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Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Independent Set

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) 6∈ E?
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Example

Example

In the graph below, V ′ = {v2, v4} is an independent set.

v1

v2 v3

v4
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Number Problems

The Power of Integer Programming
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Complexity

Theorem

INDEPENDENT-SET is NP-complete.

Proof

1 INDEPENDENT-SET is clearly in NP.
2 We reduce 3SAT to INDEPENDENT-SET.

3 Given an instance φ of 3SAT with m clauses and n variables, we construct a
graph G = 〈V ,E〉 as follows:

For each one of the m clauses, we create a separate triangle in the graph.
Each node of the triangle corresponds to a literal in the clause.
There is an edge between two nodes u and v in different triangles if and only if v = ¬u.
Set K = m.
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Graphical representation

Example

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)
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Completing the Reduction

Proof

We claim that φ is satisfiable if and only if there is an independent set V ′ of K nodes in
graph R(φ).

1 Assume that a satisfying assignment exists for φ.
2 Pick a node in each clause triangle that is set to true under this assignment.
3 The set of picked nodes must be independent. Why?
4 We thus have an independent set of size ≥ K = m.
5 Now, assume that we have an independent set V ′ in R(φ) such that |V ′| ≥ m.
6 Then, |V ′| = m. Why?
7 Set the literal corresponding to the vertex picked from each triangle to true.
8 Since no pair of complementary literals is picked, the truth assignment is

consistent.
9 One literal from each clause is set to true and hence all clauses are satisfied.
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Vertex-Cover

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≤ K such that for any two vertices u, v ∈ V ,
(u, v) ∈ E → (u ∈ V ′) or v ∈ V ′?
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Complexity

Theorem

VERTEX-COVER is NP-complete.

Proof

1 VERTEX-COVER is clearly in NP.
2 We reduce INDEPENDENT-SET to VERTEX-COVER.
3 Let (G = 〈V ,E〉,K ) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the VERTEX-COVER problem is

(G = 〈V ,E〉, |V | − K ).
5 The crucial observation is that the vertex complement of a covering set must be

independent and vice versa.
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Clique

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K ≤ |V |.

Query: Is there a set V ′ ⊆ V , with |V ′| ≥ K such that for any two vertices u, v ∈ V ′,
(u, v) ∈ E?
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CLIQUE is NP-complete.

Proof

1 CLIQUE is clearly in NP.
2 We reduce INDEPENDENT-SET to CLIQUE.
3 Let (G = 〈V ,E〉,K ) denote an instance of the INDEPENDENT-SET problem.
4 The corresponding instance of the CLIQUE problem is (Gc = 〈V ,Ec〉,K ).
5 The crucial observation is that any independent set in G corresponds to a clique of

the same size in Gc and vice versa.
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Graph 3-Colorability

Definition

Input: An undirected graph G = 〈V ,E〉 and a set C = {0, 1, 2}.

Query: Is there a function f : V → C, such that for all (u, v) ∈ E , f (u) 6= f (v)?
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Theorem

GRAPH 3-COLORABILITY is NP-complete.

Proof

1 GRAPH 3-COLORABILITY is clearly in NP.
2 We reduce NAE3SAT to GRAPH 3-COLORABILITY.
3 Let φ = C1 ∧ C2 . . .Cm be a 3CNF formula over n variables and m clauses.
4 The corresponding instance of GRAPH 3-COLORABILITY is the graph G = 〈V ,E〉

constructed as follows:
1 V = {a} ∪ {xi ,¬xi}, ∀i = 1, 2, . . . , n ∪ {Ci1, Ci2, Ci3}, ∀i = 1, 2 . . . m,

where Cij refers to the j th literal in the clause Ci .
2 E1 = {a, xi}, ∀i = 1, 2, . . . n ∪ {a,¬xi}, ∀i = 1, 2, . . . n.
3 E2 = {Ci1, Ci2} ∪ {Ci1, Ci3} ∪ {Ci2, Ci3}, ∀i = 1, 2, . . . , m.
4 E3 = ∪{Cij , xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = xk .
5 E4 = ∪{Cij ,¬xk}, ∀j = 1, 2, 3, ∀i = 1, 2, . . . , m, ∀k = 1, 2, . . . n, if Cij = ¬xk .
6 E5 = ∪{xi ,¬xi}, ∀i = 1, 2, . . . n.
7 E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.
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Example

¬x1 x1 x2 ¬x2 x3 ¬x3 ¬x4 x4

a

1

0 2

0 1 1 0 1 0 0 1

Construction for ... ∧ (x1, ¬x2, ¬x3) ∧ ...
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Argument

Completing the reduction

1 Assume that G has a 3-coloring.
2 Without loss of generality, we can assume that a has been colored 2. (Why?)
3 This means that for each pair {xi ,¬xi}, one of them has been assigned 0 and the

other 1, i.e., we get a consistent assignment by setting literals assigned to 0 to
false and literals assigned to 1 to true.

4 We will now argue that the assignment nae-satisfies every clause.
5 Can the assignment set every literal in a clause to true? How about false?
6 Now assume that φ has a nae-satisfying assignment.
7 Color the literals in G as per this assignment and assign color 2 to vertex a.
8 Now focus on a clause triangle.

The literal which is connected to a true literal is assigned the color 0 and the literal
which is connected to a false literal is assigned the color 1.
The remaining literal is assigned the color 2.
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MaxCut

Definition

A cut in an undirected graph G = (V ,E) is a partition of vertices into two non-empty
sets S and V − S.

The size of a cut (S,V − S) is the number of edges between S and V − S.

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut of size at least K in G?
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Complexity

Theorem

MAXCUT is NP-complete.

Proof

1 MAXCUT is clearly in NP.
2 We reduce NAE3SAT to MAXCUT.
3 Let φ = C1 ∧ C2 . . .Cm denote a 3CNF formula over n variables and m clauses.
4 We construct the graph G = 〈V ,E〉 as follows:

1 V = {x1, x2, . . . xn} ∪ {¬x1,¬x2, . . .¬xn}.
2 E1 = triangles from the three literals in each clause (parallel edges if needed).
3 E2 = ni edges from xi to ¬xi , where ni is the number of occurrences of xi and ¬xi

across all the clauses.
4 E = E1 ∪ E2.
5 Set K = 5 · m.
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Example

Example

Let φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3
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Argument - Part I

Lemma

Assume that G has a cut of at least 5 ·m. Then φ has a nae-satisfying assignment.

Proof

1 We can safely assume that xi and ¬xi are on opposite sides of the cut. Why?
2 The edges between the xi and ¬xi contribute exactly 3 ·m edges to the cut. Why?
3 The remaining 2 ·m or more edges must come from the clause triangles.
4 Each clause triangle can contribute at most 2 edges. Why?
5 It follows that every clause triangle is cut and that the total number of cut edges is

exactly 5 ·m.
6 Arbitrarily assign true to the literals on one side of the cut and false to the rest.
7 Clearly, this is a consistent assignment.
8 Since each triangle is cut, it means that each clause has at least one literal set to

true and at least one set to false, i.e., the assignment is nae-satisfying.
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1 Let S denote the set of vertices corresponding to literals that are assigned true.
2 We will argue that the cut (S,V − S) has at least 5 ·m edges.
3 Since the assignment is consistent, xi and ¬xi are on opposite sides of the cut,
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4 Since the assignment is nae-satisfying, every triangle is cut and thus an additional
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5 It follows that the cut (S,V − S) has at least 5 ·m edges; in fact, it has exactly

5 ·m edges.
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Max-Bisection

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at least K in G, such that |S| = |V − S|?

Example
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Complexity

Theorem

MAX-BISECTION is NP-complete.

Proof

1 MAX-BISECTION is clearly in NP.
2 We reduce MAXCUT to MAX-BISECTION.
3 Given an instance (G = 〈V ,E〉,K ) of MAXCUT, construct an instance of

MAX-BISECTION (G′ = 〈V ′,E ′),K ′) as follows:
1 V ′ = V ∪ {r1, r2, . . . , r|V|}.
2 E ′ = E .
3 K ′ = K .
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Argument

Completing the argument

It is not hard to see that every cut in G can be made into a bisection in G′ by
appropriately distributing the isolated vertices.
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Bisection-Width

Definition

Input: An undirected graph G = 〈V ,E〉 and a number K .

Query: Is there a cut (S,V − S) of size at most K in G, such that |S| = |V − S|?

BISECTION-WIDTH imposes an additional constraint on MINCUT, just as
MAX-BISECTION imposes an additional constraint on MAXCUT.

Example
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Complexity

Theorem

BISECTION-WIDTH is NP-complete.

Proof

1 BISECTION-WIDTH is clearly in NP.
2 We reduce MAX-BISECTION to BISECTION-WIDTH.
3 Let (G = 〈V ,E〉,K ) denote an instance of MAX-BISECTION.
4 Without loss of generality, assume that |V | = 2 · n. Why?
5 The corresponding instance of BISECTION-WIDTH is: (Gc = 〈V ,Ec〉, n2 − K ).
6 It is not hard to see that G has a bisection of size K or more if and only if Gc has a

bisection of size n2 − K or less.
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Subset-Sum

Definition

Input: A list S = {a1, a2, . . . , an} and a target T .

Query: Is there a set S′ ⊆ S, such that
∑

ai∈S′ ai = T?
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Complexity

Theorem

SUBSET-SUM is NP-complete.

Proof

1 SUBSET-SUM is clearly in NP.
2 We will reduce 3SAT to SUBSET-SUM.
3 Given an instance φ = C1 ∧ C2 ∧ . . . ∧ Cm of m clauses over n variables, we

construct the following instance of SUBSET-SUM:
1 We will create 2 · (m + n) numbers, each having (m + n) digits.
2 Corresponding to each variable xi , there are two numbers Ti and Fi .
3 Corresponding to each clause Ci , there are two rows SI1 and SI2.
4 Finally, we create a target which has 1 in the first n digits and 4 in the final m digits.
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Example

Example

Let φ = (x1,¬x3,¬x4) ∧ (¬x1, x2,¬x4).

The corresponding instance of SUBSET-SUM is given below:

x1 x2 x3 x4 c1 c2
T1 1 0 0 0 1 0
F1 1 0 0 0 0 1
T2 0 1 0 0 0 1
F2 0 1 0 0 0 0
T3 0 0 1 0 0 0
F3 0 0 1 0 1 0
T4 0 0 0 1 0 0
F4 0 0 0 1 1 1

S11 0 0 0 0 1 0
S12 0 0 0 0 2 0
S21 0 0 0 0 0 1
S22 0 0 0 0 0 2

Target 1 1 1 1 4 4
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Argument

Proof

1 Assume that φ is satisfiable.
2 Pick all the rows that correspond to true literals.
3 Since the assignment is consistent, the first n bits of the target T are met by these

n literals.
4 Since each clause Ci is satisfied, at least one number in which ci = 1 is picked.
5 Depending on whether Ci is satisfied by one literal, two literals or all three literals,

we pick SI1 and SI2, or SI2 or SI1 respectively.
6 Clearly the final m bits of the target are met.
7 Now assume that the target T is met by some subset of numbers.
8 We must have picked exactly one of Ti and Fi for each i . Why?
9 If Ti is picked, set xi to true; otherwise, set it to false.

10 We thus have a consistent assignment.
11 Since the final m bits of the target are met, we cannot have a case where all

literals of a clause are set to false.
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Partition

Definition

Input: A list of numbers S = {a1, a2, . . . an}.

Query: Is there a set S′ ⊆ S, such that
∑

aj∈S′ aj =
∑

aj∈S−S′ aj ?
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Complexity

Theorem

PARTITION is NP-complete.

Proof

1 PARTITION is clearly in NP.
2 We reduce SUBSET-SUM to PARTITION.
3 Let (S = {a1, a2, . . . , an},T ) denote an instance of SUBSET-SUM.
4 The corresponding instance of PARTITION is:

R = {a1, a2, . . . , an, L + T , 2 · L− T}, where L =
∑

ai∈S ai .
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Argument

Completing the argument

1 Assume that S has a subset S′ which sums to T .
2 We can partition the set R into the sets S′ ∪ {2 · L− T} and S \ S′ ∪ {L + T}.
3 Both sets sum to 2 · L!
4 Now assume that R has a partition (R1,R2).
5 Both R1 and R2 sum to 2 · L.
6 Can L + T and 2 · L− T belong to the same partition?
7 Assume that 2 · L− T ∈ R1.
8 The remaining elements in R1 are all in S and clearly sum to T !
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Knapsack

Definition

Input: Vectors p = (p1, p2, . . . , pn), w = (w1,w2, . . .wn), integers P and W .

Query: Is there an x = [x1, x2, . . . xn] ∈ {0, 1}n such that

n∑
i=1

wi · xi ≤ W

n∑
i=1

pi · xi ≥ P?
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Complexity

Theorem

KNAPSACK is NP-complete.

Proof

1 KNAPSACK is clearly in NP.
2 We reduce SUBSET-SUM to KNAPSACK.
3 Given an instance of SUBSET-SUM, create the following instance of KNAPSACK:

1 Set wi = pi = ai , ∀i = 1, 2, . . . n.
2 Set W = P = T .
3 Can you establish that the instance of SUBSET-SUM is true if and only if the instance of

KNAPSACK is?
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Exercise

Reduce all the problems discussed thus far to Integer Programming.
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Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a dipath in G that touches every vertex exactly once.

Such a path if it exists, is called a Directed Hamilton Path.

Reduction

3SAT ≤ DIRECTED-HAMPATH.
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s − t Directed Hamilton Path

Definition

Input: A directed graph G = 〈V ,E〉 and two vertices s, t ∈ V .

Query: Is there a dipath from s to t in G that touches all the vertices in V − {s, t}
exactly once?

Such a path if it exists, is called an s − t Directed Hamilton Path.

Reduction

Same as above.
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Directed Hamilton Circuit

Definition

Input: A directed graph G = 〈V ,E〉.

Query: Is there a directed cycle in G, that goes through each vertex exactly once?

Such a cycle if it exists, is called a Directed Hamilton Circuit or Directed Hamilton
Cycle.

Reduction

s − t DIRECTED-HAMPATH ≤ DIRECTED-HAMCYCLE.

Exercise

Can you provide a reduction from DIRECTED-HAMPATH to DIRECTED-HAMCYCLE?
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Undirected Hamilton Cycle

Definition

Input: An undirected graph G = 〈V ,E〉.

Query: Is there an undirected Hamilton cycle in G?

Reduction

DIRECTED-HAMCYCLE ≤ HAMCYCLE.
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Traveling Salesman Problem

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ TSP(D).
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Traveling Salesman Problem (Triangle Inequality)

Definition

Input: An directed graph G = 〈V ,E〉, a pairwise distance matrix D and a budget B.

It is assumed that the distance matrix D enjoys the following property (known as
triangle inequality):

d(u, v) ≤ d(u,w) + d(w , v), ∀u, v ,w ∈ V

Query: Is there a Hamilton cycle in G with cost at most B?

Reduction

DIRECTED-HAMCYCLE ≤ 4TSP(D).
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Longest Path

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a path in G of cost at least K ?

Reduction

DIRECTED-HAMPATH ≤ LONGEST-PATH.
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Longest Circuit
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value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Longest Circuit

Definition

Input: An directed graph G = 〈V ,E , c〉, where c : E → Z is a cost function and a cost
value K .

Query: Is there a cycle in G of cost at least K ?

Reduction

DIRECTED-HAMCYCLE ≤ LONGEST-PATH.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T ) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T ) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T ) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T ) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T ) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Degree-restricted Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, a
degree measure D and a cost value K .

Query: Is there a spanning tree T of G, such that c(T ) ≤ K and every vertex in T has
degree at most D?

Reduction

DIRECTED-HAMPATH ≤ DEG-SPANNING-TREE.

NP-completeness Computational Complexity



Optimization Problems on Graphs
Number Problems

The Power of Integer Programming
Paths, trees and Circuits

Exact Spanning Tree

Definition

Input: An undirected graph G = 〈V ,E , c〉, where c : E → Z is a cost function, and a
cost value K .

Query: Is there a spanning tree T of G, such that c(T ) = K ?

Reduction

SUBSET-SUM ≤ EXACT-SPANNING-TREE.
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