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1 Problems

1. Let f denote a convex function. It follows that for any x1, x5 in the domain and A € [0, 1],
FOvzr+ 1 =X 22) <A fz) + (1= A) - f(z2).
Let X denote a random variable. Jensen’s inequality states that

E[f(X)] > f(E[X])

Prove the above inequality for the case when X takes on precisely two values z; and zo with probabilities p and
(1 — p) respectively. Argue that Jensen’s inequality becomes an equality, when f(X) = a - X + b, where a and b are
constants.

Solution: Since X takes precisely two values x; and x5 with probabilities p and (1 — p) respectively, we have that
f(X) takes two values f(z1) and f(x2) with the same probabilities. Thus,

FEX]) =f(p a1+ A —p) a2) <p- flz1) + (1 —p)- f(z2) = E[f(X)].

The first and the third equalities follow from the definitions of f(E[X]) and E[f(X)], respectively, and the second
inequality follows from the convexity of f. Now, assume that f(X) = a - X + b, then

JEX])=fp -1+ (1 —-p)- z2)
=a-(p o1+ (1—p)-x2)+b
=a-p-xita (1-p)-z2+b
=(a-z1+b)-p+(a-22+0b) (1 -p)
= f(z1) - p+ f(z2)- (1 —p)
= E[f(X)].

|

2. Let £, Es, ... E, denote a set of events. Argue that

PlUL, Ei] = (~D)ITP[Ner E)]
TC{1.2,...n}

Solution:
We assume that P[N;cp E;] = 1.

Accordingly, we can rewrite the given inequality as:



PlUL, Ei] = Y. ()TPlierEl.
0ATC{1,2,...,n}

In our proof we will use the following equality:
P[AUB] =P[A] +P[B] - P[AN B],

where A and B are arbitrary events.

Now, let us prove the main equality by induction on n.

Clearly, it holds for n = 1, since in this case, the inequality reduces to the identity P[E] = P[E}].
Assume that it is true for n = (k — 1).

Consider an arbitrary collection of k events E1, ..., F.

Observe that,

PUI, Ei] = P[(UZ[ Ei) U By
PUIZ! E)] + P[By] - P(ULS Ei) N Ex]
P[UFLE,] + P[Ey] — P[(UZL(E: N Ey))

= Z \T\ L. P[NierEi] + P[EL] — Z(,l)lTlfl -PlNier(E; N E)]
0#£T 0£T

The above step follows from the inductive hypothesis.
Also, note that in the above equation T varies over all subsets of {1,2,...(k — 1)}.

=) () PlniesEl.
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In the final equation S varies over all subsets of {1,2,...k}.

Let us justify the last step. Partition ., (=191 . P[N;c g E;] into two sums by considering those subsets S of
{1,2, ...k} which contain & and those which do not.

Clearly, if these subsets do not contain k, then the corresponding terms are going to appear in
Z(_l)m_l P[Nier Ei.
0£T

If S = {k}, then

Z(_l)ls‘_l -PlNiesE;] = P[E}].
0#£S

Finally, if S is any subset that contains k, and is different from {k}, then S — {k} is non-empty, hence the corre-
sponding term will appear in

S (1) Pries (B 1 B = — 3 ()T Pier (B, 0 By
045 04T
where T'= S\{k}. O

. Prove that in any finite graph, the number of vertices with odd degrees is even,

Solution: Let G be a graph, and for a vertex v of G, let d(v) be the degree of the vertex v in G. Consider the subsets
Vg and Vo of V(G) defined as follows:

Ve ={v € V(G) : d(v) iseven}, Vo = {v € V(G) : d(v) is odd}.



Clearly, V(G) = Vg U Vp and Vg N Vo = ), and we need to show that |V | is odd. Observe that:

D dw)+ Y dw)= > dw)=2-|EG)].

veVo vEVE veV(G)

The last equality follows from the observation that each edge has two end-vertices, hence it is counted twice in the
sum -, v () d(v). We have that:

S dw) =2 1E@) - Y d(v).

veVo veEVE

Observe that the right side of this equation is even, hence ), eV, d(v) is even as well. Taking into account that for
each v € Vo, d(v) is odd, we conclude that |Vp| is even (the sum of odd numbers can be even if and only if the
number of summands is even). O

. Consider two variants of the Hamilton cycle problem: In Variant I, you are required to provide a “yes/no” answer

to the question: Does the graph G have a Hamilton cycle? In Variant II, you are required to actually provide the
Hamilton cycle in G, if one exists. Assume that an oracle for Variant I exists. Argue that by querying this oracle at
most a polynomial number of times (polynomial in the size of GG), we can solve Variant II.

Solution: Let E(G) = {e1, ..., ¢, }. We will show that with at most (¢ + 1) queries of the oracle for Variant I, we can
construct the actual Hamiltonian cycle of G, if it exists. Since ¢ < %, this will establish the polynomiality of
our approach.

Consider the following algorithm:

Function HAMILTON-CYCLE-SEARCH(G = (V| E), H)

1:

2
3:
4
5

if (HAMILTON-CYCLE-DECISION(G) = “no”) then

return(“No Hamilton cycle exists”).

else

HAMILTON-CYCLE-AUX(G = (V, E), H).

. end if

Algorithm 1.1: Turing reduction of the Hamilton cycle search problem to the Hamilton cycle decision problem

Function HAMILTON-CYCLE-AUX(G = (V, E), H)
1: if (|V] = 1) then

R A A T ol

return(H).

else

Pick some edge e € F.
if (HAMILTON-CYCLE-DECISION(G = (V, E — {e})) = “yes”) then
return(HAMILTON-CYCLE-AUX(G = (V, E — {e}), H)).
else
H = HU/{e}.
Contract edge e reducing the number of vertices in V' by 1. If parallel edges are created, remove all except one.
Modify V and E accordingly.
return(HAMILTON-CYCLE-AUX(G = (V, E), H)).
end if

end if

Algorithm 1.2: The Auxiliary procedure

It is important to note that f Algorithm 1.2 does not return a unique Hamilton cycle. In particular, if a graph has more
than one Hamilton cycle, the cycle that is returned depends upon the implementation of Step 4 of this algorithm.

O




5. Consider the Fibonacci series, which is defined as follows:

F(1) = 1
F@2) = 1
F(n) = Fn—-1)+Fn—-2),n>3

Argue that F'(n) = ©(¢™), where ¢ = 1+2\/5'

What is the complexity of checking whether a given number n is a Fibonacci number?

Solution: In order to show that F'(n) = ©(¢)™), we need to show that there are C; > 0, Cy > 0, such that for each
n > 1, one has

Cr-Y" < F(n) < Cy- 9™
Choose C; = (—2=)% and Cy = —2~. It can checked directly that these inequalities are satisfied for n = 1,2.

1+v5 145"
Now, we will show by induction that they are going to hold for all n > 3. By the choice of C; and Cs, the inequalities

hold for n = 1, 2 so we have the basis of the induction. Consider F'(n), n > 3. By induction, we have that

Fn)=F(n—-1)+F(n—-2)

> O - (#)n—l +C - (1""27‘/5)n—2
_ 1+vV5, 2 2,
. '(1+\/5)n.6+2-\/5

=C 5 1+ v5)

o (Y

and similarly
F(n)=F(n—-1)+F(n—-2)

S 02 . (1 +2\/5)n—1 + 02 . (1 +2\/5)n—2
- 1+vV5, 2 2
. '(1+\/5)n.6+2-\/5

= (s 9 1+ V50
202'(1+2\/g)n-

In order to check whether a given number n is a Fibonacci number, we need to test whether there exists k& > 1,
such that F(k) = n. We can do this by the following algorithm: we start with F(1) = F(2) = 1, and compute
F(3),F(4),..., F(k), such that F(k) < n and F(k + 1) > n. Clearly, If F(k) = n, n is a Fibonacci number,
otherwise it is not. The number of additions is

k —2 < O(log(n)).

This follows from the following reasoning: as F'(k) = ©(¢*) < n, we have that k < ©(log(n)).
O



