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1. Introduction Although these two approaches are logically equivalent the ap-
As billions of dollars are invested in markets around the world,
investors must not only consider maximising their expected re-
turn, but also minimising the volatility that results from expected
fluctuations in the value of their investment portfolios. Increas-
ingly, portfolio managers are seeking more robust asset selection
(portfolio formation) strategies to create desirable portfolios for
their investors. More formally we can define a desirable portfolio
as one that potentially gives a good tradeoff between investment
risk and return.

Markowitz (1952) set up a clear quantitative framework for the
selection of a portfolio, summarising the process of portfolio selec-
tion as an allocation of resources so as to tradeoff expected return
and risk. Through the use of statistical measurements of expecta-
tion and variance of return (variance being equated to risk), Marko-
witz described the benefit and risk associated with an investment.

In order to capture tradeoff (in a single period static portfolio
planning situation) two approaches are possible:

� Minimise the risk of the portfolio for a given level of expected
return. This entails solving a mathematical optimisation prob-
lem with continuous variables, a quadratic objective and linear
constraints.
� Maximise the expected level of return for a given level of risk.

This entails solving a mathematical optimisation problem with
continuous variables, a linear objective and linear constraints
but with one quadratic equality constraint.
ll rights reserved.
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proach that is more effective computationally is to minimise the
risk of the portfolio for a given level of return. This is because prob-
lems with quadratic objectives are easier to handle numerically
than problems with quadratic constraints (Hillier and Lieberman,
2010). Hence by formulating and solving a parametric quadratic
program (QP), Markowitz determines an efficient frontier as the
set of (undominated) portfolios found by minimising risk (vari-
ance) as you vary the desired return.

Note here that one view of the problem that can be adopted is
that there are two objectives, namely (maximise return,minimise
risk), and so multiobjective solution approaches can be applied. A
number of such approaches can be found in our literature survey
below.

Markowitz’s approach has become the core decision engine of
many portfolio analytic and planning systems in constructing effi-
cient frontiers, which can be viewed as the set of Pareto optimal
(expected return,variance of return) combinations under condi-
tions of uncertainty. The standard Markowitz model assumes a
perfect market without transaction costs or taxes where short sell-
ing is not permitted, but assets are infinitely divisible and can
therefore be traded in any non-negative proportion. The beauty
of this simplistic unconstrained risk-return model is that it is capa-
ble of being extended to capture market realism. However, the
introduction of a single cardinality constraint restricting the num-
ber of assets present in the portfolio changes the classical quadratic
optimisation model to a quadratic mixed-integer problem (QMIP)
that is NP-hard (Moral-Escudero et al., 2006). As QMIPs are hard
to solve optimally many practitioners and researchers have used
heuristics, i.e. non-exact methods, in this area.

This paper emphasises finding the cardinality constrained
efficient frontier (CCEF) using metaheuristic approaches, namely

http://dx.doi.org/10.1016/j.ejor.2011.03.030
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a genetic algorithm, tabu search and simulated annealing. In terms
of coding we use a modeling language for mathematical program-
ming (AMPL; Fourer et al., 2002).

The remainder of this paper is organised as follows. In Section 2,
we present a formulation of the cardinality constrained portfolio
optimisation problem. A literature review of exact and heuristic
algorithms for the problem is presented in Section 3. The heuristics
of genetic algorithm, tabu search and simulated annealing are
introduced in Section 4, together with their algorithmic application
to the problem under consideration. Then, in Section 5, we present
computational results for data sets taken from seven major stock
market indices. We provide conclusions in Section 6.
Table 1
Data for UEF and CCEF.

Asset Return Standard
deviation

Correlation matrix

1 2 3 4

1 0.004798 0.046351 1 0.118368 0.143822 0.252213
2 0.000659 0.030586 1 0.164589 0.099763
3 0.003174 0.030474 1 0.083122
4 0.001377 0.035770 1

Return

UEF

CCEF

Risk - Variance

Fig. 1. The UEF and CCEF for a four asset example.
2. Formulation

Let:

N be the total number of assets available,
li be the expected return of asset i (i = 1, . . . ,N),
rij be the covariance between the return of asset i and asset j
(i = 1, . . . ,N, j = 1, . . . ,N),
q be the desired level of expected return,
K be the desired number of assets in the chosen portfolio,
li (P0) be the minimum proportion of the total investment held
in asset i (i = 1, . . . ,N), if any investment is made in asset i, and
ui (P0) be the maximum proportion of the total investment
that can be held in asset i, (i = 1, . . . ,N).

The decision variables are:

xi the proportion (0 6 xi 6 1) of the total investment held in
asset i (i = 1, . . . ,N), and
di which is 1 if any of asset i (i = 1, . . . ,N) is held, 0 otherwise.

The cardinality constrained portfolio optimisation problem is

Minimise
XN

i¼1

XN

j¼1

rijxixj; ð1Þ

subject to
XN

i¼1

lixi ¼ q; ð2Þ

XN

i¼1

xi ¼ 1; ð3Þ

lidi 6 xi 6 uidi; i ¼ 1; . . . ;N; ð4Þ
XN

i¼1

di ¼ K; ð5Þ

di ¼ 0 or 1; i ¼ 1; . . . ;N: ð6Þ

Eq. (1) involves the covariance matrix to minimise the volatility
(variance) associated with the chosen portfolio. Eq. (2) ensures
that the portfolio has an expected return of q, whilst Eq. (3) en-
sures that the investment proportions sum to one. Eq. (4) is the
buy-in threshold restricting asset investments. In this equation if
an asset i is not held, di = 0, then the resulting proportion xi is also
zero. If an asset i is held, di = 1, then the equation ensures that the
investment proportion lies between the appropriate lower and
upper limits, li 6 xi 6 ui. Eq. (5) is the cardinality constraint ensur-
ing that there are exactly K assets in the portfolio. Eq. (6) is the
integrality constraint, reflecting the inclusion or exclusion of an
asset.

Note here that although we have formulated the problem above
using covariances an equivalent formulation can be obtained using
correlations. This arises since the covariance between the returns
of assets i and j is equal to the product of the standard deviations
in return for assets i and j multiplied by the correlation between
returns for assets i and j.

This optimisation model, Eqs. (1)–(6), is a quadratic mixed-inte-
ger program that has been given previously in Chang et al. (2000).
It is appropriate to use exactly the same formulation as they used
since in this paper we intend to make a direct computational com-
parison between our work and the work of Chang et al. (2000). The
Markowitz unconstrained model is simply Eqs. (1)–(4) with di = 1
i = 1, . . . ,N.

A variant of the problem given in Eqs. (1)–(6) that is
encountered in the literature is where the equality constraint
seen in Eq. (5) is relaxed to an inequality, so

PN
i¼1di 6 K.

Our focus in this paper however is on the problem as defined by
Chang et al. (2000) where we seek precisely K assets in the
portfolio.

As for the Markowitz unconstrained model it is possible to gen-
erate an efficient frontier by minimising risk (Eq. (1)) for varying
values of the desired expected return q. However it is now well
known that through the introduction of discrete constraints, Eqs.
(4)–(6), discontinuities are seen in an otherwise continuous effi-
cient frontier.

Table 1 gives the data for the N = 4 asset example of Chang et al.
(2000). For this data Fig. 1 shows the unconstrained efficient fron-
tier (UEF) and the cardinality constrained efficient frontier (CCEF)
where K = 2. Note that although the UEF is continuous, the CCEF
is not. For more as to the discontinuous nature of the CCEF see
Chang et al. (2000).

The above QMIP problem (Eqs. (1)–(6)) for cardinality con-
strained portfolio optimisation can potentially be solved by mod-
ern optimisation packages such as CPLEX. However, in practice,
as results presented in Section 5 will indicate, this is not a compu-
tationally effective approach as problem size increases. In the light
of this the majority of work that has been presented in the litera-
ture has focused on heuristics for the problem. In the next section
we review the work that has been presented in the literature relat-
ing to cardinality constrained portfolio optimisation.
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3. Literature survey

In order to structure our literature survey we consider exact and
heuristic approaches for cardinality constrained portfolio optimi-
sation separately.

We would comment here that although we are aware that there
are papers in the literature that deal with constrained portfolio
optimisation (e.g. Bonami and Lejeune, 2009; Duran et al., 2009;
Corazza and Favaretto, 2007; Kellerer et al., 2000; Mansini and
Speranza, 1999; Syam, 1998) we, for reasons of space, only review
below papers that include a cardinality constraint relating to the
number of assets in the portfolio.
3.1. Exact approaches

Bienstock (1996) presents a branch and cut algorithm for the
exact solution of the cardinality constrained portfolio optimisation
problem. The cardinality constraint (Eq. (5)) is an inequality rather
than an equality. Computational results are given for some real-life
data sets.

Li et al. (2006) present an approach for the exact solution of the
cardinality constrained portfolio optimisation problem when the
amounts to be invested in each asset must be in specified lots.
Any money not invested in assets is invested at a risk free rate.
In their approach the cardinality constraint (Eq. (5)) is an inequal-
ity rather than an equality. Their approach is a convergent Lagrang-
ian and contour-domain cut method. Computational results are
given for one problem involving 30 assets taken from the Hong
Kong market.

Shaw et al. (2008) present a lagrangean relaxation based pro-
cedure for the exact solution of the cardinality constrained port-
folio optimisation problem. The cardinality constraint (Eq. (5)) is
an inequality rather than an equality. In their approach the
covariance matrix is decomposed into a diagonal asset risk matrix
and a covariance matrix for the F factors adopted. This reduces
the size of the quadratic term in the objective from N2 to F2. A
well-known US equity model has F = 68 for example. Computa-
tional results are reported for eight test problems involving up
to 500 assets. They report that CPLEX (version 8.1) failed to solve
any of these problems to proven optimality in four hours of com-
putation. By contrast their approach solved seven of the eight test
problems.

Vielma et al. (2008) present a branch-and-bound algorithm for
the exact solution of the cardinality constrained portfolio optimisa-
tion problem based on a lifted polyhedral relaxation of conic qua-
dratic constraints. The cardinality constraint (Eq. (5)) is an
inequality rather than an equality. Computational results are pre-
sented for problems drawn from real-world data.

Bertsimas and Shioda (2009) present an approach for the exact
solution of the cardinality constrained portfolio optimisation prob-
lem. In their approach the cardinality constraint (Eq. (5)) is an
inequality rather than an equality. They use Lemkes pivoting algo-
rithm (Lemke and Howson, 1964) to solve successive subproblems
in the search tree. Computational results are presented for their
approach as well as for CPLEX on problems involving up to 500 as-
sets. One feature of their results is that for all of the portfolio opti-
misation test problems considered both their approach and CPLEX
(version 8.1) failed to find even a single provably optimal solution
within the computational time limit they allow (either two min-
utes or one hour depending on the size of the problem).

Gulpinar et al. (2010) present an approach for the exact solution
of the cardinality constrained portfolio optimisation problem. In
their approach, based on the difference of convex functions pro-
gramming, the cardinality constraint (Eq. (5)) is an equality. They
select a portfolio with regard to the worst-case associated with
specified scenarios. Computational results are given for selecting
portfolios of varying cardinality from a universe of 98 assets.
3.2. Heuristic approaches

Chang et al. (2000) illustrate the discontinuous nature of the
efficient frontier in the presence of cardinality restrictions and
present three heuristic algorithms based upon a genetic algorithm,
tabu search and simulated annealing for finding the cardinality
constrained efficient frontier. Computational results are presented
for five test problems (that are made publicly available) involving
up to 225 assets.

Following the work of Chang et al. (2000) papers relating to
heuristic approaches can be subdivided into two, those that apply
just a single metaheuristic, and those that apply two or more meta-
heuristics (as in Chang et al., 2000). We structure our review below
accordingly.
3.2.1. Single metaheuristic approaches
Crama and Schyns (2003) present a simulated annealing ap-

proach. As well as a cardinality constraint they include constraints
on turnover and trading related to the presence of an existing port-
folio. Constraint violations are dealt with using a penalty function
related to the magnitude of the violation raised to a power. Com-
putational results are given for one test problem involving 151
assets.

Derigs and Nickel (2003) present a simulated annealing based
metaheuristic. In their approach stock returns and covariances
are derived from a linear multi-factor model, where the factors
are based on macro-economic variables. They present a case study
based around an investment trust tracking the German DAX30 in-
dex. Their investment universe, some 202 stocks, was taken from
the DAX30 and STOXX200. Limited computational results are
presented. More as to their work can be found in Derigs and Nickel
(2004).

Moral-Escudero et al. (2006) present a genetic algorithm for the
problem that uses two different crossover operators (random
respectful recombination and random assorting recombination).
Computational results are presented that make use of the test
problems provided by Chang et al. (2000).

Streichert and Tanaka-Yamawaki (2006) combine a multiobjec-
tive evolutionary algorithm with QP local search. In their algorithm
a variety of portfolios, each containing K assets, are generated. The
proportion invested in each of the K assets is decided by solving a
QP. Computational results are given for two of the five test prob-
lems used in Chang et al. (2000) involving up to 85 assets.

Fernandez and Gomez (2007) apply a Hopfield neural network
to the problem. They also implement (albeit with minor changes)
the three heuristics given in Chang et al. (2000). Computational re-
sults are presented that make use of the test problems provided by
Chang et al. (2000) which indicate that no one heuristic outper-
forms the others.

Chiam et al. (2008) present an approach based upon a multiob-
jective evolutionary algorithm. Computational results are pre-
sented that make use of the test problems provided by Chang
et al. (2000).

Branke et al. (2009) use a multiobjective evolutionary algorithm
in conjunction with the critical line algorithm of Markowitz (1956).
They include a constraint (involving additional zero-one variables)
based on German investment law. Computational results are given
for three of the five test problems from Chang et al. (2000), as well
as for one further problem involving 500 assets.

Chang et al. (2009) present a genetic algorithm for the problem.
In their model they replace the objective by a weighted sum of risk
and return. They also consider measures of risk other than variance
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(e.g. semi-variance, mean absolute deviation, skewness). They re-
port results for three test problems involving up to 99 assets.

Pai and Michel (2009) apply a clustering approach to choosing
the assets to include in the portfolio, thereby eliminating the car-
dinality constraint. They use an evolutionary strategy approach
to decide the proportion to be invested in each of the assets. Com-
putational results are presented for data drawn from the Bombay
and Tokyo stock markets involving up to 225 assets.

Soleimani et al. (2009) present a genetic algorithm for the prob-
lem. Their model includes constraints on the proportion invested
in sectors (sets of assets). They present computational results for
a number of test problems involving up to 2000 assets.

Anagnostopoulos and Mamanis (2010) adopt a tri-objective
view of the problem and apply three multiobjective evolutionary
optimisation algorithms, specifically the non-dominated sorting
genetic algorithm II (NSGA-II), the strength pareto evolutionary
algorithm 2 (SPEA2) and the Pareto Envelope-based Selection Algo-
rithm (PESA). Computational results are presented for two ran-
domly generated problems involving 200 and 300 assets.

3.2.2. Multiple metaheuristic approaches
Jobst et al. (2001) examine a number of algorithmic options

(such as integer restart and reoptimisation) within an existing QP
solver, FORTMP (Ellison et al., 1999). Computational results are
presented that make use of the test problems provided by Chang
et al. (2000). The largest problem solved (225 assets) required over
5 h of computation using their integer restart heuristic.

Schaerf (2002) presents hill climbing (local search), tabu search
and simulated annealing algorithms for the problem. A variety of
moves relating to the proportion invested in each asset are consid-
ered. Computational results are presented that make use of the test
problems provided by Chang et al. (2000).

Maringer and Kellerer (2003) present an approach based on
combining simulated annealing with evolutionary ideas. They
maintain a population of portfolios that are improved in a simu-
lated annealing fashion. As is normal in evolutionary approaches
poor portfolios in the population are replaced by better portfolios.
Computational results are presented for two test problems involv-
ing 30 and 96 assets.

Ehrgott et al. (2004) present an approach using multicriteria
decision making. In their problem they have a number of addi-
tional portfolio objectives (for example relating to dividends paid
and Standard and Poors rating) and these are combined via
weighted utility functions. They apply four different heuristic solu-
tion techniques (local search, simulated annealing, tabu search, ge-
netic algorithm) to four test problems, involving up to 1416 assets.

Cura (2009) presents an approach based on particle swarm opti-
misation where each particle represents a portfolio. If a portfolio
does not contain the appropriate number of assets then assets
are added/deleted from the portfolio. Computational results are
presented that make use of the test problems provided by Chang
et al. (2000). They also report results for the same test problems
using a genetic algorithm, tabu search and simulated annealing
which indicate that no one heuristic outperforms the others.

Ruiz-Torrubiano and Suarez (2010) present approaches based
on preprocessing (pruning), simulated annealing, genetic algo-
rithms and estimation of distribution algorithms (Larranaga and
Lozano, 2001). Computational results are presented that make
use of the test problems provided by Chang et al. (2000). They con-
clude that approaches based on estimation of distribution algo-
rithms do not work well when the number of assets is large.

3.3. Comment

It can be seen from the above literature review that the cardi-
nality constrained portfolio optimisation problem has attracted a
reasonable amount of attention in the literature, especially since
the work of Chang et al. (2000). Given the computational difficulty
of tackling the problem exactly many metaheuristics (as discussed
above) have been applied to the problem. Our work complements
this body of literature, adding to this literature in two respects:

� Within our metaheuristics we solve, to optimality, a (small)
mixed-integer quadratic optimisation problem.
� We present better quality results on publicly available test

problems than have been presented before in the literature.

We would comment here that incorporating within a metaheu-
ristic an algorithmic step involving the optimal solution of an inte-
ger program is relatively uncommon in the literature. In particular
we are not aware of it being employed in the context of cardinality
constrained portfolio optimisation before. However we believe
that the quality of our results indicates that it can be a useful strat-
egy to employ.

4. Heuristics for the CCEF

In this section we present our heuristic algorithms for finding
the cardinality constrained efficient frontier. We first present the
optimisation problem (denoted the subset optimisation problem)
that underlies each of our heuristics. Then we present our heuris-
tics which are based on genetic algorithms, tabu search and sim-
ulated annealing. For each of these heuristics we first give a brief
overview of the general approach before giving the particular
implementation of the heuristic that we adopted for the problem
under consideration, finding a cardinality constrained efficient
frontier.

4.1. Subset optimisation

The heuristics we present in this paper make use of subset opti-
misation. By this we mean that we specify subsets of assets for
which we know their status (either in or out of the chosen portfo-
lio). Given these subsets we optimise for any remaining assets to
see if they are in/out of the chosen portfolio. For all assets in the
portfolio the proportion invested in the asset is decided by optimi-
sation. In addition we relax the constraint upon desired return
such that return is no longer specified precisely, rather we allow
return to be in a specified range.

Let q be the desired return level, as Eq. (2). Early computational
experience indicated that attempting to find a portfolio with pre-
cisely K assets and precise return q was relatively time-consuming,
even if the number of assets from which are choosing is small. For
this reason we (in the subset optimisation problem below) solve
the problem with an inequality for desired return.

Let [qL,qU] be the return range, so we are content with a port-
folio whose return lies in this range. Let Sin be the subset of assets
that must be included in the chosen portfolio, and Sout be the sub-
set of assets that must be excluded from the chosen portfolio,
where Sin \ Sout = ;.

Then the subset optimisation problem that we solve is:

Minimise
XN

i¼1

XN

j¼1

rijxixj; ð7Þ

subject to qL 6
XN

i¼1

lixi 6 qU ; ð8Þ

XN

i¼1

xi ¼ 1; ð9Þ

lidi 6 xi 6 uidi; i ¼ 1; . . . ;N; ð10Þ
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XN

i¼1

di ¼ K; ð11Þ
X

i2Sin

di ¼min jSinj;K½ �; ð12Þ

di ¼ 0 8i 2 Sout; ð13Þ
di ¼ 0 or 1; i ¼ 1; . . . ;N; ð14Þ

Eqs. (7) and (9), (10), (11) are as Eqs. (1) and (3), (4), (5). Eq.
(8) constrains the expected return to be within the desired range
and equations (12) and (13) ensure that assets are set in/out of
the portfolio as desired. Eq. (12) forces all assets in Sin into the
portfolio if jSinj 6 K, and chooses K assets from Sin if jSinj > K. This
problem, Eqs. (7)–(14) is also a QMIP, but provided that the
number of assets for which we have to make a decision as to
whether they are in or out of the portfolio is small (i.e.
N � jSin [ Soutj is small) it can be solved relatively quickly to
proven optimality.

For simplicity of notation in the heuristics we present later be-
low we refer to the above subset optimisation problem as F (Sin,
Sout). An advantage of our approach is that by using a return range
[qL,qU] we can ensure that any frontier found covers the return
range. This contrasts with other approaches, e.g. Chang et al.
(2000), where there is no direct control over the return range cov-
ered. In the computational results reported later below we use
both [qL = 0.9q,qU = 1.1q], so a portfolio within ten percent of the
desired return, and [qL = �1,qU = +1], so disregarding desired
return.

Note here that one of the potential practical advantages of our
heuristics is that any additional (user specified) constraints on
the composition of the chosen portfolio can be included in the sub-
set optimisation problem. Such constraints might include, for
example:

� Class/sector constraints which specify minimum/maximum
exposure to certain sectors (sets of assets).
� Lot size constraints which specify that the amount invested

in any asset must be an integer multiplier of a known
constant.
� Fixed costs associated with the inclusion of an asset in the

portfolio.

The heuristics outlined below are applicable, without signifi-
cant change, to problems of these types.

4.2. Genetic algorithms

Genetic algorithms (GAs) are a search mechanism based on the
evolutionary principles of natural selection and genetics. The the-
oretical foundations of GAs were originally developed by Holland
(1975). They work with a population of solutions and employ the
principle of survival of the fitness.

In a GA the decision variables are encoded into finite strings re-
ferred to as chromosomes. To implement natural selection and
evolve good solutions, the chromosomes are evaluated by a fitness
criteria. In optimisation problems, such as we consider here, the
fitness measure is typically directly related to the objective func-
tion (possibly penalised by constraint violation).

GAs rely on a candidate population (typically of fixed size),
which they maintain throughout. GAs use four main operators of
selection, crossover, mutation and replacement. The population
changes through repetition of these operators, with stronger fitter
solutions (population members) replacing weaker ones.

For a more comprehensive overview of GAs see Burke and Ken-
dall (2005), Aarts and Lenstra (2003), Beasley (2002), Mitchell
(1996).
In the literature, as surveyed above, examples of the application
of GAs (evolutionary approaches) to the cardinality constrained
portfolio optimisation problem can be found in Chang et al.
(2000), Maringer and Kellerer (2003), Ehrgott et al. (2004), Moral-
Escudero et al. (2006), Streichert and Tanaka-Yamawaki (2006),
Chiam et al. (2008), Branke et al. (2009), Chang et al. (2009), Cura
(2009), Pai and Michel (2009), Soleimani et al. (2009),
Anagnostopoulos and Mamanis (2010), Ruiz-Torrubiano and
Suarez (2010).
4.3. A genetic algorithm for the CCEF

In our GA we use a fixed population size of P = 100 portfolios.
Given the desired return of q each member of the initial population
is generated by randomly choosing max[2K,20] assets to be in Sin,
all other assets being in Sout and then solving the subset optimisa-
tion problem F (Sin,Sout). In order to try and ensure that the subset
optimisation problem is feasible in making a random choice of as-
sets we include in Sin some assets i that have return li P q and
some assets i that have return li 6 q.

In our GA we use parent sets. We first create two parents sets Q1

and Q2 (each of fixed size q, in our results below we use q = 5). We
create the parent sets by sorting the members of the population
into increasing risk (variance) order. Take the first 2q portfolios
in this ordered list and assign the first portfolio to Q1, the second
to Q2, the third to Q1, etc. in an alternate fashion. These two sets
collectively contain the 2q fittest members of the population (hav-
ing lowest risk).

In order to produce children we consider all pairs of portfolios,
one portfolio from Q1, the other from Q2, so q2 parent portfolio
pairs in total. For each parent portfolio pair a single child is pro-
duced using crossover. In our crossover procedure:

� If an asset is present in both of the parent portfolios it is present
in the child (and so in Sin).
� If it is absent from both of the parent portfolios it is absent in

the child (and so in Sout).
� If it is present in one of the parent portfolios (absent in the

other) then its presence (or not) in the child will be decided
as a result of optimisation.

Mutation is standard within GAs and introduces a degree of sto-
chastic variation, typically with low probability. In the computa-
tional results presented below we ran our GA for four
generations, with mutation occurring in just the third generation.
In our GA a child (with probability 0.03) is mutated by randomly
selecting one asset in the child portfolio and replacing it by a ran-
dom asset not present in the child portfolio.

Each child (for which the sets Sin and Sout have been decided
after crossover and mutation) is optimised by solving F (Sin,Sout).
Note here that we cannot guarantee that we get a feasible solution
when we solve this subset optimisation problem, i.e. it is possible
that there is no feasible child given the choice that has been made
of Sin and Sout via crossover and mutation.

In our GA to generate a new population we combine the P mem-
bers of the current population with the set of feasible children, sort
the portfolios in this combined set into increasing risk (variance)
order and take the first P members of this ordered list to constitute
the new population for the next generation. At the end of the GA
the P portfolios in the final population contribute to the cardinality
constrained efficient frontier (though note here that we do elimi-
nate at this stage any portfolios that are dominated by others in
the final population).

Pseudocode and a flowchart for our GA heuristic are given in
Appendix A and Fig. 2.



M. Woodside-Oriakhi et al. / European Journal of Operational Research 213 (2011) 538–550 543
4.4. Tabu search

Tabu search (TS) is a local search heuristic described by Glover
(1986) that uses deterministic control to overcome local optima in
hill climbing. The basic principle of TS is to continue the search
whenever a local optimum is encountered by allowing non–
improving moves. A non-improving move is one that worsens the
objective function.

Tabus are used to try and prevent cycling when moving away
from local optima through non-improving moves. They are stored
in a ‘short-term’ memory referred to as the tabu list. Moves that are
on the tabu list cannot be made and a move typically remains on
the tabu list for a fixed number of iterations (the tabu tenure).
Although it generally prohibits the repetition of previously visited
configurations, especially if the tabu tenure is not very small, the
basic tabu search mechanism cannot guarantee the absence of
cycles.

One danger of making moves tabu is that can prohibit attractive
moves, even when there is no danger of cycling. It is thus often
necessary to include algorithmic devices that will allow one to
make moves that are tabu. One such device is the aspiration criteria
where a move is allowed, even if tabu, provided it leads to a better
solution than encountered in the search process so far.

In TS the search continues until some termination criteria is sat-
isfied (e.g. fixed number of iterations, CPU time, fixed number of
iterations since the solution was last improved).

For a more comprehensive overview of tabu search see Burke
and Kendall (2005), Aarts and Lenstra (2003), Gendreau (2003),
Glover and Laguna (1993, 1997).

In the literature, as surveyed above, examples of the application
of TS to the cardinality constrained portfolio optimisation problem
can be found in Chang et al. (2000), Schaerf (2002), Ehrgott et al.
(2004), Cura (2009).

4.5. A tabu search heuristic for the CCEF

In our TS heuristic, given the desired return of q, we first gener-
ate P = 100 different portfolios, as for our GA, and then select the
portfolio with the lowest risk (variance) as the initial starting solu-
tion. Let Sin be the set of assets in this initial solution.

In our approach we have a candidate list C of assets that can be
considered for inclusion in the current solution, and a tabu list T of
assets that cannot be considered. Initialise C with the N/3 assets
with the highest return (excluding assets in Sin). Initialise T with
the assets in {1, . . . ,N} � Sin [ C.

In our TS heuristic we, at each iteration, randomly select an as-
set i in the current portfolio Sin and replace it by an randomly se-
lected asset j in the candidate list C. Then we solve the subset
optimisation problem F (Sin,Sout) with Sout = {1, . . . ,N} � Sin. If the
portfolio resulting from this optimisation is better (of lower risk)
than the current solution then it replaces the current solution
and asset i is added to the tabu list T. If the portfolio resulting from
this optimisation is not better than the current solution then asset j
is added to the tabu list T. The candidate list is then updated by
adding assets from the tabu list that are no longer tabu. We termi-
nate our TS heuristic after a fixed number of iterations and use a
tabu tenure of seven iterations.

Pseudocode and a flowchart for our TS heuristic are given in
Appendix A and Fig. 3.

4.6. Simulated annealing

Simulated annealing (SA) is a local search heuristic first used for
optimisation by Kirkpatrick et al. (1983) and Cerny (1985). It be-
gins with a single starting solution and explores potential moves
(as does TS). In SA moves to worse solutions are accepted with a
specified probability that decreases over the course of the algo-
rithm. This probability is related to a factor known as temperature.

For a more comprehensive overview of simulated annealing see
Burke and Kendall (2005), Aarts and Lenstra (2003).

In the literature, as surveyed above, examples of the application
of SA to the cardinality constrained portfolio optimisation problem
can be found in Chang et al. (2000), Schaerf (2002), Crama and
Schyns (2003), Derigs and Nickel (2003, 2004), Maringer and Kel-
lerer (2003), Ehrgott et al. (2004), Cura (2009), Ruiz-Torrubiano
and Suarez (2010).

4.7. A simulated annealing heuristic for the CCEF

In our SA heuristic, given the desired return of q, we generate an
initial starting solution (a set Sin of assets in the portfolio) in the
same manner as in our TS heuristic above.

At each iteration we randomly select an asset i in the current
solution Sin and swap it with a randomly selected asset j not in
the current solution (so j R Sin) to give a new set Sin = Sin [ [j] � [i].
Then we solve the subset optimisation problem F (Sin,Sout) with
Sout = {1, . . . , N} � Sin. If the portfolio resulting from this optimisa-
tion is better (of lower risk) than the current solution then it re-
places the current solution. If it is worse than the current solution
then it is accepted (so replacing the current solution) with probabil-
ity e�(difference in solution risk values)/(current temperature). The current temper-
ature is reduced by a constant (cooling) factor at each iteration.

We terminate our SA heuristic after a fixed number of itera-
tions. In the computational results given later below we use a cool-
ing factor of 0.95 and an initial temperature derived from the
objective function value of the initial starting solution.

Pseudocode and a flowchart for our SA heuristic are given in
Appendix A and Fig. 4.
5. Computational results

We tested the performance of our GA, TS and SA metaheuristics
for finding the cardinality constrained efficient frontier using pub-
licly available test problems relating to seven major market indi-
ces, available from OR-Library (Beasley, 1990).

Five of our market indices were the Hang Seng (Hong Kong), DAX
100 (Germany), FTSE 100 (UK), S&P 100 (USA) and the Nikkei 225
(Japan), as taken from: http://people.brunel.ac.uk/�mastjjb/jeb/or-
lib/portinfo.html. All of these problems were considered previously
by Chang et al. (2000). The remaining two market indices were the
S&P 500 (USA) and Russell 2000 (USA), as taken from: http://
people.brunel.ac.uk/�mastjjb/jeb/orlib/indtrackinfo.html. The size
of our seven test problems ranged from N = 31 (Hang Seng) to
N = 1318 (Russell 2000). We used li = 0.01, ui = 1 (i = 1, . . . ,N) and
K = 10.

As we are interested in the cardinality constrained efficient
frontier our results below are for tracing out this frontier using
50 equally spaced desired return levels q, see Eq. (2), between
the return level associated with the minimum variance uncon-
strained portfolio and the return level associated with the maxi-
mum asset return max[liji = 1, . . . ,N].

Our metaheuristics were implemented using AMPL and its asso-
ciated script language. The solver we used was CPLEX 11.0. The
system runs under Windows NT and in our computational work
we used an Intel Core2 pc with a 2.40 GHz processor and 3.24 GB
RAM.

5.1. CPLEX results

Before using the metaheuristic approaches presented above to
solve for the CCEF we investigated using CPLEX to test how effec-

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html
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tively it could determine CCEFs. Potentially, for example, should
CPLEX be able to optimally solve for the CCEF, i.e. to optimally
solve the CCEF QMIP (Eqs. (1)–(6)), there may be no need for any
metaheuristic approaches.

As stated previously above our focus in this paper is on the
problem as defined by Chang et al. (2000), Eqs. (1)–(6), where we
seek precisely K assets in the portfolio, so

PN
i¼1di ¼ K as Eq. (5).

However, because a number of authors in the literature have con-
sidered the variant of the problem where the equality in Eq. (5) is
replaced by inequality, so

PN
i¼1di 6 K , we also consider here how

CPLEX performs on this variant of the problem.
We tested CPLEX (version 11.0) on one of the smaller test prob-

lems (DAX 100, N = 85 assets) and the results are shown in Table 2.
As mentioned above these results are for 50 equally spaced return
levels. So for example in this table we have that for the DAX 100
with K = 5 and equality in terms of the number of chosen assets,
it required 58336 s (over 16 h) to trace out the CCEF over the 50
equally spaced return levels.

It is clear from Table 2 that the inequality case (for the DAX 100
at least) is computationally far easier than the equality case. We
also attempted to solve the largest test problem (Russell 2000,
N = 1318 assets) for the same set of eight cases (K = 2, 3, 4, 5 and
equality/inequality) as we considered for the DAX 100 (Table 2).
CPLEX was unable to solve even a single one of these eight cases
(not even K = 2, inequality) within a time limit of 7200 s (2 h).

Based on Table 2 (as well as other computational experimenta-
tion not reported in detail here) we would conclude that solving
the CCEF QMIP using CPLEX is not a computationally effective ap-
proach. As such we are justified in adopting metaheuristic ap-
proaches to the problem. Note here that these results for CPLEX
accord with other results presented in the literature (Shaw et al.,
2008; Bertsimas and Shioda, 2009), albeit those results relate to
an earlier version of CPLEX.
5.2. Parameter values

In our heuristics as presented above we have assigned values to
parameters (e.g. population size in our GA). Readers familiar with
work involving heuristic algorithms will know that often in such
algorithms parameter values need to be assigned (indeed they
are often an integral part of the general solution approach that is
being particularised for the problem at hand). In this section we
outline how we assigned such values. This assignment was arrived
at by exploring a limited number of different parameter values
using just one of our seven data sets, the smallest of these sets,
namely the Hang Seng with N = 31 assets.
Table 2
Computation time (seconds) for the DAX 100 CCEF using CPLEX.

K = 2 K = 3 K = 4 K = 5

Equality case (precisely K assets in the
portfolio)

62 527 6984 58336

Inequality case (6K assets in the portfolio) 19 50 106 138

Table 3
GA parameter results.

Percentage error and time Population size Pare

50 100 150 3

Mean 0.8496 0.8501 0.9100 0.69
Median 0.5989 0.5873 0.6105 0.61
Time (s) 64 76 112 47
In general in measuring the quality of a heuristic one would like
to measure the deviation of the heuristic solution from the optimal
solution. However for the CCEF, as the results in Table 2 illustrate,
the optimal frontier is typically unknown. As such in measuring
the quality of the results produced by our heuristics we adopt
the same approach as used previously by Chang et al. (2000). This
involves calculating the percentage deviation of points on the heu-
ristically calculated CCEF from the unconstrained efficient frontier
(the UEF, which can be easily calculated using QP). Readers inter-
ested in precise details as to how these percentage deviations (er-
rors) are calculated can find them in Chang et al. (2000).

5.2.1. GA parameter values
Within our GA we need to decide parameter values for popula-

tion size, parental set size and mutation probability.
We began by varying population size. Alander (1992) suggested

that a population size around 50–200 is suitable for most prob-
lems, thus we tested P = 50, 100, 150. Table 3 gives the results ob-
tained. In that table we show the mean and median percentage
errors as well as the computation time in seconds for 50 equally
spaced desired return levels when our GA is applied to our chosen
data set.

Given the results in Table 3 for our chosen values of P it is clear
P = 150 offers no advantages, being worse on all three measures
than P = 50,100. We decided to use P = 100 since it gives error re-
sults effectively equivalent to P = 50, but offers greater opportuni-
ties for exploration of the search space.

With the population size determined (i.e. working in a sequen-
tial fashion to decide parameter values) we next considered paren-
tal set size. Here we tried values of 3, 5 and 7. Based on the results
shown in Table 3 we decided to use a parental set size of 5 (being
influenced by the low median error associated with this value, and
the opportunity for more exploration of the search space afforded
by higher parental set size values).

Our final decision for the GA was for mutation probability.
Mutation in GAs is typically assigned a low value. Here we tried
values of 0.01, 0.03 and 0.05. Based on the results shown in Table
3 we decided to use a mutation probability of 0.03 (involving only
slightly more time than 0.01, and with a lower median error).

5.2.2. TS parameter values
In our TS heuristic we need a value for tabu tenure. Glover and

Laguna (1993) suggested a minimum tabu tenure of 7. For this
parameter we tested three values: 5, 7 and 10; with the results
being seen in Table 4. Based on these results we decided to use a
tabu tenure of 7 (being influenced by the lower median error).
ntal set size Mutation probability

5 7 0.01 0.03 0.05

59 0.8501 0.7668 0.8197 0.8501 0.9089
04 0.5873 0.7457 0.6103 0.5873 0.5873

76 124 67 76 101

Table 4
TS parameter results.

Percentage error and time Tabu tenure

5 7 10

Mean 0.7645 0.8234 1.1529
Median 0.4173 0.3949 0.5169
Time (s) 69 76 84
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5.2.3. SA parameter values
In our SA heuristic the parameter we need to decide is the cool-

ing schedule. The typical range for this value is between 0.90 and
0.99. For this parameter we tested three values: 0.90, 0.95, 0.975;
with the results being seen in Table 5. Based on these results we
decided to use a value of 0.95 as it dominated the other two values
seen with regard to both mean and median error.
Table 5
SA parameter results.

Percentage error and time Cooling schedule

0.90 0.95 0.975

Mean 1.5806 1.0589 1.0913
Median 1.5791 0.5355 0.9094
Time (s) 67 76 86

Table 6
Test problem results.

Index N Percentage error and
time

Genetic algorithm

Chang
et al.

Woodside-
et al.

Hang Seng Mean 0.9457 0.8501
Median 1.1819 0.5873

31 Minimum 0.0036
Maximum 2.9034
Time (s) 172 76

DAX 100 Mean 1.9515 0.7740
Median 2.1262 0.2400

85 Minimum 0.0000
Maximum 4.6811
Time (s) 544 74

FTSE 100 Mean 0.8784 0.1620
Median 0.5938 0.0820

89 Minimum 0.0000
Maximum 0.7210
Time (s) 573 95

S&P 100 Mean 1.7157 0.2922
Median 1.1447 0.1809

98 Minimum 0.0007
Maximum 1.6295
Time (s) 638 100

Nikkei 225 Mean 0.6431 0.3353
Median 0.6062 0.3040

225 Minimum 0.0180
Maximum 1.0557
Time (s) 1964 104

Average Chang et al.
problems

Mean 1.2269 0.4827
Median 1.1306 0.2788
Minimum 0.0045
Maximum 2.1981
Time (s) 778 90

S&P 500 Mean 2.0205
Median 0.1899

457 Minimum 0.0114
Maximum 21.1701
Time (s) 187

Russell 2000 Mean 4.7797
Median 0.0940

1318 Minimum 0.0001
Maximum 58.7478
Time (s) 239

Average all problems Mean 1.3163
Median 0.2397
Minimum 0.0048
Maximum 12.9869
Time (s) 125

Computation times for the work of Chang et al. (2000) as shown above should be divid
5.3. Heuristic results

The computational results reported in this paper examine 50
different return levels. With regard to the number of iterations,
which is the termination criteria for both our TS and SA heuristics,
we used 100 iterations at each return level for the TS heuristic and
50 iterations at each return level for the SA heuristic.

In Table 6 we show for each of our data sets and each of our
heuristics: the mean, median, minimum and maximum percentage
errors as well as the computation time in seconds.

Considering our GA, TS and SA heuristics as presented in this
paper, labeled (Woodside-Oriakhi et al. in Table 6), we would make
the following points with regard to the average values over the se-
ven test problems:

� SA is not competitive with GA and TS, having higher mean and
median errors and a higher computation time.
Tabu search Simulated annealing

Oriakhi Chang
et al.

Woodside-Oriakhi
et al.

Chang
et al.

Woodside-Oriakhi
et al.

0.9908 0.8234 0.9892 1.0589
1.1992 0.3949 1.2082 0.5355

0.0068 0.0349
4.6096 4.6397

74 85 79 99

3.0635 0.7190 2.4299 1.0267
2.5383 0.4298 2.4675 0.8682

0.0149 0.0278
2.7770 4.4123

199 113 210 293

1.3908 0.3930 1.1341 0.8952
0.6361 0.2061 0.7137 0.3944

0.0019 0.0230
3.4570 10.2029

246 232 215 286

3.1678 1.0358 2.6970 3.0952
1.1487 1.0248 1.1288 2.1064

0.0407 0.8658
3.0061 8.6652

225 222 242 371

0.8981 0.7838 0.6370 1.1193
0.5914 0.6526 0.6292 0.6877

0.0085 0.0113
2.6082 3.9678

545 414 553 604

1.9022 0.7510 1.5774 1.4391
1.2227 0.5416 1.2295 0.9184

0.0146 0.1926
3.2916 6.3776

258 213 260 331

1.4689 5.2502
1.1047 4.5142
0.0335 0.1552
5.1203 13.9470
660 719

0.7345 4.1102
0.2700 3.8136
0.0097 0.0001
3.8205 8.5477
729 868

0.8512 2.3651
0.5833 1.8457
0.0166 0.1597
3.6284 7.7689
351 463

ed by a factor of 70 to be comparable with the hardware we have used.
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� TS has a lower mean error, but a higher median error, than GA,
and takes more computation time.

Comparing mean errors for GA and TS over the seven test prob-
lems individually we have that for three problems GA is better than
TS, for four problems TS is better than GA. Considering median er-
rors we have that for all problems except the Hang Seng GA is bet-
ter than TS.

For all of our heuristics the computation time required is not
excessive, the largest computation time seen in Table 6 being
868 s, approximately 15 min.

Also presented in Table 6 are the mean and median percentage
errors and computation times for the five smaller test problems as
given in Chang et al. (2000) using their GA, TS and SA
heuristics, henceforth denoted by GA-Chang, TS-Chang and
SA-Chang.

Comparing, for these five smaller test problems, our results
with the results of Chang et al. (2000) we would make the follow-
ing points:

� Our GA dominates GA-Chang since for all five test problems our
GA gives both a lower mean error and a lower median error.
Moreover our GA mean error is lower than that of GA-Chang
by a factor of 1.2269/0.4827 = 2.5; our GA median error is lower
than that of GA-Chang by a factor of 1.1306/0.2788 = 4.1.
� Our TS heuristic effectively dominates TS-Chang since for four

of the five test problems our TS heuristic gives a lower mean
and median error than TS-Chang. Our TS mean error is lower
than that of TS-Chang by a factor of 1.9022/0.7510 = 2.5; our
TS median error is lower than that of TS-Chang by a factor of
1.2227/0.5416 = 2.3.
Table 7
Pooled results.

Index N Percentage
error and time

Pooled heu

Chang et al

GA-Chang:

Hang Seng 31 Mean 0.9332
Median 1.1899
Time (s) 325

DAX 100 85 Mean 2.1927
Median 2.4626
Time (s) 953

FTSE 100 89 Mean 0.7790
Median 0.5960
Time (s) 1034

S&P 100 98 Mean 1.3106
Median 1.0686
Time (s) 1105

Nikkei 225 225 Mean 0.5690
Median 0.5844
Time (s) 3062

Average, Chang et al. problems Mean 1.1569
Median 1.1803
Time (s) 1296

S&P 500 457 Mean
Median
Time (s)

Russell 2000 1318 Mean
Median
Time (s)

Average, all problems Mean
Median
Time (s)

Computation times for the work of Chang et al. (2000) as shown above should be divid
� Our SA heuristic is broadly equivalent to SA-Chang with, on
average, a slightly lower mean and median error, but only dom-
inating SA-Chang (in terms of better mean and median errors)
for two of the five problems.

With regard to computation time the times given for the work
of Chang et al. (2000) relate to different hardware than we have
used. Utilising Dongarra (2009) it is possible to make an approxi-
mate estimate of the relative speed of the hardware involved. On
this basis the computation times for the work of Chang et al.
(2000) as shown in Table 6 should be divided by a factor of 70 to
be comparable with the hardware we have used. As such we can
conclude that for these smaller test problems our GA and TS heu-
ristics take longer, but give better quality results in a reasonable
time (an average of 1.5 min for our GA; 3.6 min for our TS), than
GA-Chang and TS-Chang.

As we have a number of results from different heuristic ap-
proaches we can pool results, i.e. combine together the efficient
portfolios from each of the heuristics and eliminate any portfolios
that are dominated. In Table 7 we show the pooled results as given
in Chang et al. (2000) and present the pooled results for our three
heuristics.

In that table we use the symbol: to denote pooling so, for exam-
ple, TA:SA denotes pooling the results from our TS and SA algo-
rithms together. Note here that whilst we are able in Table 7 to
give four sets of pooled results for our heuristics, namely {GA:TS:
SA; GA:TS; GA:SA; TS:SA}, we are only able to give one set of
pooled results {GA-Chang:TS-Chang:SA-Chang} for Chang et al.
(2000) as they do not give separate pooled results for {GA-
Chang:TS-Chang; GA-Chang:SA-Chang; TS-Chang:SA-Chang} in
their paper.
ristics

. Woodside-Oriakhi et al.

TS-Chang:SA-Chang GA:TS:SA GA:TS GA:SA TS:SA

0.4265 0.4098 0.6404 0.6036
0.1839 0.1948 0.3669 0.3745
260 161 175 184

0.6539 0.4696 0.7055 0.7070
0.2194 0.2073 0.2275 0.4247
480 187 367 406

0.4418 0.2690 0.1598 0.5284
0.1074 0.0851 0.0935 0.2061
613 327 381 518

0.6748 0.5109 0.6172 1.0944
0.2395 0.2756 0.2712 1.0495
693 322 471 593

0.7307 0.7214 0.3870 0.9119
0.3223 0.3223 0.2785 0.5481
1122 518 708 1018

0.5855 0.4761 0.5020 0.7691
0.2145 0.2170 0.2475 0.5206
634 303 420 544

0.8385 0.7549 1.1319 1.5500
0.2861 0.2685 0.2181 1.1581
1566 847 906 1379

0.7192 0.7192 4.7797 0.8355
0.1039 0.1040 0.0940 0.2890
1836 968 1107 1597

0.6408 0.5507 1.2031 0.8901
0.2089 0.2082 0.2214 0.5786
939 476 588 814

ed by a factor of 70 to be comparable with the hardware we have used.
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Comparing the average values over all seven test problems
presented in Table 7 it seems clear that there is, on average, little
advantage to including results from our SA heuristic in pooling.
Rather the best pooled results (both in terms of mean and median
errors, and in terms of computation time) come from pooling our
GA and TS heuristics. Note here however that if we look at the
individual test problem results we can see that there is some-
times an advantage gained from including results from our SA
heuristic in pooling (e.g. for the FTSE 100 pooling the GA and
SA results gives a lower mean error than pooling the GA and TS
results).

Comparing (pooled) results for GA:TS in Table 7 with the indi-
vidual results for GA and TS as presented in Table 6 it seems clear
that the quality of results are improved considerably by pooling.
For example the average mean error for GA:TS is 0.5507%, whereas
our GA and TS heuristics individually have mean errors of 1.3163%
and 0.8512%, respectively.

For the five smaller test problems the results for GA:TS are of
much better quality than the pooled results for all three of the
Chang et al. (2000) heuristics, GA-Chang:TS-Chang:SA-Chang.
Specifically:
Fig. 2. GA heuristic algorithm flowchart.
� The mean error for GA:TS is 0.4761%, the mean error for GA-
Chang:TS-Chang:SA-Chang is 1.1569%, a factor of 1.1569/
0.4761 = 2.4 better.
Fig. 3. TS heuristic algorithm flowchart.

Fig. 4. SA heuristic algorithm flowchart.
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� The median error for GA:TS is 0.2170%, the median error for GA-
Chang:TS-Chang:SA-Chang is 1.1803%, a factor of 1.1803/
0.2170 = 5.4 better.
� For four of the five test problems GA:TS has a better mean error

than the pooled Chang heuristics, GA-Chang:TS-Chang:SA-
Chang.
� For all five test problems GA:TS has a better median error than

the pooled Chang heuristics, GA-Chang:TS-Chang:SA-Chang.

Based upon the detailed discussion given above we would con-
clude that our heuristics give better quality solutions than previous
heuristics presented in the literature, albeit at the expense of more
computation time.

6. Conclusion

In this paper we have presented three metaheuristic algorithms
(based upon genetic algorithms, tabu search and simulated anneal-
ing) to find the cardinality constrained efficient frontier that arises
in financial portfolio optimisation. Computational results were
presented for our heuristics on test problems considered previ-
ously in the literature, as well as on larger test problems involving
up to 1318 assets.

Our results indicate that our heuristics give better quality solu-
tions than previous heuristics presented in the literature, albeit at
the expense of more computation time. However, in all cases, our
computation times were reasonable and were never more than fif-
teen minutes on a modern pc, even for the largest problem.

A feature of our metaheuristics is that we have a subset optimi-
sation step so that we solve, to optimality, a (small) mixed-integer
quadratic optimisation problem. We believe that the quality of our
results indicates that this can be a useful strategy to employ within
the context of cardinality constrained portfolio optimisation.

Appendix A

In this appendix we present pseudocode for our three heuristic
algorithms (see Figs. 2–4).
Algorithm 1: GA heuristic algorithm psuedocode

Rmin is the return level associated with the minimum variance
unconstrained portfolio

Rmax is the maximum expected return for all assets, thus
Rmax = max[liji = 1, . . . ,N]

Oxy is the child of x 2 Q1 and y 2 Q2 after subset optimisation
O⁄ is the set of feasible children
P⁄ is the set of current population members
G is the number of generations
C is the set of all assets [1, . . . ,N]
begin

for q :¼ Rmin, . . . ,Rmax do
 /examine values for q

equally spaced in
[Rmin,Rmax]/
initialise P⁄
 /random initialisation,
Sin = max[2K,20] assets/
determine Sout :¼ C � Sin "p 2 P⁄
solve F (Sin,Sout) "p 2 P⁄
 /subset optimisation/

for g :¼ 1, . . . ,G do
 /G generations in all/

O⁄ :¼ ;

select Q1, Q2 by selection
criteria
/parent sets/
for all x 2 Q1 and y 2 Q2

do

/crossover to produce
children/
Algorithm 1: GA heuristic algorithm psuedocode

Algorithm 1 (continued)
Sin :¼ x \ y

Sout :¼ (C � x) \ (C � y)
if g :¼ g⁄ then
 /mutation at generation g⁄/

if mutation probability

then

for i 2 Sin and

j 2 Sout do

Sin :¼ Sin [ [j] � [i]

Sout :¼ Sout [ [i] � [j]

end for
end if

end if
solve F (Sin,Sout)
 /subset optimisation/

if F (Sin,Sout) is feasible

then

/evaluate solution/
O⁄ :¼ O⁄ [ Oxy
 /collect feasible children/

end if
end for

P⁄ :¼ P⁄ [ O⁄ and sort by

variance

/combine children with
current population/
P⁄ :¼ first P in P⁄
 /new population/

end for
end for

end
Algorithm 2: TS heuristic algorithm psuedocode

Rmin is the return level associated with the minimum variance
unconstrained portfolio

Rmax is the maximum expected return for all assets, thus
Rmax = max[liji = 1, . . . ,N]

P⁄ is the initial set of solutions
G is the number of iterations
C is the set of all assets [1, . . . ,N]
S⁄ is the set of assets in the current solution
begin

for q :¼ Rmin, . . . ,Rmax do
 /examine values for q

equally spaced in
[Rmin,Rmax]/
initialise P⁄
 /random initialisation,
Sin = max[2K,20] assets/
determine Sout :¼ C � Sin

"p 2 P⁄
solve F (Sin,Sout) "p 2 P⁄
 /subset optimisation/

S⁄ :¼ {assets in p 2 P⁄jp has

minimum variance}

/initial solution/
initialise C :¼ {the N/3 assets
with highest return excluding
assets in S⁄}
initialise T :¼ C � S⁄ [ C

for g :¼ 1,. . .,G do
 /G iterations in all/

randomly select i 2 S⁄ and
j 2 C

Sin :¼ S⁄ [ [j] � [i]
 /neighbourhood solution/

Sout :¼ C � Sin
solve F (Sin,Sout)
 /subset optimisation/

if F (Sin,Sout) is feasible

then

/evaluate solution/
if var (solution) < var
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Algorithm 2: TS heuristic algorithm psuedocode

Algorithm 2 (continued)
(S⁄) then
S⁄ :¼ Sin
 /improved solution/

T :¼ T [ [i]
 /update tabu list/
else

T :¼ T [ [j]
 /update tabu list/
end if

else
T :¼ T [ [j]
 /update tabu list/

end if

check T and update C and

T

/move assets who have
served tabu tenure from T
into C/
end for

end for

end
Algorithm 3: SA heuristic algorithm psuedocode

Rmin is the return level associated with the minimum variance
unconstrained portfolio

Rmax is the maximum expected return for all assets, thus
Rmax = max[liji = 1, . . . ,N]

P⁄ is the initial set of solutions
G is the number of iterations
C is the set of all assets [1, . . . ,N]
S⁄ is the set of assets in the current solution
b is the current temperature
a is the cooling factor
begin

for q :¼ Rmin, . . . ,Rmax do
 /examine values for q

equally spaced in
[Rmin,Rmax]/
initialise P⁄
 /random
initialisation,
Sin = max[2K,20]
assets/
determine Sout :¼ C � Sin "p 2 P⁄
solve F (Sin,Sout) "p 2 P⁄
 /subset optimisation/

S⁄ :¼ {assets in p 2 P⁄jp has minimum

variance}

/initial solution/
b :¼ var (S⁄)/10
 /initialise SA
parameters/
a :¼ 0.95

for g :¼ 1, . . . ,G do
 /G iterations in all/

randomly select i 2 S⁄ and j R S⁄
Sin :¼ S⁄ [ [j] � [i]

Sout :¼ C � Sin
solve F (Sin,Sout)
 /subset optimisation/

if F (Sin,Sout) is feasible then
 /evaluate solution/
if var (solution) < var (S⁄)
then
S⁄ :¼ Sin
 /improved solution/

else
r :¼ a random number
from [0,1]
R :¼ e�ðvarðsolutionÞ�varðS�ÞÞ=b
if R > r then
 /criteria for accepting
worse portfolio/
S⁄ :¼ Sin
Algorithm 3: SA heuristic algorithm psuedocode

Algorithm 3 (continued)
end if

end if
end if

b :¼ ab
 /update temperature/

end for
end for

end
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