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Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.
2 Recursively define the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up fashion.
4 Construct an optimal solution from computed information.

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.
2 Recursively define the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up fashion.
4 Construct an optimal solution from computed information.

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up fashion.
4 Construct an optimal solution from computed information.

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.
2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution, typically in a bottom-up fashion.
4 Construct an optimal solution from computed information.

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.
2 Recursively define the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up fashion.

4 Construct an optimal solution from computed information.

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.
2 Recursively define the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up fashion.
4 Construct an optimal solution from computed information.

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

The Rod Cutting problem

The Problem

Given a rod of n inches, and a table of prices pi , i = 1, 2, . . . , n, determine the
maximum revenue rn obtainable by cutting up the rod and selling it into pieces. How
many possibilities?

Example

Length i 1 2 3 4 5 6 7
Price pi 1 5 8 9 10 17 17

Compute ri , i = 1, 2, . . . 6.
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Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally.

(Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property.

Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn =

max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 2.1: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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Dynamic Programming

Analysis of the recursive algorithm

Analysis (contd.)

T (n) =

{
1, if n = 0
1 +

∑n−1
k=0 T (k), otherwise

It is not hard to see that T (n) = 2n.
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 2.17: Bottom-up rod-cutting
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The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)

1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 2.19: Bottom-up rod-cutting
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The Bottom-up approach

The bottom-up algorithm
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The Bottom-up approach
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The Bottom-up approach
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The Bottom-up approach
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The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
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4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).

7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 2.25: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for

8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 2.26: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.

9: end for
10: return(r [n]).

Algorithm 2.27: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 2.28: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 2.29: Bottom-up rod-cutting
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Dynamic Programming

Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,

T (n) =

{
0, if n = 0∑n

j=1
∑j

i=1 1, otherwise

It is not hard to see that T (n) = Θ(n2).
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Dynamic Programming

Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
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Accordingly,
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.30: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.31: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)

1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.32: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.

2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.33: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.

3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.34: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do

4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.35: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.

5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.36: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do

6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.37: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then

7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.38: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].

8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.39: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}

9: end if
10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.40: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.41: Bottom-up rod-cutting

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for

11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.42: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.

12: end for
13: return(r [n]).

Algorithm 2.43: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for

13: return(r [n]).

Algorithm 2.44: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 2.45: Bottom-up rod-cutting
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Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 2.46: Extracting the solution
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Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 2.47: Extracting the solution
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Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)

1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 2.48: Extracting the solution

Dynamic Programming Optimization Methods in Finance



Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do

2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 2.49: Extracting the solution
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Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].

3: n = n − s[n].
4: end while

Algorithm 2.50: Extracting the solution
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Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].

4: end while

Algorithm 2.51: Extracting the solution
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Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 2.52: Extracting the solution
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Dynamic Programming

The Matrix Chain Multiplication problem

The Problem

You are required to compute the matrix product A1 · A2 · · ·An, where matrix Ai has
dimensions di−1 × di , while minimizing the number of scalar multiplications.

Observe that,
1 The total number of scalar multiplications when multiplying two matrices of

dimensions p × q and q × r is p · q · r .
2 The entries in the matrices do not affect the optimum solution.

Cost of enumerating all the orders

T (n) =

{
1, if n = 2∑n−1

k=1 T (k) · T (n − k), otherwise

Solving the recurrence gives the nth Catalan number whose growth is Ω( 4n

n
3
2

).
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The Problem
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Dynamic Programming

Optimality Substructure

Substructure

If somebody gave you the first grouping, can the problem be simplified?

Yes! The two subproblems that result must be solved optimally. (Why?)

Therefore, the optimality substructure applies.

Let m[i, j] denote the optimal number of scalar multiplications to multiply the matrices
〈Ai ,Ai+1, . . .Aj 〉.

m[i, j] =

{
0, if j = i
mini≤k<j (m[i, k ] + m[k + 1, j] + di−1 · dk · dj ), if j > i.
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Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.
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Dynamic Programming

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n
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Dynamic Programming

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W ) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W ). (Why?)
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Dynamic Programming

Formulating the recurrence

The Recurrence

1 Let V [i,w ] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W ].
3 As per the discussion above,

V [i,w ] = max

{
V [i − 1,w − wi ] + pi (oi is included)

V [i − 1,w ] (oi is excluded)

4 Initial conditions:

V [0,w ] = 0, 0 ≤ w ≤ W

V [i,w ] = −∞, w < 0
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Dynamic Programming

Example

Exercise

Solve the following instance of Knapsack:
1 n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.

Solution

V [i,w ] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90
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A Portfolio optimization example

Example

Consider the following portfolio optimization problem:
1 You have 14K to invest in three possible investments.
2 Investment I1 requires an investment of 7K and a profit of 11K.
3 Investment I2 requires an investment of 5K and a profit of 8K.
4 Investment I3 requires an investment of 4K and a profit of 6K.

How do you distribute your money among the three investments to maximize profits?

Knapsack formulation

Let xi , (i = 1, 2, 3) be 1 if Investment Ii is selected and 0 otherwise.

Accordingly, we have,

max 11 · x1 + 8 · x2 + 6 · x3

7 · x1 + 5 · x2 + 4 · x3 ≤ 14

xi = {0, 1} ∀i = 1, 2, 3
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