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1 Problems
1. Let f denote a convex function. It follows that for any x1, x2 in the domain and λ ∈ [0, 1],

f(λ · x1 + (1− λ) · x2) ≤ λ · f(x1) + (1− λ) · f(x2).

Let X denote a random variable. Jensen’s inequality states that

E[f(X)] ≥ f(E[X])

Prove the above inequality for the case when X takes on precisely two values x1 and x2 with probabilities p and
(1− p) respectively. Argue that Jensen’s inequality becomes an equality, when f(X) = a ·X + b, where a and b are
constants.

Solution: Since X takes precisely two values x1 and x2 with probabilities p and (1 − p) respectively, we have that
f(X) takes two values f(x1) and f(x2) with the same probabilities. Thus,

f(E[X]) = f(p · x1 + (1− p) · x2) ≤ p · f(x1) + (1− p) · f(x2) = E[f(X)].

The first and the third equalities follow from the definitions of f(E[X]) and E[f(X)], respectively, and the second
inequality follows from the convexity of f . Now, assume that f(X) = a ·X + b, then

f(E[X]) = f(p · x1 + (1− p) · x2)

= a · (p · x1 + (1− p) · x2) + b

= a · p · x1 + a · (1− p) · x2 + b

= (a · x1 + b) · p+ (a · x2 + b) · (1− p)
= f(x1) · p+ f(x2) · (1− p)
= E[f(X)].

2

2. Let E1, E2, . . . En denote a set of events. Argue that

P[∪ni=1Ei] =
∑

T⊆{1,2,...,n}

(−1)|T |P[∩i∈TEi]

Solution:
We assume that P[∩i∈∅Ei] = 1.

Accordingly, we can rewrite the given inequality as:
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P[∪ni=1Ei] =
∑

∅6=T⊆{1,2,...,n}

(−1)|T |−1 ·P[∩i∈TEi].

In our proof we will use the following equality:

P[A ∪B] = P[A] + P[B]−P[A ∩B],

where A and B are arbitrary events.

Now, let us prove the main equality by induction on n.

Clearly, it holds for n = 1, since in this case, the inequality reduces to the identity P[E1] = P[E1].

Assume that it is true for n = (k − 1).

Consider an arbitrary collection of k events E1, ..., Ek.

Observe that,

P[∪ki=1Ei] = P[(∪k−1i=1Ei) ∪ Ek]

= P[∪k−1i=1Ei] + P[Ek]−P[(∪k−1i=1Ei) ∩ Ek]

= P[∪k−1i=1Ei] + P[Ek]−P[(∪k−1i=1 (Ei ∩ Ek)]

=
∑
∅6=T

(−1)|T |−1 ·P[∩i∈TEi] + P[Ek]−
∑
∅6=T

(−1)|T |−1 ·P[∩i∈T (Ei ∩ Ek)]

The above step follows from the inductive hypothesis.
Also, note that in the above equation T varies over all subsets of {1, 2, . . . (k − 1)}.

=
∑
∅6=S

(−1)|S|−1 ·P[∩i∈SEi].

In the final equation S varies over all subsets of {1, 2, . . . k}.
Let us justify the last step. Partition

∑
∅6=S(−1)|S|−1 · P[∩i∈SEi] into two sums by considering those subsets S of

{1, 2, . . . k} which contain k and those which do not.

Clearly, if these subsets do not contain k, then the corresponding terms are going to appear in∑
∅6=T

(−1)|T |−1 ·P[∩i∈TEi].

If S = {k}, then ∑
∅6=S

(−1)|S|−1 ·P[∩i∈SEi] = P[Ek].

Finally, if S is any subset that contains k, and is different from {k}, then S − {k} is non-empty, hence the corre-
sponding term will appear in∑

∅6=S

(−1)|S|−1 ·P[∩i∈S(Ei ∩ Ek)] = −
∑
∅6=T

(−1)|T |−1 ·P[∩i∈T (Ei ∩ Ek)]

where T = S\{k}. 2

3. Prove that in any finite graph, the number of vertices with odd degrees is even,

Solution: Let G be a graph, and for a vertex v of G, let d(v) be the degree of the vertex v in G. Consider the subsets
VE and VO of V (G) defined as follows:

VE = {v ∈ V (G) : d(v) is even}, VO = {v ∈ V (G) : d(v) is odd}.
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Clearly, V (G) = VE ∪ VO and VE ∩ VO = ∅, and we need to show that |VO| is odd. Observe that:∑
v∈VO

d(v) +
∑
v∈VE

d(v) =
∑

v∈V (G)

d(v) = 2 · |E(G)|.

The last equality follows from the observation that each edge has two end-vertices, hence it is counted twice in the
sum

∑
v∈V (G) d(v). We have that: ∑

v∈VO

d(v) = 2 · |E(G)| −
∑
v∈VE

d(v).

Observe that the right side of this equation is even, hence
∑

v∈VO
d(v) is even as well. Taking into account that for

each v ∈ VO, d(v) is odd, we conclude that |VO| is even (the sum of odd numbers can be even if and only if the
number of summands is even). 2

4. Consider two variants of the Hamilton cycle problem: In Variant I, you are required to provide a “yes/no” answer
to the question: Does the graph G have a Hamilton cycle? In Variant II, you are required to actually provide the
Hamilton cycle in G, if one exists. Assume that an oracle for Variant I exists. Argue that by querying this oracle at
most a polynomial number of times (polynomial in the size of G), we can solve Variant II.

Solution: Let E(G) = {e1, ..., eq}. We will show that with at most (q+ 1) queries of the oracle for Variant I, we can
construct the actual Hamiltonian cycle of G, if it exists. Since q ≤ n·(n+1)

2 , this will establish the polynomiality of
our approach.

Consider the following algorithm:

Function HAMILTON-CYCLE-SEARCH(G = 〈V,E〉, H)
1: if (HAMILTON-CYCLE-DECISION(G) = “no”) then
2: return(“No Hamilton cycle exists”).
3: else
4: HAMILTON-CYCLE-AUX(G = 〈V,E〉, H).
5: end if

Algorithm 1.1: Turing reduction of the Hamilton cycle search problem to the Hamilton cycle decision problem

Function HAMILTON-CYCLE-AUX(G = 〈V,E〉, H)
1: if (|V | = 1) then
2: return(H).
3: else
4: Pick some edge e ∈ E.
5: if (HAMILTON-CYCLE-DECISION(G = 〈V,E − {e}〉) = “yes”) then
6: return(HAMILTON-CYCLE-AUX(G = 〈V,E − {e}〉, H)).
7: else
8: H = H ∪ {e}.
9: Contract edge e reducing the number of vertices in V by 1. If parallel edges are created, remove all except one.

Modify V and E accordingly.
10: return(HAMILTON-CYCLE-AUX(G = 〈V,E〉, H)).
11: end if
12: end if

Algorithm 1.2: The Auxiliary procedure

It is important to note that f Algorithm 1.2 does not return a unique Hamilton cycle. In particular, if a graph has more
than one Hamilton cycle, the cycle that is returned depends upon the implementation of Step 4 of this algorithm.
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5. Consider the Fibonacci series, which is defined as follows:

F (1) = 1

F (2) = 1

F (n) = F (n− 1) + F (n− 2), n ≥ 3

Argue that F (n) = Θ(ψn), where ψ = 1+
√
5

2 .

What is the complexity of checking whether a given number n is a Fibonacci number?

Solution: In order to show that F (n) = Θ(ψn), we need to show that there are C1 > 0, C2 > 0, such that for each
n ≥ 1, one has

C1 · ψn ≤ F (n) ≤ C2 · ψn.

Choose C1 = ( 2
1+
√
5
)2 and C2 = 2

1+
√
5

. It can checked directly that these inequalities are satisfied for n = 1, 2.
Now, we will show by induction that they are going to hold for all n ≥ 3. By the choice of C1 and C2, the inequalities
hold for n = 1, 2 so we have the basis of the induction. Consider F (n), n ≥ 3. By induction, we have that

F (n) = F (n− 1) + F (n− 2)

≥ C1 · (
1 +
√

5

2
)n−1 + C1 · (

1 +
√

5

2
)n−2

= C1 · (
1 +
√

5

2
)n · ( 2

1 +
√

5
+ (

2

1 +
√

5
)2)

= C1 · (
1 +
√

5

2
)n · 6 + 2 ·

√
5

(1 +
√

5)2

= C1 · (
1 +
√

5

2
)n,

and similarly

F (n) = F (n− 1) + F (n− 2)

≤ C2 · (
1 +
√

5

2
)n−1 + C2 · (

1 +
√

5

2
)n−2

= C2 · (
1 +
√

5

2
)n · ( 2

1 +
√

5
+ (

2

1 +
√

5
)2)

= C2 · (
1 +
√

5

2
)n · 6 + 2 ·

√
5

(1 +
√

5)2

= C2 · (
1 +
√

5

2
)n.

In order to check whether a given number n is a Fibonacci number, we need to test whether there exists k ≥ 1,
such that F (k) = n. We can do this by the following algorithm: we start with F (1) = F (2) = 1, and compute
F (3), F (4), ..., F (k), such that F (k) ≤ n and F (k + 1) > n. Clearly, If F (k) = n, n is a Fibonacci number,
otherwise it is not. The number of additions is

k − 2 ≤ Θ(log(n)).

This follows from the following reasoning: as F (k) = Θ(ψk) ≤ n, we have that k ≤ Θ(log(n)).

2

4


