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Outline

o Optimization Problems on Graphs

9 Number Problems

0 The Power of Integer Programming

o Paths, trees and Circuits
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Independent Set

Definition
Input: An undirected graph G = (V, E) and a number K < |V/|.
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Independent Set

Definition
Input: An undirected graph G = (V, E) and a number K < |V/|.

Query: Is there a set V/ C V, with |V’| > K such that for any two vertices u, v € V/,
(u,v) € E?
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In the graph below, V' = {v,, v4} is an independent set.
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© Given an instance ¢ of 3SAT with m clauses and n variables, we construct a
graph G = (V, E) as follows:
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INDEPENDENT-SET is NP-complete.

@ INDEPENDENT-SET is clearly in NP.
© We reduce 3SAT to INDEPENDENT-SET.

© Given an instance ¢ of 3SAT with m clauses and n variables, we construct a
graph G = (V, E) as follows:

o For each one of the m clauses, we create a separate triangle in the graph.
@ Each node of the triangle corresponds to a literal in the clause.
@ There is an edge between two nodes u and v in different triangles if and only if v = —u.
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Complexity

INDEPENDENT-SET is NP-complete.

@ INDEPENDENT-SET is clearly in NP.
© We reduce 3SAT to INDEPENDENT-SET.

© Given an instance ¢ of 3SAT with m clauses and n variables, we construct a
graph G = (V, E) as follows:
o For each one of the m clauses, we create a separate triangle in the graph.
@ Each node of the triangle corresponds to a literal in the clause.
@ There is an edge between two nodes u and v in different triangles if and only if v = —u.
o SetK =m. )
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Graphical representation

d=(X1 VX2V X3)A (X1 VX2 V=X3) A (—X1 V X2 V X3)
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Graphical representation

d=(X1 VX2V X3)A (X1 VX2 V=X3) A (—X1 V X2 V X3)

X4 -X

Xo X3
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@ Assume that a satisfying assignment exists for ¢.

@ Pick a node in each clause triangle that is set to true under this assignment.
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We claim that ¢ is satisfiable if and only if there is an independent set V’ of K nodes in
graph R(¢).

@ Assume that a satisfying assignment exists for ¢.

@ Pick a node in each clause triangle that is set to true under this assignment.

© The set of picked nodes must be independent. Why?

© We thus have an independent set of size > K = m.
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Completing the Reduction

We claim that ¢ is satisfiable if and only if there is an independent set V’ of K nodes in
graph R(¢).

@ Assume that a satisfying assignment exists for ¢.

@ Pick a node in each clause triangle that is set to true under this assignment.

© The set of picked nodes must be independent. Why?

© We thus have an independent set of size > K = m.

© Now, assume that we have an independent set V'’ in R(¢) such that |V/| > m.

@ Then, |V/| = m. Why?

@ Set the literal corresponding to the vertex picked from each triangle to true.

© Since no pair of complementary literals is picked, the truth assignment is
consistent.
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Completing the Reduction

We claim that ¢ is satisfiable if and only if there is an independent set V’ of K nodes in
graph R(¢).

@ Assume that a satisfying assignment exists for ¢.

@ Pick a node in each clause triangle that is set to true under this assignment.

© The set of picked nodes must be independent. Why?

© We thus have an independent set of size > K = m.

© Now, assume that we have an independent set V'’ in R(¢) such that |V/| > m.

@ Then, |V/| = m. Why?

@ Set the literal corresponding to the vertex picked from each triangle to true.

© Since no pair of complementary literals is picked, the truth assignment is
consistent.

© One literal from each clause is set to true and hence all clauses are satisfied.
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Vertex-Cover

Definition
Input: An undirected graph G = (V, E) and a number K < |V/|.
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Vertex-Cover

Definition
Input: An undirected graph G = (V, E) and a number K < |V/|.

Query: Is there a set V/ C V, with |V/| < K such that for any two vertices u, v € V,
(u,v) e E
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Vertex-Cover

Definition
Input: An undirected graph G = (V, E) and a number K < |V/|.

Query: Is there a set V/ C V, with |V/| < K such that for any two vertices u, v € V,
(u,v) e E—(ue V)orve V'?
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Complexity

VERTEX-COVER is NP-complete.

@ VERTEX-COVER is clearly in NP.
@ We reduce INDEPENDENT-SET to VERTEX-COVER.
© Let (G = (V, E), K) denote an instance of the INDEPENDENT-SET problem.

© The corresponding instance of the VERTEX-COVER problem is
(G=(V,E), V|- K).
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Complexity

VERTEX-COVER is NP-complete.

@ VERTEX-COVER is clearly in NP.
@ We reduce INDEPENDENT-SET to VERTEX-COVER.
© Let (G = (V, E), K) denote an instance of the INDEPENDENT-SET problem.

© The corresponding instance of the VERTEX-COVER problem is
(G=(V,E),|V| — K).

© The crucial observation is that the vertex complement of a covering set must be
independent and vice versa.
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Definition
Input: An undirected graph G = (V, E) and a number K < |V/|.
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Input: An undirected graph G = (V, E) and a number K < |V/|.

Query: Is there a set V/ C V, with |V’| > K such that for any two vertices u, v € V/,
(u,v) € E?
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Complexity

CLIQUE is NP-complete.

Proof

@ CLIQUE is clearly in NP.

@ We reduce INDEPENDENT-SET to CLIQUE.

© Let (G = (V, E), K) denote an instance of the INDEPENDENT-SET problem.
@ The corresponding instance of the CLIQUE problem is (G® = (V, E°), K).
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Complexity

CLIQUE is NP-complete.

Proof

@ CLIQUE is clearly in NP.

@ We reduce INDEPENDENT-SET to CLIQUE.

© Let (G = (V, E), K) denote an instance of the INDEPENDENT-SET problem.
@ The corresponding instance of the CLIQUE problem is (G® = (V, E°), K).

© The crucial observation is that any independent set in G corresponds to a clique of
the same size in G¢ and vice versa.

v
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Graph 3-Colorability
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Graph 3-Colorability

Definition
Input: An undirected graph G = (V, E) and aset C = {0, 1,2}.
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Graph 3-Colorability

Definition
Input: An undirected graph G = (V, E) and aset C = {0, 1,2}.

Query: Is there a function f : V — C, such that for all (u, v) € E, f(u) # f(v)?
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:

Q V={a}
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:

Q@ V={atu{x,—x},Vi=1,2,...,n
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© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
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where Cj refers to the j™ literal in the clause C;.

NP-completeness



Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...n

NP-completeness



Complexity

GRAPH 3-COLORABILITY is NP-complete.
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© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n
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GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V={a}u{x,—x},Vi=1,2,...,nU{Cj, Cp, C},Vi=1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n
O E = {Ci,Cp}
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GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V={a}u{x,—x},Vi=1,2,...,nU{Cj, Cp, C},Vi=1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n
© E; ={Ci1,Ci} U{Cy, Cis}
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GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V={a}u{x,—x},Vi=1,2,...,nU{Cj, Cp, C},Vi=1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n
© Ex ={Cj1,Cp} U{Ci1,Ci3} U{Cpp, Ciz},Vi=1,2,...,m.
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V={a}u{x,—x},Vi=1,2,...,nU{Cj, Cp, C},Vi=1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n
© Ex ={Cj1,Cp} U{Ci1,Ci3} U{Cpp, Ci3},Vi=1,2,...,m.
Q E3 = U{Cj, %},
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V={atu{x, —-x},Vi=1,2,...,nU{Cy,Cp,Ca},Vi=1,2...m,
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n
O E; = {Ci1,C} U{Cir, Ciz} U{Cp, C3},Vi=1,2,....,m.
Q E= U{C,'j,Xk},V]‘ =1,2,3,
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GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
QO V={a}u{x,—x},Vi=1,2,...,nU{Cy, Cp,Cja},Vi=1,2...m
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a —x},Vi=1,2,.
(3 E27{CI11 CIZ}U{C,1,C,3}U{C,2,C,3} Vi=1, 2 ,m
Q E3=U{Cj,x},Vj=1,2,8,Vi=1,2,. ka_1,2, .0, if Cj = Xi.
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GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a —x},Vi=1,2,.
o Ez*{CmC:z}U{CmC:a}U{sz,C:a} Vi=1, 2 ,m
Q E3=U{Cj,x},Vj=1,2,3,Vi=1,2,. ka_1,2, .0, if Cj = Xi.
Q E, =U{Cj, X},

NP-completeness



Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.
@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m
where Cj refers to the j™ literal in the clause C;.
@ Ei={ax},Vi=1,2,...nU{a —x},Vi=1,2,.
(3 E27{CI11 CIZ}U{C,1,C,3}U{C,2,C,3} Vi=1, 2 ,m
Q E3=U{Cj,x},Vj=1,2,3,Vi=1,2,. ka_1,2, .0, if Cj = Xi.
0 Ei =U{Cj, ~x},Vj=1,2,3,
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m,
where Cj refers to the j™ literal in the clause C;.

@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n

O E;={Ci1,C} U{Cj,C} U{Cp, C3},Vi=1,2,...,m.

0 E3=U{Cpx},¥%=1,23VYi=1,2....mVk=12...niC;=x.
© Ei=U{Cj-x}.¥j=1,23Yi=1,2_.. mvYk=12_.niCs=—x.
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m
where Cj refers to the j™ literal in the clause C;.

@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n

0 5= {C/hCIZ}U{CH’CIS}U{C/ZaCIS} Vi=1,2,...,m.

Q Es=U{Cj,x},Vi=1,2,3,Vi=1,2,...,m,Vk=1,2,...n,if Cj = xk.
o 4=U{C,j,ﬁxk} Vj—1,23V/_12 ..,mYk=1,2,...n,if Cj = ~xk.
QO Es =U{x,~x}, Vi=1,2,.
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Complexity

GRAPH 3-COLORABILITY is NP-complete.

@ GRAPH 3-COLORABILITY is clearly in NP.
© We reduce NAE3SAT to GRAPH 3-COLORABILITY.
© Letp=Cy ACy...Cnybe a3CNF formula over n variables and m clauses.

@ The corresponding instance of GRAPH 3-COLORABILITY is the graph G = (V, E)
constructed as follows:
Q V= {a}u {X,',‘!X,'},VI‘: 1,2,...,nU {C/17C,'2,C/3},Vf: 1,2...m
where Cj refers to the j™ literal in the clause C;.

@ Ei={ax},Vi=1,2,...nU{a, —~x},Vi=1,2,...n

0 E= {C,1,C,2}U{C,1,C,3}U{C,2,C,3} Vi=1,2,...,m.

O E =U{Cj,x},Vj=1,2,3,Vi=1,2,"..,mVk=1,2,...n,if Cj = .
Q E, =U{Cj, ~x«}, Vj—123V/_12 ..,mYk=1,2,...n,if Cj = ~xk.
O Es = U{x;,—~x},Vi=1,2,.

Q E= E1UE2UE3UE4UE5
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@ Assume that G has a 3-coloring.
© Without loss of generality, we can assume that a has been colored 2. (Why?)

© This means that for each pair {x;, —x;}, one of them has been assigned 0 and the
other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

© We will now argue that the assignment nae-satisfies every clause.
© Can the assignment set every literal in a clause to true? How about false?
O Now assume that ¢ has a nae-satisfying assignment.
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© This means that for each pair {x;, —x;}, one of them has been assigned 0 and the
other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

© We will now argue that the assignment nae-satisfies every clause.

© Can the assignment set every literal in a clause to true? How about false?
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Completing the reduction

@ Assume that G has a 3-coloring.
© Without loss of generality, we can assume that a has been colored 2. (Why?)

© This means that for each pair {x;, —x;}, one of them has been assigned 0 and the
other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

© We will now argue that the assignment nae-satisfies every clause.

© Can the assignment set every literal in a clause to true? How about false?
©Q Now assume that ¢ has a nae-satisfying assignment.

@ Color the literals in G as per this assignment and assign color 2 to vertex a.

© Now focus on a clause triangle.
The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.
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Definition
A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty
sets Sand V — S.

The size of a cut (S, V — S) is the number of edges between Sand V — S.

Definition
Input: An undirected graph G = (V, E) and a number K.

Query: Is there a cut of size at least K in G?
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Proof

@ MAaXCuT is clearly in NP.
© We reduce NAE3SAT to MAXCUT.
© Letp = Cy A Cy...Cnydenote a 3CNF formula over n variables and m clauses.

@ We construct the graph G = (V, E) as follows:
Q V={x,x,...x}
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Proof

@ MAaXCuT is clearly in NP.

@ We reduce NAE3SAT to MAXCUT.

© Letp = Cy A Cy...Cnydenote a 3CNF formula over n variables and m clauses.
@ We construct the graph G = (V, E) as follows:

Q V={x1,x%,...x} U{—x3,X,...Xp}.
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@ MAaXCuT is clearly in NP.
© We reduce NAE3SAT to MAXCUT.
© Letp = Cy A Cy...Cnydenote a 3CNF formula over n variables and m clauses.

@ We construct the graph G = (V, E) as follows:
Q V={x,x,...xa}U{=X1, Xz, ... = Xn}.
@ E; = triangles from the three literals in each clause (parallel edges if needed).
© E, = n; edges from x; to —x;, where n; is the number of occurrences of x; and —x;
across all the clauses.
Q E=E UE.
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Complexity

MAXCuUT is NP-complete.

@ MAaXCuT is clearly in NP.

@ We reduce NAE3SAT to MAXCUT.

© Letp = Cy A Cy...Cnydenote a 3CNF formula over n variables and m clauses.
@ We construct the graph G = (V, E) as follows:

Q V={x,x,...xa}U{=X1, Xz, ... = Xn}.

@ E; = triangles from the three literals in each clause (parallel edges if needed).

© E, = n; edges from x; to —x;, where n; is the number of occurrences of x; and —x;
across all the clauses.

Q E=E UE.

Q@ SetK=5-m.
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Example
Let ¢ = (X1 Vv X2) N (X1 \% ﬁXg) AN (ﬁX1 V =X V X3) =
(X1 V Xo V X2) A (X1 V =Xz V —|X3) A (—\X1 V —Xo V X3)
X1 —X1
X X2
X3 X3
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Assume that G has a cut of at least5 - m. Then ¢ has a nae-satisfying assignment.

@ We can safely assume that x; and —x; are on opposite sides of the cut. Why?

© The edges between the x; and —x; contribute exactly 3 - m edges to the cut. Why?
© The remaining 2 - m or more edges must come from the clause triangles.

@ Each clause triangle can contribute at most 2 edges. Why?

© It follows that every clause triangle is cut and that the total number of cut edges is
exactly 5 - m.

Q Arbitrarily assign true to the literals on one side of the cut and false to the rest.
@ Clearly, this is a consistent assignment.

© Since each triangle is cut, it means that each clause has at least one literal set to
true and at least one set to false, i.e., the assignment is nae-satisfying.
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Assume that ¢ has a nae-satisfying assignment. Then G has a cut of at least5 - m.

Proof

@ Let S denote the set of vertices corresponding to literals that are assigned true.

\
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@ We will argue that the cut (S, V — S) has at least 5 - m edges.

© Since the assignment is consistent, x; and —x; are on opposite sides of the cut,
i.e., these vertices contribute 3 - m edges to the cut.

© Since the assignment is nae-satisfying, every triangle is cut and thus an additional
2 - m edges are contributed to the cut.
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@ Let S denote the set of vertices corresponding to literals that are assigned true.
@ We will argue that the cut (S, V — S) has at least 5 - m edges.

© Since the assignment is consistent, x; and —x; are on opposite sides of the cut,
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Assume that ¢ has a nae-satisfying assignment. Then G has a cut of at least5 - m.

@ Let S denote the set of vertices corresponding to literals that are assigned true.

@ We will argue that the cut (S, V — S) has at least 5 - m edges.

© Since the assignment is consistent, x; and —x; are on opposite sides of the cut,
i.e., these vertices contribute 3 - m edges to the cut.

© Since the assignment is nae-satisfying, every triangle is cut and thus an additional
2 - m edges are contributed to the cut.

© It follows that the cut (S, V — S) has at least 5 - m edges; in fact, it has exactly
5. medges.

NP-completeness



Max-Bisection

NP-completeness



Max-Bisection

Definition

NP-completeness



Max-Bisection

Definition

Input: An undirected graph G = (V, E) and a number K.

NP-completeness



Max-Bisection

Definition

Input: An undirected graph G = (V, E) and a number K.
Query: Is there a cut (S, V — S) of size at least K in G, such that |S| = |V — §|?

NP-completeness



Max-Bisection

Input: An undirected graph G = (V, E) and a number K.

Query: Is there a cut (S, V — S) of size at least K in G, such that |S| = |V — §|?

NP-completeness



Max-Bisection

Input: An undirected graph G = (V, E) and a number K.

Query: Is there a cut (S, V — S) of size at least K in G, such that |S| = |V — §|?

,II,
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MAX-BISECTION is NP-complete.

Proof

@ MAX-BISECTION is clearly in NP.

@ We reduce MAXCUT to MAX-BISECTION.
© Given an instance (G = (V, E), K) of MAXCUT, construct an instance of
MAX-BISECTION (G’ = (V', E’), K") as follows:
Q V = VU{IH,I’Q,...,I"‘V‘}.
@ E' =E.
@ K =K.
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Completing the argument

It is not hard to see that every cut in G can be made into a bisection in G’ by
appropriately distributing the isolated vertices.
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Definition

Input: An undirected graph G = (V, E) and a number K.
Query: Is there a cut (S, V — S) of size at most K in G, such that |S| = |V — S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.
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Bisection-Width

Definition

Input: An undirected graph G = (V, E) and a number K.
Query: Is there a cut (S, V — S) of size at most K in G, such that |S| = |V — S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

A\
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@ BISECTION-WIDTH is clearly in NP.

@ We reduce MAX-BISECTION to BISECTION-WIDTH.

© Let (G = (V, E), K) denote an instance of MAX-BISECTION.

Q@ Without loss of generality, assume that |V| = 2 - n. Why?

© The corresponding instance of BISECTION-WIDTH is: (G° = (V, E°), n? — K).

NP-completeness



Complexity

BISECTION-WIDTH is NP-complete.

@ BISECTION-WIDTH is clearly in NP.

@ We reduce MAX-BISECTION to BISECTION-WIDTH.

© Let (G = (V, E), K) denote an instance of MAX-BISECTION.

Q@ Without loss of generality, assume that |V| = 2 - n. Why?

© The corresponding instance of BISECTION-WIDTH is: (G° = (V, E°), n? — K).

Q ltis not hard to see that G has a bisection of size K or more if and only if G° has a
bisection of size N> — K or less.
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Input: Alist S = {a1,a2,...,an} and a target T.
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Subset-Sum

Definition

Input: Alist S = {a1,a2,...,an} and a target T.

Query: Is there a set S’ C S, such that Zafes' ai=T?
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@ SUBSET-SUM is clearly in NP.
© We will reduce 3SAT to SUBSET-SUM.

© Given aninstance ¢ = C; A Co A ... A Cm of m clauses over n variables, we
construct the following instance of SUBSET-SuM:

Q@ We will create 2 - (m + n) numbers, each having (m + n) digits.
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@ SUBSET-SUM is clearly in NP.
© We will reduce 3SAT to SUBSET-SUM.

© Given aninstance ¢ = C; A Co A ... A Cm of m clauses over n variables, we
construct the following instance of SUBSET-SuM:
@ We will create 2 - (m + n) numbers, each having (m + n) digits.

@ Corresponding to each variable x;, there are two numbers T; and F;.
@ Corresponding to each clause C;, there are two rows Sl and Sh.
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Complexity

SUBSET-SUM is NP-complete.

@ SUBSET-SUM is clearly in NP.
© We will reduce 3SAT to SUBSET-SUM.

© Given aninstance ¢ = C; A Co A ... A Cm of m clauses over n variables, we
construct the following instance of SUBSET-SuM:

@ We will create 2 - (m + n) numbers, each having (m + n) digits.

@ Corresponding to each variable x;, there are two numbers T; and F;.

@ Corresponding to each clause C;, there are two rows Sl and Sh.

@ Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.
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Example

Let ¢ = (X1, X3, ~X4) A (—X1, X2, —1Xa).

The corresponding instance of SUBSET-SUM is given below:

Xy X2 X3 X4 C C
Ty 1 0 0 0 1 0
Fq 1 0 0 0 0 1
Ip 0 1 0 0 0 1
Fo 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
Ty 0 0 0 1 0 0
Fy 0 0 0 1 1 1
S14 0 0 0 0 1 0
S, 0 0 0 0 2 0
524 0 0 0 0 0 1
52, 0 0 0 0 0 2
Target 1 1 1 1 4 4
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n literals.
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@ Assume that ¢ is satisfiable.
@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.
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@ Assume that ¢ is satisfiable.
@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.
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n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.

Q Clearly the final m bits of the target are met.
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@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.

Q Clearly the final m bits of the target are met.
@ Now assume that the target T is met by some subset of numbers.
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Argument

@ Assume that ¢ is satisfiable.
@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.

Q Clearly the final m bits of the target are met.
@ Now assume that the target T is met by some subset of numbers.
© We must have picked exactly one of T; and F; for each i. Why?
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Paths, trees and Circuits

Argument

@ Assume that ¢ is satisfiable.
@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.

Q Clearly the final m bits of the target are met.

@ Now assume that the target T is met by some subset of numbers.
© We must have picked exactly one of T; and F; for each i. Why?
Q If T; is picked, set x; to true; otherwise, set it to false.
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Optimization Problems on Graphs

The Power of Integer Programming
Paths, trees and Circuits

Argument

@ Assume that ¢ is satisfiable.
@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.

Q Clearly the final m bits of the target are met.

@ Now assume that the target T is met by some subset of numbers.
© We must have picked exactly one of T; and F; for each i. Why?
Q If T; is picked, set x; to true; otherwise, set it to false.

Q@ We thus have a consistent assignment.
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Optimization Problems on Graphs

The Power of Integer Programming
Paths, trees and Circuits

Argument

@ Assume that ¢ is satisfiable.
@ Pick all the rows that correspond to true literals.

© Since the assignment is consistent, the first n bits of the target T are met by these
n literals.

@ Since each clause C; is satisfied, at least one number in which ¢; = 1 is picked.

© Depending on whether C; is satisfied by one literal, two literals or all three literals,
we pick Sty and Sk, or Sk or Sl; respectively.

Q Clearly the final m bits of the target are met.

@ Now assume that the target T is met by some subset of numbers.
© We must have picked exactly one of T; and F; for each i. Why?
Q If T; is picked, set x; to true; otherwise, set it to false.

Q@ We thus have a consistent assignment.

@ Since the final m bits of the target are met, we cannot have a case where all
literals of a clause are set to false.
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Definition

Input: A list of numbers S = {ay, as, ... an}.
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Partition

Definition

Input: A list of numbers S = {ay, as, ... an}.

Query: Is there a set S’ C S, such that Eajes’ aj = Za,-esfs’ a?
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PARTITION /s NP-complete.

@ PARTITION is clearly in NP.

© We reduce SUBSET-SUM to PARTITION.

© Let (S={ai,a,...,an}, T) denote an instance of SUBSET-SUM.
@ The corresponding instance of PARTITION is:
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PARTITION /s NP-complete.

@ PARTITION is clearly in NP.
© We reduce SUBSET-SUM to PARTITION.

© Let (S={ai,a,...,an}, T) denote an instance of SUBSET-SUM.

@ The corresponding instance of PARTITION is:
R={ai,a,...,an,L+ T,2-L— T} where L = Za,esai-
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© Both sets sumto 2 - L!

@ Now assume that R has a partition (Ry, Rz).
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@ We can partition the set R into the sets S'U{2-L— T}and S\ S’ U {L + T}.
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@ Now assume that R has a partition (Ry, Rz).

© Both Ry and R> sumto 2 - L.

©Q CanL+ Tand2-L— T belong to the same partition?
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Completing the argument

@ Assume that S has a subset S’ which sums to T.

@ We can partition the set R into the sets S'U{2-L— T}and S\ S’ U {L + T}.
© Both sets sumto 2 - L!

@ Now assume that R has a partition (Ry, Rz).

© Both Ry and R> sumto 2 - L.

©Q CanL+ Tand2-L— T belong to the same partition?

@ Assumethat2-L— T € Ry.
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Argument

Completing the argument

@ Assume that S has a subset S’ which sums to T.

@ We can partition the set R into the sets S'U{2-L— T}and S\ S’ U {L + T}.
© Both sets sumto 2 - L!

@ Now assume that R has a partition (Ry, Rz).

© Both Ry and R> sumto 2 - L.

©Q CanL+ Tand2-L— T belong to the same partition?

@ Assumethat2-L— T € Ry.

© The remaining elements in Ry are all in S and clearly sum to T!
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Query: Is there an x = [xy, Xo, . .. Xs] € {0, 1}" such that
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Knapsack

Input: Vectors p = (p1, P2, - .., Pn), W= (W, Wa, ... Wn), integers P and W.

Query: Is there an x = [xy, Xo, . .. Xs] € {0, 1}" such that

n
dwixp < W
i=1
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Knapsack

Input: Vectors p = (p1, P2, - .., Pn), W= (W, Wa, ... Wn), integers P and W.

Query: Is there an x = [xy, Xo, . .. Xs] € {0, 1}" such that

n
dwixp < W
i=1

n
Z Pi - Xi
i=1

V
T
-~
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Complexity

KNAPSACK is NP-complete.

@ KNAPSACK is clearly in NP.

@ We reduce SUBSET-SUM to KNAPSACK.
© Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:
Q Setw,=p;=a,vi=1,2,...n
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Complexity

KNAPSACK is NP-complete.

@ KNAPSACK is clearly in NP.

@ We reduce SUBSET-SUM to KNAPSACK.
© Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

Q Setw,=p;=a,vi=1,2,...n
@ SetW=P=T.
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Complexity

KNAPSACK is NP-complete.

@ KNAPSACK is clearly in NP.

@ We reduce SUBSET-SUM to KNAPSACK.
© Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:
Q Setw,=p;=a,vi=1,2,...n
@ SetW=P=T.
© Can you establish that the instance of SUBSET-SuM is true if and only if the instance of
KNAPSACK is?
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The Power of Integer Programming

Reduce all the problems discussed thus far to Integer Programming.
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Input: A directed graph G = (V, E).
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Directed Hamilton Path

Definition
Input: A directed graph G = (V, E).

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction
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Directed Hamilton Path

Definition
Input: A directed graph G = (V, E).

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction
3SAT < DIRECTED-HAMPATH.
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s — t Directed Hamilton Path

Definition
Input: A directed graph G = (V, E) and two vertices s,t € V.
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s — t Directed Hamilton Path

Definition
Input: A directed graph G = (V, E) and two vertices s,t € V.

Query: Is there a dipath from s to f in G that touches all the vertices in V — {s, t}
exactly once?
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s — t Directed Hamilton Path

Definition
Input: A directed graph G = (V, E) and two vertices s,t € V.

Query: Is there a dipath from s to f in G that touches all the vertices in V — {s, t}
exactly once?

Such a path if it exists, is called an s — t Directed Hamilton Path.
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s — t Directed Hamilton Path

Definition
Input: A directed graph G = (V, E) and two vertices s,t € V.

Query: Is there a dipath from s to f in G that touches all the vertices in V — {s, t}
exactly once?

Such a path if it exists, is called an s — t Directed Hamilton Path.

Reduction
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s — t Directed Hamilton Path

Definition
Input: A directed graph G = (V, E) and two vertices s,t € V.

Query: Is there a dipath from s to f in G that touches all the vertices in V — {s, t}
exactly once?

Such a path if it exists, is called an s — t Directed Hamilton Path.

Reduction
Same as above.
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).

Query: Is there a directed cycle in G, that goes through each vertex exactly once?
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).
Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s — t DIRECTED-HAMPATH < DIRECTED-HAMCYCLE.
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).
Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction
s — t DIRECTED-HAMPATH < DIRECTED-HAMCYCLE.
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Directed Hamilton Circuit

Definition
Input: A directed graph G = (V, E).
Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction
s — t DIRECTED-HAMPATH < DIRECTED-HAMCYCLE.

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE ?
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Undirected Hamilton Cycle

Definition
Input: An undirected graph G = (V, E).
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Undirected Hamilton Cycle

Definition

Input: An undirected graph G = (V, E).

Query: Is there an undirected Hamilton cycle in G?
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Undirected Hamilton Cycle

Definition

Input: An undirected graph G = (V, E).

Query: Is there an undirected Hamilton cycle in G?

Reduction

NP-completeness



Undirected Hamilton Cycle

Definition
Input: An undirected graph G = (V, E).

Query: Is there an undirected Hamilton cycle in G?

Reduction
DIRECTED-HAMCYCLE < HAMCYCLE.
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Definition

Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.
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Definition

Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?
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Definition

Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction
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Traveling Salesman Problem

Definition
Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction
DIRECTED-HAMCYCLE < TSP(D).
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Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):
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Definition
Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.
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triangle inequality):

d(u,v) < d(u,w) +d(w,v), Yu,v,w e V
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It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u,v) < d(u,w) +d(w,v), Yu,v,w e V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

NP-completeness



Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = (V, E), a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u,v) < d(u,w) +d(w,v), Yu,v,w e V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction
DIRECTED-HAMCYCLE < ATSP(D).

NP-completeness



Longest Path
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Longest Path

Definition
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Longest Path

Definition

Input: An directed graph G = (V, E, ¢), where ¢ : E — Z is a cost function and a cost
value K.
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Longest Path

Definition
Input: An directed graph G = (V, E, ¢), where ¢ : E — Z is a cost function and a cost
value K.

Query: Is there a path in G of cost at least K?
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Longest Path

Definition
Input: An directed graph G = (V, E, ¢), where ¢ : E — Z is a cost function and a cost
value K.

Query: Is there a path in G of cost at least K?

Reduction

NP-completeness



Longest Path

Definition

Input: An directed graph G = (V, E, ¢), where ¢ : E — Z is a cost function and a cost
value K.

Query: Is there a path in G of cost at least K?

Reduction

DIRECTED-HAMPATH < LONGEST-PATH.

NP-completeness



Longest Circuit
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Longest Circuit

Definition

NP-completeness



Longest Circuit

Definition

Input: An directed graph G = (V, E,c), where ¢ : E — Z is a cost function and a cost
value K.
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Longest Circuit

Definition
Input: An directed graph G = (V, E,c), where ¢ : E — Z is a cost function and a cost
value K.

Query: Is there a cycle in G of cost at least K?

NP-completeness



Longest Circuit

Definition
Input: An directed graph G = (V, E,c), where ¢ : E — Z is a cost function and a cost
value K.

Query: Is there a cycle in G of cost at least K?

Reduction

NP-completeness



Longest Circuit

Definition

Input: An directed graph G = (V, E,c), where ¢ : E — Z is a cost function and a cost
value K.

Query: Is there a cycle in G of cost at least K?

Reduction

DIRECTED-HAMCYGLE < LONGEST-PATH.

NP-completeness



Degree-restricted Spanning Tree
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Degree-restricted Spanning Tree

Definition
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Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, a
degree measure D and a cost value K.
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Degree-restricted Spanning Tree

Definition
Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, a
degree measure D and a cost value K.

Query: Is there a spanning tree T of G, such that ¢(T) < K and every vertex in T has
degree at most D?
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Degree-restricted Spanning Tree

Definition
Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, a
degree measure D and a cost value K.

Query: Is there a spanning tree T of G, such that ¢(T) < K and every vertex in T has
degree at most D?

Reduction
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Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, a
degree measure D and a cost value K.

Query: Is there a spanning tree T of G, such that ¢(T) < K and every vertex in T has
degree at most D?

Reduction
DIRECTED-HAMPATH < DEG-SPANNING-TREE.

NP-completeness



Exact Spanning Tree
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Exact Spanning Tree

Definition
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Exact Spanning Tree

Definition

Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, and a
cost value K.
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Exact Spanning Tree

Definition
Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, and a
cost value K.

Query: Is there a spanning tree T of G, such that ¢(T) = K?
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Exact Spanning Tree

Definition
Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, and a
cost value K.

Query: Is there a spanning tree T of G, such that ¢(T) = K?

Reduction

NP-completeness



Exact Spanning Tree

Definition

Input: An undirected graph G = (V, E, c), where ¢ : E — Z is a cost function, and a
cost value K.

Query: Is there a spanning tree T of G, such that ¢(T) = K?

Reduction
SUBSET-SUM < EXACT-SPANNING-TREE.

NP-completeness
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