is NP-complete.

Proof

SAT is clearly in NP. (Why?)

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

SAT is NP-complete.

Proof

SAT is clearly in NP. (Why?)

Clearly, CircuitSAT \leq SAT

Satisfiability (SAT)

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ satisfiable?

Theorem

SAT is NP-complete.

Proof

SAT is clearly in NP. (Why?)

```
Clearly, CircuitSAT \leq SAT (Previous chapter).
```


Definition

NP-completeness Computational Complexity

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses,

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

Observations

3SAT is clearly in NP.

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form.

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?
- 3 Consider a clause in 2CNF form.

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?
- Onsider a clause in 2CNF form. Can you represent it using 3CNF form?

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?
- Onsider a clause in 2CNF form. Can you represent it using 3CNF form?
- Onsider a clause in 4CNF form.

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?
- Source of the second se
- Onsider a clause in 4CNF form. Can you represent it using 3CNF form?

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?
- Source of the second se
- Onsider a clause in 4CNF form. Can you represent it using 3CNF form?
- Generalize . . .!

3SAT

Definition

Input: A boolean formula ϕ in 3CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 3 literals.

Query: Is ϕ satisfiable?

- 3SAT is clearly in NP.
- 2 Consider a clause in 1 CNF form. Can you represent it using 3 CNF form?
- Onsider a clause in 2CNF form. Can you represent it using 3CNF form?
- **Onsider a clause in 4CNF form. Can you represent it using 3CNF form?**
- Generalize . . .!
- **3**SAT is the most versatile of SAT problems.

NAESAT

Definition

NP-completeness Computational Complexity

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

• It satisfies at least one literal in each clause.

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses,

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ nae-satisfiable?

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ nae-satisfiable?

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ nae-satisfiable?

Reduction

O Construct a new formula ϕ' by adding a new variable *s* to every single clause.

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ nae-satisfiable?

- **O** Construct a new formula ϕ' by adding a new variable *s* to every single clause.
- **2** If ϕ is satisfiable, then ϕ' is nae-satisfiable.

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ nae-satisfiable?

- **O** Construct a new formula ϕ' by adding a new variable *s* to every single clause.
- **2** If ϕ is satisfiable, then ϕ' is nae-satisfiable.
- **(3)** If ϕ' is nae-satisfiable, then ϕ **must** be satisfiable. (Why?)

NAESAT

Definition

An assignment to a boolean formula is nae-satisfying, if

- It satisfies at least one literal in each clause.
- It falsifies at least one literal in each clause.

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$.

Query: Is ϕ nae-satisfiable?

- **O** Construct a new formula ϕ' by adding a new variable *s* to every single clause.
- **2** If ϕ is satisfiable, then ϕ' is nae-satisfiable.
- **(3)** If ϕ' is nae-satisfiable, then ϕ **must** be satisfiable. (Why?)
- Thus, SAT \leq NAESAT.

Reduction

NP-completeness Computational Complexity

Reduction

Using the technique, we can show that NAE4SAT is NP-complete. Why?

Reduction

Using the technique, we can show that NAE4SAT is NP-complete. Why?

It is not show that NAE3SAT is NP-complete, we simply reduce NAE4SAT to it!

NAE3SAT

- Using the technique, we can show that NAE4SAT is NP-complete. Why?
- It is not that NAE3SAT is NP-complete, we simply reduce NAE4SAT to it!
- **O** Consider a 4CNF clause I = (x, y, z, w). Argue that *I* is nae-satisfiable if and only if the following pair of clauses are:

NAE3SAT

Reduction

- Using the technique, we can show that NAE4SAT is NP-complete. Why?
- It is not show that NAE3SAT is NP-complete, we simply reduce NAE4SAT to it!
- **O** Consider a 4CNF clause I = (x, y, z, w). Argue that *I* is nae-satisfiable if and only if the following pair of clauses are:

(x, y, s) (z, w, \overline{s})

NAE3SAT

Reduction

- Using the technique, we can show that NAE4SAT is NP-complete. Why?
- It is not show that NAE3SAT is NP-complete, we simply reduce NAE4SAT to it!
- Consider a 4CNF clause I = (x, y, z, w). Argue that *I* is nae-satisfiable if and only if the following pair of clauses are:

(x, y, s) (z, w, \overline{s})

() It follows that NAE3SAT is **NP-complete**, since $3SAT \le NAE4SAT \le NAE3SAT$.

Definition

NP-completeness Computational Complexity

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses,

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

Query: Is there a subset of K or more clauses of ϕ which is satisfiable?

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

Query: Is there a subset of K or more clauses of ϕ which is satisfiable?

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

Query: Is there a subset of K or more clauses of ϕ which is satisfiable?

Observations

MaxSAT is trivially NP-complete. (Why?)

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

Query: Is there a subset of K or more clauses of ϕ which is satisfiable?

- MaxSAT is trivially NP-complete. (Why?)
- 2 In general, if kSAT is NP-complete, so is MaxkSAT.

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

Query: Is there a subset of K or more clauses of ϕ which is satisfiable?

- MaxSAT is trivially NP-complete. (Why?)
- 2 In general, if kSAT is NP-complete, so is MaxkSAT.
- How about Max2SAT?

MaxSAT

Definition

Input: A boolean formula ϕ in CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$ and a number $K \leq m$.

Query: Is there a subset of K or more clauses of ϕ which is satisfiable?

- MaxSAT is trivially NP-complete. (Why?)
- 2 In general, if kSAT is NP-complete, so is MaxkSAT.
- How about Max2SAT?
- We will show that NAE3SAT \leq Max2SAT.

Max2SAT

Definition

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses,

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least *K*, which is satisfiable?

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least K, which is satisfiable?

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least K, which is satisfiable?

Reduction

• Assume that you are given an instance of NAE3SAT over *n* variables and *m* clauses.

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least K, which is satisfiable?

- Assume that you are given an instance of NAE3SAT over *n* variables and *m* clauses.
- **2** Consider the clause I = (x, y, z) of the NAE3SAT instance. Replace it with the following set:

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least K, which is satisfiable?

Reduction

- Assume that you are given an instance of NAE3SAT over *n* variables and *m* clauses.
- **2** Consider the clause I = (x, y, z) of the NAE3SAT instance. Replace it with the following set:

 $\begin{array}{ccc} (x,y) & (y,z) & (x,z) \\ (\bar{x},\bar{y}) & (\bar{y},\bar{z}) & (\bar{x},\bar{z}) \end{array}$

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least K, which is satisfiable?

Reduction

- Assume that you are given an instance of NAE3SAT over *n* variables and *m* clauses.
- **2** Consider the clause I = (x, y, z) of the NAE3SAT instance. Replace it with the following set:

 $\begin{array}{ccc} (x,y) & (y,z) & (x,z) \\ (\bar{x},\bar{y}) & (\bar{y},\bar{z}) & (\bar{x},\bar{z}) \end{array}$

Set $K = 5 \cdot m$.

Max2SAT

Definition

Input: A boolean formula ϕ in 2CNF form over *n* variables and *m* clauses, i.e., $\phi = C_1 \wedge C_2 \dots C_m$, with each clause having *exactly* 2 literals and a number $K \leq m$.

Query: Is there a subset of ϕ with cardinality at least K, which is satisfiable?

Reduction

- Assume that you are given an instance of NAE3SAT over *n* variables and *m* clauses.
- **2** Consider the clause I = (x, y, z) of the NAE3SAT instance. Replace it with the following set:

 $\begin{array}{ccc} (x,y) & (y,z) & (x,z) \\ (\bar{x},\bar{y}) & (\bar{y},\bar{z}) & (\bar{x},\bar{z}) \end{array}$

Set $K = 5 \cdot m$.

In argument, note that any assignment satisfies 3 or 5 of the clause set, depending on whether or not it nae-satisfies *I*.

Integer Programming (IP)

Integer Programming (IP)

Definition

NP-completeness Computational Complexity

Integer Programming (IP)

Definition

Input: An integer matrix $\mathbf{A}_{m \times n}$ and an integer vector $\mathbf{b}_{m \times 1}$.

Integer Programming (IP)

Definition

Input: An integer matrix $\mathbf{A}_{m \times n}$ and an integer vector $\mathbf{b}_{m \times 1}$.

Query: Is there a lattice point $\mathbf{r} \in \mathcal{Z}_{+}^{n}$, such that $\mathbf{A} \cdot \mathbf{r} \geq \mathbf{b}$?

Integer Programming (IP)

Definition

Input: An integer matrix $\mathbf{A}_{m \times n}$ and an integer vector $\mathbf{b}_{m \times 1}$.

Query: Is there a lattice point $\mathbf{r} \in \mathcal{Z}_{+}^{n}$, such that $\mathbf{A} \cdot \mathbf{r} \geq \mathbf{b}$?

Observation

Integer Programming (IP)

Definition

Input: An integer matrix $\mathbf{A}_{m \times n}$ and an integer vector $\mathbf{b}_{m \times 1}$.

Query: Is there a lattice point $\mathbf{r} \in \mathcal{Z}_{+}^{n}$, such that $\mathbf{A} \cdot \mathbf{r} \ge \mathbf{b}$?

Observation

It is non-trivial to show that IP is in NP.

Integer Programming (IP)

Definition

Input: An integer matrix $\mathbf{A}_{m \times n}$ and an integer vector $\mathbf{b}_{m \times 1}$.

Query: Is there a lattice point $\mathbf{r} \in \mathbb{Z}_{+}^{n}$, such that $\mathbf{A} \cdot \mathbf{r} \geq \mathbf{b}$?

Observation

It is non-trivial to show that IP is in NP.

Hence, we will focus on a restriction called 0/1 IP, where each component of the vector **r** is required to be 0 or 1.

Theorem

NP-completeness Computational Complexity

0/1 IP

Theorem

0/1 IP is NP-complete.

0/1 IP

Theorem

0/1 IP is NP-complete.

Proof

NP-completeness Computational Complexity

0/1 IP

Theorem

0/1 IP is NP-complete.

Proof

• 0/1 IP is clearly in NP.

0/1 IP

Theorem

0/1 IP is NP-complete.

- 0/1 IP is clearly in NP.
- **2** We will show that $3SAT \le 0/1$ IP.

0/1 IP

Theorem

0/1 IP is NP-complete.

- 0/1 IP is clearly in NP.
- **2** We will show that $3SAT \le 0/1$ IP.
- **3** Take the clause $I : (x, \overline{y}, z)$.

0/1 IP

Theorem

0/1 IP is NP-complete.

- 0/1 IP is clearly in NP.
- **2** We will show that $3SAT \le 0/1$ IP.
- **3** Take the clause $I : (x, \overline{y}, z)$.
- Replace it with the constraint: $c : x + (1 y) + z \ge 1$.

0/1 IP

Theorem

0/1 IP is NP-complete.

- 0/1 IP is clearly in NP.
- **2** We will show that $3SAT \le 0/1$ IP.
- **3** Take the clause $I : (x, \overline{y}, z)$.
- Replace it with the constraint: $c : x + (1 y) + z \ge 1$.
- Solution Argue that if I has a satisfying assignment then do does c

0/1 IP

Theorem

0/1 IP is NP-complete.

- 0/1 IP is clearly in NP.
- 2 We will show that $3SAT \le 0/1$ IP.
- **3** Take the clause $I : (x, \overline{y}, z)$.
- Replace it with the constraint: $c : x + (1 y) + z \ge 1$.
- Solution Argue that if I has a satisfying assignment then do does c and vice versa.

0/1 IP

Theorem

0/1 IP is NP-complete.

- 0/1 IP is clearly in NP.
- **2** We will show that $3SAT \le 0/1$ IP.
- **3** Take the clause $I : (x, \overline{y}, z)$.
- Replace it with the constraint: $c : x + (1 y) + z \ge 1$.
- Solution Argue that if I has a satisfying assignment then do does c and vice versa.
- O The theorem follows.

0/1 IP

Theorem

0/1 IP is NP-complete.

Proof

- 0/1 IP is clearly in NP.
- 2 We will show that $3SAT \le 0/1$ IP.
- **3** Take the clause $I : (x, \overline{y}, z)$.
- Replace it with the constraint: $c : x + (1 y) + z \ge 1$.
- Argue that if I has a satisfying assignment then do does c and vice versa.
- O The theorem follows.

Observations

Integer Programming rivals 3SAT in terms of versatility.