
Outline

NP-completeness - Part II

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 6, 2015

NP-completeness Computational Complexity

Outline

Outline

1 Optimization Problems on Graphs

2 Number Problems

3 The Power of Integer Programming

4 Paths, trees and Circuits

NP-completeness Computational Complexity

Outline

Outline

1 Optimization Problems on Graphs

2 Number Problems

3 The Power of Integer Programming

4 Paths, trees and Circuits

NP-completeness Computational Complexity

Outline

Outline

1 Optimization Problems on Graphs

2 Number Problems

3 The Power of Integer Programming

4 Paths, trees and Circuits

NP-completeness Computational Complexity

Outline

Outline

1 Optimization Problems on Graphs

2 Number Problems

3 The Power of Integer Programming

4 Paths, trees and Circuits

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Independent Set

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) 6∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Independent Set

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) 6∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Independent Set

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) 6∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Independent Set

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) 6∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

In the graph below, V ′ = {v2, v4} is an independent set.

v1

v2 v3

v4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

In the graph below, V ′ = {v2, v4} is an independent set.

v1

v2 v3

v4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

In the graph below, V ′ = {v2, v4} is an independent set.

v1

v2 v3

v4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

In the graph below, V ′ = {v2, v4} is an independent set.

v1

v2 v3

v4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.

2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables,

we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.

Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.

There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.

Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graphical representation

Example

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2 x3

¬x1

¬x2 ¬x3

¬x1

x2 x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graphical representation

Example

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2 x3

¬x1

¬x2 ¬x3

¬x1

x2 x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graphical representation

Example

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2 x3

¬x1

¬x2 ¬x3

¬x1

x2 x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graphical representation

Example

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2 x3

¬x1

¬x2 ¬x3

¬x1

x2 x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.

2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.

3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?

4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.

5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.

6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m.

Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?

7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.

8 Since no pair of complementary literals is picked, the truth assignment is
consistent.

9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.

9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Vertex-Cover

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≤ K such that for any two vertices u, v ∈ V ,
(u, v) ∈ E → (u ∈ V ′) or v ∈ V ′?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Vertex-Cover

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≤ K such that for any two vertices u, v ∈ V ,
(u, v) ∈ E → (u ∈ V ′) or v ∈ V ′?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Vertex-Cover

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≤ K such that for any two vertices u, v ∈ V ,
(u, v) ∈ E → (u ∈ V ′) or v ∈ V ′?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Vertex-Cover

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≤ K such that for any two vertices u, v ∈ V ,
(u, v) ∈ E

→ (u ∈ V ′) or v ∈ V ′?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Vertex-Cover

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≤ K such that for any two vertices u, v ∈ V ,
(u, v) ∈ E → (u ∈ V ′) or v ∈ V ′?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.

2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.

3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.

4 The corresponding instance of the VERTEX-COVER problem is
(G = 〈V ,E〉, |V | − K).

5 The crucial observation is that the vertex complement of a covering set must be
independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).

5 The crucial observation is that the vertex complement of a covering set must be
independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Clique

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) ∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Clique

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) ∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Clique

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) ∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Clique

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) ∈ E?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.

2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.

3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.

4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).

5 The crucial observation is that any independent set in G corresponds to a clique of
the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graph 3-Colorability

Definition

Input: An undirected graph G = 〈V ,E〉 and a set C = {0, 1, 2}.

Query: Is there a function f : V → C, such that for all (u, v) ∈ E , f (u) 6= f (v)?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graph 3-Colorability

Definition

Input: An undirected graph G = 〈V ,E〉 and a set C = {0, 1, 2}.

Query: Is there a function f : V → C, such that for all (u, v) ∈ E , f (u) 6= f (v)?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graph 3-Colorability

Definition

Input: An undirected graph G = 〈V ,E〉 and a set C = {0, 1, 2}.

Query: Is there a function f : V → C, such that for all (u, v) ∈ E , f (u) 6= f (v)?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Graph 3-Colorability

Definition

Input: An undirected graph G = 〈V ,E〉 and a set C = {0, 1, 2}.

Query: Is there a function f : V → C, such that for all (u, v) ∈ E , f (u) 6= f (v)?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.

2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.

3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.

4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉
constructed as follows:

1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,
where Cij refers to the j th literal in the clause Ci .

2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:

1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,
where Cij refers to the j th literal in the clause Ci .

2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a}

∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,
where Cij refers to the j th literal in the clause Ci .

2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n

∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,
where Cij refers to the j th literal in the clause Ci .

2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .

2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n

∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.

3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2}

∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3}

∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.

4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk},

∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3,

∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .

5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk},

∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3,

∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .

6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.

7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

¬x1 x1 x2 ¬x2 x3 ¬x3 ¬x4 x4

a

1

0 2

0 1 1 0 1 0 0 1

Construction for ... ∧ (x1, ¬x2, ¬x3) ∧ ...

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

¬x1 x1 x2 ¬x2 x3 ¬x3 ¬x4 x4

a

1

0 2

0 1 1 0 1 0 0 1

Construction for ... ∧ (x1, ¬x2, ¬x3) ∧ ...

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.

2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)

3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the
other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1,

i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.

5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true?

How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?

6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.

7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.

8 Now focus on a clause triangle.
The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.

The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.

2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.

3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.

4 We construct the graph G = 〈V ,E〉 as follows:
1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn}

∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.

2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause

(parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).

3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi
across all the clauses.

4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.

4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.

5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ =

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m.

Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?

2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?

3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.

4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?

5 It follows that every clause triangle is cut and that the total number of cut edges is
exactly 5 ·m.

6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.

6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.

7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.

8 Since each triangle is cut, it means that each clause has at least one literal set to
true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment.

Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.

2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.

3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,
i.e., these vertices contribute 3 ·m edges to the cut.

4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional
2 ·m edges are contributed to the cut.

5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly
5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.

4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional
2 ·m edges are contributed to the cut.

5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly
5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.

5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly
5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges;

in fact, it has exactly
5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument - Part II

Lemma

Assume that φ has a nae-satisfying assignment. Then G has a cut of at least 5 ·m.

Proof

1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,

i.e., these vertices contribute 3 ·m edges to the cut.
4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional

2 ·m edges are contributed to the cut.
5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.

2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.

3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of
MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:

1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:

1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.

2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .

3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

It is not hard to see that every cut in G can be made into a bisection in G′ by
appropriately distributing the isolated vertices.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

It is not hard to see that every cut in G can be made into a bisection in G′ by
appropriately distributing the isolated vertices.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

It is not hard to see that every cut in G can be made into a bisection in G′ by
appropriately distributing the isolated vertices.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.

2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.

3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.

4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n.

Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?

5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).

6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a
bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Subset-Sum

Definition

Input: A list S = {a1, a2, . . . , an} and a target T .

Query: Is there a set S′ ⊆ S, such that
∑

ai∈S′ ai = T?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Subset-Sum

Definition

Input: A list S = {a1, a2, . . . , an} and a target T .

Query: Is there a set S′ ⊆ S, such that
∑

ai∈S′ ai = T?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Subset-Sum

Definition

Input: A list S = {a1, a2, . . . , an} and a target T .

Query: Is there a set S′ ⊆ S, such that
∑

ai∈S′ ai = T?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Subset-Sum

Definition

Input: A list S = {a1, a2, . . . , an} and a target T .

Query: Is there a set S′ ⊆ S, such that
∑

ai∈S′ ai = T?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.

2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.

3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we
construct the following instance of SUBSET-SUM:

1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:

1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.

2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .

3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.

4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1,¬x3,¬x4) ∧ (¬x1, x2,¬x4).

The corresponding instance of SUBSET-SUM is given below:

x1 x2 x3 x4 c1 c2
T1 1 0 0 0 1 0
F1 1 0 0 0 0 1
T2 0 1 0 0 0 1
F2 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
T4 0 0 0 1 0 0
F4 0 0 0 1 1 1

S11 0 0 0 0 1 0
S12 0 0 0 0 2 0
S21 0 0 0 0 0 1
S22 0 0 0 0 0 2

Target 1 1 1 1 4 4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1,¬x3,¬x4) ∧ (¬x1, x2,¬x4).

The corresponding instance of SUBSET-SUM is given below:

x1 x2 x3 x4 c1 c2
T1 1 0 0 0 1 0
F1 1 0 0 0 0 1
T2 0 1 0 0 0 1
F2 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
T4 0 0 0 1 0 0
F4 0 0 0 1 1 1

S11 0 0 0 0 1 0
S12 0 0 0 0 2 0
S21 0 0 0 0 0 1
S22 0 0 0 0 0 2

Target 1 1 1 1 4 4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1,¬x3,¬x4) ∧ (¬x1, x2,¬x4).

The corresponding instance of SUBSET-SUM is given below:

x1 x2 x3 x4 c1 c2
T1 1 0 0 0 1 0
F1 1 0 0 0 0 1
T2 0 1 0 0 0 1
F2 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
T4 0 0 0 1 0 0
F4 0 0 0 1 1 1

S11 0 0 0 0 1 0
S12 0 0 0 0 2 0
S21 0 0 0 0 0 1
S22 0 0 0 0 0 2

Target 1 1 1 1 4 4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1,¬x3,¬x4) ∧ (¬x1, x2,¬x4).

The corresponding instance of SUBSET-SUM is given below:

x1 x2 x3 x4 c1 c2
T1 1 0 0 0 1 0
F1 1 0 0 0 0 1
T2 0 1 0 0 0 1
F2 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
T4 0 0 0 1 0 0
F4 0 0 0 1 1 1

S11 0 0 0 0 1 0
S12 0 0 0 0 2 0
S21 0 0 0 0 0 1
S22 0 0 0 0 0 2

Target 1 1 1 1 4 4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Example

Example

Let φ = (x1,¬x3,¬x4) ∧ (¬x1, x2,¬x4).

The corresponding instance of SUBSET-SUM is given below:

x1 x2 x3 x4 c1 c2
T1 1 0 0 0 1 0
F1 1 0 0 0 0 1
T2 0 1 0 0 0 1
F2 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
T4 0 0 0 1 0 0
F4 0 0 0 1 1 1

S11 0 0 0 0 1 0
S12 0 0 0 0 2 0
S21 0 0 0 0 0 1
S22 0 0 0 0 0 2

Target 1 1 1 1 4 4

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.

2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.

3 Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.

4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.

5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,
we pick SI1 and SI2, or SI2 or SI1 respectively.

6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.

6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.

7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.

8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?

9 If Ti is picked, set xi to true; otherwise, set it to false.
10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.

11 Since the final m bits of the target are met, we cannot have a case where all
literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Partition

Definition

Input: A list of numbers S = {a1, a2, . . . an}.

Query: Is there a set S′ ⊆ S, such that
∑

aj∈S′ aj =
∑

aj∈S−S′ aj ?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Partition

Definition

Input: A list of numbers S = {a1, a2, . . . an}.

Query: Is there a set S′ ⊆ S, such that
∑

aj∈S′ aj =
∑

aj∈S−S′ aj ?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Partition

Definition

Input: A list of numbers S = {a1, a2, . . . an}.

Query: Is there a set S′ ⊆ S, such that
∑

aj∈S′ aj =
∑

aj∈S−S′ aj ?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.

2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.

3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.

4 The corresponding instance of PARTITION is:
R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =

∑
ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .

2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.

3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to

2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!

4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).

5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to

2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.

6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?

7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.

8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.

2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.

3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:
1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.

2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .

3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of
KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

The Power of Integer Programming

Exercise

Reduce all the problems discussed thus far to Integer Programming.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

The Power of Integer Programming

Exercise

Reduce all the problems discussed thus far to Integer Programming.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Undirected Hamilton Cycle

Definition

Input: An undirected graph G = 〈V ,E〉.

Query: Is there an undirected Hamilton cycle in G?

Reduction

DIRECTED-HAMCYCLE ≤ HAMCYCLE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Undirected Hamilton Cycle

Definition

Input: An undirected graph G = 〈V ,E〉.

Query: Is there an undirected Hamilton cycle in G?

Reduction

DIRECTED-HAMCYCLE ≤ HAMCYCLE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Undirected Hamilton Cycle

Definition

Input: An undirected graph G = 〈V ,E〉.

Query: Is there an undirected Hamilton cycle in G?

Reduction

DIRECTED-HAMCYCLE ≤ HAMCYCLE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Undirected Hamilton Cycle

Definition

Input: An undirected graph G = 〈V ,E〉.

Query: Is there an undirected Hamilton cycle in G?

Reduction

DIRECTED-HAMCYCLE ≤ HAMCYCLE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Undirected Hamilton Cycle

Definition

Input: An undirected graph G = 〈V ,E〉.

Query: Is there an undirected Hamilton cycle in G?

Reduction

DIRECTED-HAMCYCLE ≤ HAMCYCLE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.

NP-completeness Computational Complexity

Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.

NP-completeness Computational Complexity

	Optimization Problems on Graphs
	Number Problems
	The Power of Integer Programming
	Paths, trees and Circuits

