Integer Programming Models: Constructing an Index Fund

Ranya Almohsen¹

¹Lane Department Of Computer Science And Electrical Engineering West Virginia University Morgantown, WV USA

April 14, 2015

Conceptual Foundations Combinatorial Auctions The Lockbox Problem Portfolio Optimization . References

Classification of Auctions

 An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources
 - Market Structure

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources
 - Market Structure
 - Preference Structure

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources
 - Market Structure
 - Preference Structure
 - Bid Structure

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources
 - Market Structure
 - Preference Structure
 - Bid Structure
 - Matching Supply to Demand

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources
 - Market Structure
 - Preference Structure
 - Bid Structure
 - Matching Supply to Demand
 - Information Feedback

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
 - Resources
 - Market Structure
 - Preference Structure
 - Bid Structure
 - Matching Supply to Demand
 - Information Feedback

Combinatorial Auctions

• In combinatorial auctions (CAs), bidders can bid on combinations of items.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
 - Suppose an auctioneer is selling different goods.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
 - Suppose an auctioneer is selling different goods.
 - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
 - Suppose an auctioneer is selling different goods.
 - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
 - Suppose an auctioneer is selling different goods.
 - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.
- Substitutability:

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
 - Suppose an auctioneer is selling different goods.
 - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.
- Substitutability:
 - A bidder may be willing to pay for the whole only less than the sum of what he is willing to pay for parts.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
 - Suppose an auctioneer is selling different goods.
 - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.
- Substitutability:
 - A bidder may be willing to pay for the whole only less than the sum of what he is willing to pay for parts.
 - This is the case if the bidder has a limited budget or the goods are similar or interchangeable.

Motivation Example: eBay

Motivation Example: eBay

Example (1)

R. Almohsen Optimization Methods in Finance

Motivation Example: eBay

Example (1)

• On-line auctions such as eBay.

Motivation Example: eBay

Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.

Motivation Example: eBay

Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.

Motivation Example: eBay

Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
Motivation Example: eBay

Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
- Buyers must place a bid higher than the last bid placed.

Motivation Example: eBay

Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
- Buyers must place a bid higher than the last bid placed.
- At the end of the auction the buyer with the highest bid wins that item.

Motivation Example: eBay

Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
- Buyers must place a bid higher than the last bid placed.
- At the end of the auction the buyer with the highest bid wins that item.

Combinatorial Auctions

Combinatorial Auctions

Problem description

R. Almohsen Optimization Methods in Finance

Combinatorial Auctions

Problem description

• Auctioneer sells items $M = \{1, ..., m\}$.

Combinatorial Auctions

Problem description

- Auctioneer sells items $M = \{1, ..., m\}$.
- Bid is a pair B_j = (S_j, p_j), where S_j ⊆ M is a nonempty set of items and p_j is the price offer for this set.

Combinatorial Auctions

Problem description

- Auctioneer sells items $M = \{1, ..., m\}$.
- Bid is a pair B_j = (S_j, p_j), where S_j ⊆ M is a nonempty set of items and p_j is the price offer for this set.
- Suppose that the aucioneer has received *n* bids *B*₁,...,*B*_n.

Combinatorial Auctions

Problem description

- Auctioneer sells items $M = \{1, ..., m\}$.
- Bid is a pair B_j = (S_j, p_j), where S_j ⊆ M is a nonempty set of items and p_j is the price offer for this set.
- Suppose that the aucioneer has received *n* bids *B*₁,...,*B*_n.
- Question: How should auctioneer determine winners and losers in order to maximize his revenue?

Combinatorial Auctions

Combinatorial Auctions

Formulating Integer Programs

Combinatorial Auctions

Formulating Integer Programs

• Let x_i be a 0, 1 variable that takes the value1 if bid B_i wins, and 0 if it loses.

Combinatorial Auctions

Formulating Integer Programs

- Let x_i be a 0, 1 variable that takes the value1 if bid B_i wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

Combinatorial Auctions

Formulating Integer Programs

- Let x_i be a 0, 1 variable that takes the value1 if bid B_i wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$

Combinatorial Auctions

Formulating Integer Programs

- Let x_i be a 0, 1 variable that takes the value1 if bid B_i wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$

Subject to :

Combinatorial Auctions

Formulating Integer Programs

- Let x_i be a 0, 1 variable that takes the value1 if bid B_i wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$

Subject to : $\sum_{j:i \in S_{j}} x_{j} \leq 1, \quad \forall i = 1, \dots, m$

Combinatorial Auctions

Formulating Integer Programs

- Let x_i be a 0, 1 variable that takes the value1 if bid B_i wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$

Subject to: $\sum_{j:i \in S_{j}} x_{j} \leq 1, \quad \forall i = 1, \dots, m$
 $x_{j} = 0 \text{ or } 1, \quad \forall j = 1, \dots, n$

Combinatorial Auctions

Combinatorial Auctions

Example

R. Almohsen Optimization Methods in Finance

Combinatorial Auctions

Example

• If there are four items for sale and the following bids have been received:

Combinatorial Auctions

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$

Combinatorial Auctions

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

Combinatorial Auctions

Example

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

max $6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$

Combinatorial Auctions

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

max
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$

 $x_1 + x_4 + x_6 \le 1$

Combinatorial Auctions

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

max
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$

 $x_1 + x_4 + x_6 \le 1$
 $x_2 + x_5 < 1$

Combinatorial Auctions

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$

 $x_1 + x_4 + x_6 \le 1$
 $x_2 + x_5 \le 1$
 $x_3 + x_4 + x_6 \le 1$

Combinatorial Auctions

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$

 $x_1 + x_4 + x_6 \le 1$
 $x_2 + x_5 \le 1$
 $x_3 + x_4 + x_6 \le 1$
 $x_3 + x_5 + x_6 \le 1$

Combinatorial Auctions

n

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$

 $x_1 + x_4 + x_6 \le 1$
 $x_2 + x_5 \le 1$
 $x_3 + x_4 + x_6 \le 1$
 $x_3 + x_5 + x_6 \le 1$
 $x_j = 0 \text{ or } 1 \quad , \forall j = 1, \dots, 6$

Combinatorial Auctions

n

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$

 $x_1 + x_4 + x_6 \le 1$
 $x_2 + x_5 \le 1$
 $x_3 + x_4 + x_6 \le 1$
 $x_3 + x_5 + x_6 \le 1$
 $x_j = 0 \text{ or } 1 \quad , \forall j = 1, \dots, 6$

Combinatorial Auctions

Combinatorial Auctions

Several indistinguishable items

Combinatorial Auctions

Several indistinguishable items

• In some auctions, there are multiple indistinguishable units of each item for sale.

Combinatorial Auctions

Several indistinguishable items

- In some auctions, there are multiple indistinguishable units of each item for sale.
- A bid in this setting is defined as $B_j = (\lambda_1^j, \lambda_2^j, \dots, \lambda_m^j; p_j)$.

Combinatorial Auctions

Several indistinguishable items

- In some auctions, there are multiple indistinguishable units of each item for sale.
- A bid in this setting is defined as $B_j = (\lambda_1^j, \lambda_2^j, \dots, \lambda_m^j; p_j)$.
- Where λ_i^j is the desired number of units of item *i* and p_i is the price offer.

Combinatorial Auctions

Combinatorial Auctions

Several indistinguishable items
Combinatorial Auctions

Several indistinguishable items

Combinatorial Auctions

Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:

Combinatorial Auctions

Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:

Subject to:

$$\sum_{j:i\in S_j} \lambda_i^j x_j \le u_i \quad , \forall \ i = 1, \dots, m$$

Combinatorial Auctions

Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:

Subject to:

$$\sum_{i:i \in S_j} \lambda_i^j x_j \le u_i \quad , \forall i = 1, \dots, m$$
$$x_j = 0 \text{ or } 1 \quad , \forall j = 1, \dots, n$$

Combinatorial Auctions

Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:

Subject to:

$$\begin{split} \sum_{j:i\in S_j} \lambda_j^j x_j &\leq u_i \quad , \forall \ i=1,\ldots,m \\ x_j &= 0 \ or \ 1 \quad , \forall \ j=1,\ldots,n \end{split}$$

• Where *u_i* is the number of units of item *i* for sale.

Combinatorial Auctions

Combinatorial Auctions

Exercise

R. Almohsen Optimization Methods in Finance

Combinatorial Auctions

Exercise

• In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.

Combinatorial Auctions

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ^j_i values can be negative, as can the prices p_i, representing selling instead of buying.

Combinatorial Auctions

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λⁱ_i values can be negative, as can the prices p_i, representing selling instead of buying.
- Note that a single bid can be buying some items while selling other items.

Combinatorial Auctions

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ^l_i values can be negative, as can the prices p_i, representing selling instead of buying.
- Note that a single bid can be buying some items while selling other items.
- Write an integer linear program that will maximize the surplus generated by the combinatorial exchange.

Combinatorial Auctions

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ^l_i values can be negative, as can the prices p_i, representing selling instead of buying.
- Note that a single bid can be buying some items while selling other items.
- Write an integer linear program that will maximize the surplus generated by the combinatorial exchange.

Combinatorial Auctions

Combinatorial Auctions

Exercise

R. Almohsen Optimization Methods in Finance

Combinatorial Auctions

Exercise

• Let $B = \{1, ..., m\}$ be the set of buyer items, and the bid is $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $b_j \subseteq B$.

Combinatorial Auctions

- Let $B = \{1, ..., m\}$ be the set of buyer items, and the bid is $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $b_j \subseteq B$.
- Let $S = \{1, ..., n\}$ be the set of seller items, and and the bid is $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $s_j \subseteq S$.

Combinatorial Auctions

- Let $B = \{1, ..., m\}$ be the set of buyer items, and the bid is $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $b_j \subseteq B$.
- Let $S = \{1, ..., n\}$ be the set of seller items, and and the bid is $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $s_j \subseteq S$.
- $x_j = 0$ or 1 indicates b_j wins, $y_j = 0$ or 1 indicates s_j wins.

Combinatorial Auctions

Exercise

- Let $B = \{1, ..., m\}$ be the set of buyer items, and the bid is $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $b_j \subseteq B$.
- Let $S = \{1, ..., n\}$ be the set of seller items, and and the bid is $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $s_j \subseteq S$.

• $x_i = 0$ or 1 indicates b_i wins, $y_i = 0$ or 1 indicates s_i wins.

$$\max \sum_{j\in B}^{n} p_j x_j - \sum_{j\in S}^{n} p_j y_j$$

Combinatorial Auctions

Exercise

- Let $B = \{1, ..., m\}$ be the set of buyer items, and the bid is $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $b_j \subseteq B$.
- Let $S = \{1, ..., n\}$ be the set of seller items, and and the bid is $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $s_j \subseteq S$.

• $x_i = 0$ or 1 indicates b_i wins, $y_i = 0$ or 1 indicates s_i wins.

$$\begin{array}{l} \max \ \sum\limits_{j \in \mathcal{B}}^{n} p_{j} x_{j} - \sum\limits_{j \in \mathcal{S}}^{n} p_{j} y_{j} \\ \text{Subject to} : \ \sum\limits_{j:i \in \mathcal{B}_{j}} \lambda_{j}^{i} x_{j} = \sum\limits_{j:i \in \mathcal{S}_{j}} \lambda_{i}^{i} y_{j} \end{array}$$

Combinatorial Auctions

Exercise

- Let $B = \{1, ..., m\}$ be the set of buyer items, and the bid is $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $b_j \subseteq B$.
- Let $S = \{1, ..., n\}$ be the set of seller items, and and the bid is $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$, such that: $s_j \subseteq S$.

• $x_j = 0$ or 1 indicates b_j wins, $y_j = 0$ or 1 indicates s_j wins.

$$\max \sum_{j \in B}^{n} p_{j}x_{j} - \sum_{j \in S}^{n} p_{j}y_{j}$$

Subject to:
$$\sum_{j:i \in B_{j}} \lambda_{i}^{j}x_{j} = \sum_{j:i \in S_{j}} \lambda_{i}^{j}y_{j}$$
$$x_{j} = 0 \text{ or } 1 \quad , \forall j = 1, \dots, m,$$
$$y_{j} = 0 \text{ or } 1 \quad , \forall j = 1, \dots, n$$

The Lockbox Problem

The Lockbox Problem

Construct the Problem

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Construct the Problem

• National firm in US receives checks from all over the country.

The Lockbox Problem

Construct the Problem

- National firm in US receives checks from all over the country.
- Delay from obligation of customer (check postmarked) to clearing (check arrives).

The Lockbox Problem

Construct the Problem

- National firm in US receives checks from all over the country.
- Delay from obligation of customer (check postmarked) to clearing (check arrives).
- Money should be available as soon as possible.

The Lockbox Problem

Construct the Problem

- National firm in US receives checks from all over the country.
- Delay from obligation of customer (check postmarked) to clearing (check arrives).
- Money should be available as soon as possible.
- Idea: Open offices all over country to receive checks and to minimize delay.

The Lockbox Problem

The Lockbox Problem

Example

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Example

• Suppose we receive payments from 4 regions (West, Midwest, East, and South).

The Lockbox Problem

- Suppose we receive payments from 4 regions (West, Midwest, East, and South).
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively.

The Lockbox Problem

- Suppose we receive payments from 4 regions (West, Midwest, East, and South).
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively.
- We are considering opening lockboxes in Los Angeles, Pittsburgh, Boston, and/or Houston.

The Lockbox Problem

- Suppose we receive payments from 4 regions (West, Midwest, East, and South).
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively.
- We are considering opening lockboxes in Los Angeles, Pittsburgh, Boston, and/or Houston.
- Operating a lockbox costs \$90,000 per year.

The Lockbox Problem

The Lockbox Problem

Example

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Clearing times				
From	L.A	Pittsburgh	Boston	Houston
West	2	4	6	6
Midwest	4	2	5	5
East	6	5	2	5
South	7	5	6	3

The Lockbox Problem
The Lockbox Problem

Example Cont.

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Example Cont.

• First we must calculate the lost interest for each possible assignment.

The Lockbox Problem

Example Cont.

- First we must calculate the lost interest for each possible assignment.
- For example, if the West sends its checks to a lockbox in Boston, then on average there will be \$3,600,000 = (6 × \$600,000) in process on any given day.

The Lockbox Problem

Example Cont.

- First we must calculate the lost interest for each possible assignment.
- For example, if the West sends its checks to a lockbox in Boston, then on average there will be \$3,600,000 = (6 × \$600,000) in process on any given day.
- Assuming an investment rate of 5%, this corresponds to a yearly loss of \$180,000.

The Lockbox Problem

The Lockbox Problem

Example Cont.

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Example Cont.

Lost Interest				
From	L.A	Pittsburgh	Boston	Houston
West	60	120	180	180
Midwest	48	24	60	60
East	216	180	72	180
South	126	90	108	54

The Lockbox Problem

The Lockbox Problem

The Lockbox Problem

Example Cont., Integer Programming Formulation

• Let $y_i \in \{0, 1\}$ indicates whether lockbox *j* is open or not.

The Lockbox Problem

- Let $y_i \in \{0, 1\}$ indicates whether lockbox *j* is open or not.
- Let $x_{ij} = 1$ if region *i* sends checks to lockbox *j*.

The Lockbox Problem

- Let $y_i \in \{0, 1\}$ indicates whether lockbox *j* is open or not.
- Let $x_{ij} = 1$ if region *i* sends checks to lockbox *j*.
- What is the objective function?

The Lockbox Problem

- Let $y_i \in \{0, 1\}$ indicates whether lockbox *j* is open or not.
- Let $x_{ij} = 1$ if region *i* sends checks to lockbox *j*.
- What is the objective function?
- The objective is to minimize total yearly costs:

The Lockbox Problem

- Let $y_j \in \{0, 1\}$ indicates whether lockbox *j* is open or not.
- Let $x_{ij} = 1$ if region *i* sends checks to lockbox *j*.
- What is the objective function?
- The objective is to minimize total yearly costs: $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + \dots$ $+90y_1 + 90y_2 + 90y_3 + 90y_4.$

The Lockbox Problem

Example Cont., Integer Programming Formulation

- Let $y_i \in \{0, 1\}$ indicates whether lockbox *j* is open or not.
- Let $x_{ij} = 1$ if region *i* sends checks to lockbox *j*.
- What is the objective function?

• The objective is to minimize total yearly costs:

$$60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + \dots$$

 $+90y_1 + 90y_2 + 90y_3 + 90y_4.$

Each region is assigned to exactly one lockbox:

The Lockbox Problem

Example Cont., Integer Programming Formulation

- Let $y_i \in \{0, 1\}$ indicates whether lockbox *j* is open or not.
- Let $x_{ij} = 1$ if region *i* sends checks to lockbox *j*.
- What is the objective function?

• The objective is to minimize total yearly costs:

$$60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + \dots$$

 $+90y_1 + 90y_2 + 90y_3 + 90y_4.$

• Each region is assigned to exactly one lockbox: $\sum_{i} x_{ii} = 1$ for all *i*.

The Lockbox Problem

The Lockbox Problem

Example cont.

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Example cont.

• Regions can only send to open lockboxes:

The Lockbox Problem

Example cont.

• Regions can only send to open lockboxes:

 $\sum_{i} x_{ij} \leq 4y_j$ for all *j*.

The Lockbox Problem

Example cont.

Regions can only send to open lockboxes:

 $\sum_{i} x_{ij} \leq 4y_j$ for all *j*.

• For lockbox 1 (Los Angeles), this can be written as:

The Lockbox Problem

Example cont.

Regions can only send to open lockboxes:

 $\sum_{i} x_{ij} \leq 4y_j$ for all *j*.

• For lockbox 1 (Los Angeles), this can be written as:

 $x_{11} + x_{21} + x_{31} + x_{41} \le 4y_1.$

The Lockbox Problem

The Lockbox Problem

Integer Programming Formulation

The Lockbox Problem

Integer Programming Formulation

• min $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$

The Lockbox Problem

Integer Programming Formulation

- min $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$
- Subject to:

The Lockbox Problem

Integer Programming Formulation

- min $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$
- Subject to:

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &= 1\\ x_{21} + x_{22} + x_{23} + x_{24} &= 1\\ x_{31} + x_{32} + x_{33} + x_{34} &= 1\\ x_{41} + x_{42} + x_{43} + x_{44} &= 1\\ x_{11} + x_{21} + x_{31} + x_{41} - 4y_1 &\leq 0\\ x_{12} + x_{22} + x_{32} + x_{42} - 4y_2 &\leq 0\\ x_{13} + x_{23} + x_{33} + x_{43} - 4y_3 &\leq 0\\ x_{14} + x_{24} + x_{34} + x_{44} - 4y_4 &\leq 0 \end{aligned}$$

The Lockbox Problem

Integer Programming Formulation

- min $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$
- Subject to:

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &= 1\\ x_{21} + x_{22} + x_{23} + x_{24} &= 1\\ x_{31} + x_{32} + x_{33} + x_{34} &= 1\\ x_{41} + x_{42} + x_{43} + x_{44} &= 1\\ x_{11} + x_{21} + x_{31} + x_{41} - 4y_1 &\leq 0\\ x_{12} + x_{22} + x_{32} + x_{42} - 4y_2 &\leq 0\\ x_{13} + x_{23} + x_{33} + x_{43} - 4y_3 &\leq 0\\ x_{14} + x_{24} + x_{34} + x_{44} - 4y_4 &\leq 0 \end{aligned}$$

Al variables binary.

The Lockbox Problem

The Lockbox Problem

Integer Programming Formulation

The Lockbox Problem

Integer Programming Formulation

• If we ignore integrality, then we can solve it as linear program.

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

Other Formulations

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

Other Formulations

Consider the sixteen constraints of the form:

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

Other Formulations

Consider the sixteen constraints of the form:

$$x_{ij} \leq y_j$$
The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

Other Formulations

Consider the sixteen constraints of the form:

$$x_{ij} \leq y_j$$

• These constraints also force a region to only use open lockboxes.

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

Other Formulations

Consider the sixteen constraints of the form:

 $x_{ij} \leq y_j$

- These constraints also force a region to only use open lockboxes.
- If we solve the linear program with the above constraints, we get the solution

 $x_{11} = x_{21} = x_{33} = x_{43} = y_1 = y_3 = 1$, with the rest equal to zero.

The Lockbox Problem

Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution $x_{11} = x_{22} = x_{33} = x_{44} = 1$, $y_1 = y_2 = y_3 = y_4 = 0.25$ and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

Other Formulations

Consider the sixteen constraints of the form:

 $x_{ij} \leq y_j$

- These constraints also force a region to only use open lockboxes.
- If we solve the linear program with the above constraints, we get the solution

 $x_{11} = x_{21} = x_{33} = x_{43} = y_1 = y_3 = 1$, with the rest equal to zero.

• In fact, we have an integer solution, which must therefore be optimal!

The Lockbox Problem

The Lockbox Problem

Exercise

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Exercise

 Consider a lockbox problem where C_{ij} is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.

The Lockbox Problem

Exercise

- Consider a lockbox problem where C_{ij} is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.
 - Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.

The Lockbox Problem

Exercise

- Consider a lockbox problem where C_{ij} is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.
 - Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.
 - O Formulate in two different ways the constraint that regions cannot send checks to closed lockboxes.

The Lockbox Problem

Exercise

- Consider a lockbox problem where C_{ij} is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.
 - Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.
 - Pormulate in two different ways the constraint that regions cannot send checks to closed lockboxes.
 - For the following data,

The Lockbox Problem

Exercise

• Consider a lockbox problem where C_{ii} is the cost of assigning region i to a lockbox in region *j*, for j = 1, ..., n. Suppose that we wish to open exactly *q* lockboxes where q is a given integer, 1 < q < n.

• Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.

- Pormulate in two different ways the constraint that regions cannot send checks to closed lockboxes.
- Sor the following data.

$$q=2, \mathbf{C}_{ij}=egin{pmatrix} 0&4&5&8&2\ 4&0&3&4&6\ 5&3&0&1&7\ 8&4&1&0&4\ 2&6&7&4&0 \end{pmatrix}$$

 Compare the linear programming relaxations of your two formulations in question (2).

The Lockbox Problem

Exercise Solution

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Exercise Solution

• For (1). Use decision variables

$$x_{ij} = \begin{cases} 1 & \text{if region } i \text{ is assigned to lock-box } j \\ 0 & \text{otherwise} \end{cases}$$

The Lockbox Problem

Exercise Solution

• For (1). Use decision variables

$$x_{ij} = \begin{cases} 1 & \text{if region } i \text{ is assigned to lock-box } j \\ 0 & \text{otherwise} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{if lock-box } j \text{ is opened} \\ 0 & \text{otherwise} \end{cases}$$

The Lockbox Problem

Exercise Solution Cont.

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Exercise Solution Cont.

The Lockbox Problem

Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

The Lockbox Problem

Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{i=1}^{n} y_{ij} = q$$

The Lockbox Problem

Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \ge 1 , \forall i = 1, \dots, n$$

The Lockbox Problem

Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \ge 1 , \forall i = 1, \dots, n$$
$$\sum x_{ij} \le n \cdot y_j , \forall j = 1, \dots, n$$

The Lockbox Problem

Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \ge 1 , \forall i = 1, \dots, n$$
$$\sum x_{ij} \le n \cdot y_j , \forall j = 1, \dots, n$$
$$x_{ij}, y_j \in [0, 1].$$

The Lockbox Problem

Exercise Solution Cont.

R. Almohsen Optimization Methods in Finance

The Lockbox Problem

Exercise Solution Cont.

The Lockbox Problem

Exercise Solution Cont.

• For (2). The 3rd inequality in the ILP forbids that we can assign regions to closed lock-boxes. Alternatively it can be expressed with

 $x_{ij} \leq y_j \ \forall i = 1, \dots, n, \ and \ \forall j = 1, \dots, n$

The Lockbox Problem

Exercise Solution Cont.

• For (2). The 3rd inequality in the ILP forbids that we can assign regions to closed lock-boxes. Alternatively it can be expressed with

 $x_{ij} \leq y_j \ \forall i = 1, \dots, n, \text{ and } \forall j = 1, \dots, n$

Note that the integer solutions to both systems are exactly the same.

The Lockbox Problem

Exercise Solution Cont.

$$x_{ij} \leq y_j \ \forall i = 1, \dots, n, \text{ and } \forall j = 1, \dots, n$$

- Note that the integer solutions to both systems are exactly the same.
- For (3). One obtains the LP relaxation for above ILP by replacing the constraint x_{ij} ; $y_j \in [0, 1]$ by $0 \le x_{ij}$; $y_j \le 1$.

The Lockbox Problem

Exercise Solution Cont.

$$x_{ij} \leq y_j \ \forall i = 1, \dots, n, \ and \ \forall j = 1, \dots, n$$

- Note that the integer solutions to both systems are exactly the same.
- For (3). One obtains the LP relaxation for above ILP by replacing the constraint x_{ij} ; $y_j \in [0, 1]$ by $0 \le x_{ij}$; $y_j \le 1$.
- An optimum fractional solution of the system in (a) is $x_{ii} = 1$ and $y_i = 0.4$ for i = 1, ..., n (other values are 0). The objective value of this solution is 0. On optimum solution of the same LP but with the constraint from (2) gives $y_3 = y_5 = 1$; $x_{15} = x_{55} = x_{23} = x_{33} = x_{43} = 1$ with a value of 6. This is even an integer solution.

The Lockbox Problem

Exercise Solution Cont.

$$x_{ij} \leq y_j \ \forall i = 1, \dots, n, \ and \ \forall j = 1, \dots, n$$

- Note that the integer solutions to both systems are exactly the same.
- For (3). One obtains the LP relaxation for above ILP by replacing the constraint x_{ij} ; $y_j \in [0, 1]$ by $0 \le x_{ij}$; $y_j \le 1$.
- An optimum fractional solution of the system in (a) is $x_{ii} = 1$ and $y_i = 0.4$ for i = 1, ..., n (other values are 0). The objective value of this solution is 0. On optimum solution of the same LP but with the constraint from (2) gives $y_3 = y_5 = 1$; $x_{15} = x_{55} = x_{23} = x_{33} = x_{43} = 1$ with a value of 6. This is even an integer solution.
- Conclusion: The constraint from (2) is stronger (and therefore better).

Definitions

Definitions

Active and Passive Portfolio

Definitions

Active and Passive Portfolio

• Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.

Definitions

Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

Definitions

Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

Types of Passive Portfolio

Definitions

Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

Types of Passive Portfolio

 Buy and hold: where assets are selected on the basis of some fundamental criteria and there is no active selling or buying of these stocks afterwards.

Definitions

Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

Types of Passive Portfolio

- Buy and hold: where assets are selected on the basis of some fundamental criteria and there is no active selling or buying of these stocks afterwards.
- Indexing: absolutely no attempt is made to identify mispriced securities.

Definitions

Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

Types of Passive Portfolio

- Buy and hold: where assets are selected on the basis of some fundamental criteria and there is no active selling or buying of these stocks afterwards.
- Indexing: absolutely no attempt is made to identify mispriced securities.
- The goal is to choose a portfolio that mirrors the movements of a broad market population or a market index. Such a portfolio is called an index fund.
Constructing an Index Fund

Constructing an Index Fund

Define an Index Fund

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Define an Index Fund

 An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.

Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.

Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
 - Market Efficiency.

Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
 - Market Efficiency.
 - Empirical Performance.

Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
 - Market Efficiency.
 - Empirical Performance.
 - Transaction Cost.

Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
 - Market Efficiency.
 - Empirical Performance.
 - Transaction Cost.

Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
 - Market Efficiency.
 - Empirical Performance.
 - Transaction Cost.

Constructing an Index Fund

Constructing an Index Fund

Constructing an Index Fund

Strategies for Forming Index Funds

 Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).

Constructing an Index Fund

- Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).
- A pure indexing approach consists in purchasing all the issues in the index, with the same exact weights as in the index, (impractical).

Constructing an Index Fund

- Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).
- A pure indexing approach consists in purchasing all the issues in the index, with the same exact weights as in the index, (impractical).
- An index fund with *q* stocks, where *q* is substantially smaller than the size *n* of the target population seems desirable.

Constructing an Index Fund

- Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).
- A pure indexing approach consists in purchasing all the issues in the index, with the same exact weights as in the index, (impractical).
- An index fund with *q* stocks, where *q* is substantially smaller than the size *n* of the target population seems desirable.

Constructing an Index Fund

Constructing an Index Fund

Constructing an Index Fund

A Large-Scale Deterministic Model

• Suppose a measure of similarity is available.

Constructing an Index Fund

- Suppose a measure of similarity is available.
- ρ_{ij} = similarity between stock *i* and stock *j*.

Constructing an Index Fund

- Suppose a measure of similarity is available.
- $\rho_{ij} = \text{similarity between stock } i$ and stock j.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \leq 1$ for $i \neq j$ and ρ_{ij} is larger for more similar stocks.

Constructing an Index Fund

- Suppose a measure of similarity is available.
- $\rho_{ij} = \text{similarity between stock } i$ and stock j.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \leq 1$ for $i \neq j$ and ρ_{ij} is larger for more similar stocks.

Constructing an Index Fund

Example

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Example

 The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ii}, where ρ_{ii} = similarity between stock *i* and stock *j*.

Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ij}, where ρ_{ij} = similarity between stock *i* and stock *j*.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \le 1$ for $i \ne j$ and ρ_{ij} is larger for more similar stocks.

Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ij}, where ρ_{ij} = similarity between stock *i* and stock *j*.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \le 1$ for $i \ne j$ and ρ_{ij} is larger for more similar stocks.

$$(M) \quad Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$

Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ij}, where ρ_{ij} = similarity between stock *i* and stock *j*.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \le 1$ for $i \ne j$ and ρ_{ij} is larger for more similar stocks.

(M)
$$Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$

Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ij}, where ρ_{ij} = similarity between stock *i* and stock *j*.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \le 1$ for $i \ne j$ and ρ_{ij} is larger for more similar stocks.

(M)
$$Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} = 1, \forall i = 1, \dots, n$$

Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ij}, where ρ_{ij} = similarity between stock *i* and stock *j*.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \le 1$ for $i \ne j$ and ρ_{ij} is larger for more similar stocks.

$$(M) \quad Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} = 1, \forall i = 1, \dots, n$$
$$\sum x_{ij} \le y_j, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ_{ij}, where ρ_{ij} = similarity between stock *i* and stock *j*.
- For example, $\rho_{ii} = 1$, $\rho_{ij} \le 1$ for $i \ne j$ and ρ_{ij} is larger for more similar stocks.

$$(M) \quad Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} = 1, \forall i = 1, \dots, n$$
$$\sum x_{ij} \le y_j, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$
$$x_{ij}, y_j = 0 \text{ or } 1, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

Constructing an Index Fund

Constructing an Index Fund

Example Cont.

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Example Cont.

• A weight *w_i* is calculated for each *j* in the fund:

Constructing an Index Fund

- A weight *w_j* is calculated for each *j* in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$, where V_i is the market value of stock *i*.

Constructing an Index Fund

- A weight *w_i* is calculated for each *j* in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$, where V_i is the market value of stock *i*.
- w_j is the total market value of the stocks represented by stock j in the fund.

Constructing an Index Fund

- A weight w_i is calculated for each j in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$, where V_i is the market value of stock *i*.
- w_j is the total market value of the stocks represented by stock j in the fund.
- The fraction of the index fund to be invested in stock *j* is proportional to the weight w_j , such that: $\frac{w_j}{\sum_{t=1}^{n} w_t}$

Constructing an Index Fund

- A weight w_i is calculated for each j in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$, where V_i is the market value of stock *i*.
- w_j is the total market value of the stocks represented by stock j in the fund.
- The fraction of the index fund to be invested in stock *j* is proportional to the weight w_j , such that: $\frac{w_j}{\sum_{t=1}^{n} w_t}$
Constructing an Index Fund

Constructing an Index Fund

Data Requirements

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Data Requirements

We need a coefficient ρ_{ij} which measures the similarity between stocks i and j.

Constructing an Index Fund

Data Requirements

- We need a coefficient ρ_{ij} which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

Constructing an Index Fund

Data Requirements

- We need a coefficient ρ_{ij} which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

Testing the Model

Constructing an Index Fund

Data Requirements

- We need a coefficient ρ_{ij} which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

Testing the Model

 Stocks comprising the S&P 500 were chosen as the target population to test the model.

Constructing an Index Fund

Data Requirements

- We need a coefficient ρ_{ij} which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

Testing the Model

- Stocks comprising the S&P 500 were chosen as the target population to test the model.
- A calibration period of sixty months was used.

Constructing an Index Fund

Data Requirements

- We need a coefficient ρ_{ij} which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

Testing the Model

- Stocks comprising the S&P 500 were chosen as the target population to test the model.
- A calibration period of sixty months was used.
- Then a portfolio of 25 stocks was constructed using model (M) and held for periods ranging from three months to three years.

Constructing an Index Fund

Solution Strategy

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Solution Strategy

• Branch-and-bound is a natural candidate for solving model (M).

Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.

Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.
- Indeed, for the S&P 500, there are 250,000 variables x_{ij} and 250,000 constraints $x_{ij} \leq y_j$.

Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.
- Indeed, for the S&P 500, there are 250,000 variables x_{ij} and 250,000 constraints $x_{ij} \leq y_j$.
- So the linear programming relaxation needed to get upper bounds in the branch-and-bound algorithm is a very large linear program to solve.

Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.
- Indeed, for the S&P 500, there are 250,000 variables x_{ij} and 250,000 constraints $x_{ij} \leq y_j$.
- So the linear programming relaxation needed to get upper bounds in the branch-and-bound algorithm is a very large linear program to solve.
- It turns out, however, that one does not need to solve this large linear program to obtain good upper bounds.

Constructing an Index Fund

Performance of Stocks

Constructing an Index Fund

Performance of Stocks

Performance of a 25 stock index fund	
Length	Ratio
1 QTR	1.006
2 QTR	.99
1 YR	.985
3 YR	.982

Constructing an Index Fund

Lagrangian Relaxation

Constructing an Index Fund

Lagrangian Relaxation

Constructing an Index Fund

Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$

Constructing an Index Fund

Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$
$$\sum_{j=1}^{n} y_j = q$$

Constructing an Index Fund

Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \le y_j \ , \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

Constructing an Index Fund

Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum_{ij} x_{ij} \le y_j , \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$
$$x_{ij}, y_j = 0 \text{ or } 1, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

Constructing an Index Fund

Properties

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Properties

• **Property 1**: $L(u) \ge Z$, where Z is the maximum for model (M).

Constructing an Index Fund

- **Property 1**: $L(u) \ge Z$, where Z is the maximum for model (M).
- Property 2:

Constructing an Index Fund

- **Property 1**: $L(u) \ge Z$, where Z is the maximum for model (M).
- Property 2:

$$L(u) = \max \sum_{j=1}^{n} C_{j} y_{j} + \sum_{i=1}^{n} u_{i}$$

Constructing an Index Fund

- **Property 1**: $L(u) \ge Z$, where Z is the maximum for model (M).
- Property 2:

$$L(u) = \max \sum_{j=1}^{n} C_j y_j + \sum_{i=1}^{n} u_i$$
$$\sum_{j=1}^{n} y_j = q$$

Constructing an Index Fund

- **Property 1**: $L(u) \ge Z$, where Z is the maximum for model (M).
- Property 2:

$$L(u) = \max \sum_{j=1}^{n} C_j y_j + \sum_{i=1}^{n} u_i$$
$$\sum_{j=1}^{n} y_j = q$$
$$y_j = 0 \text{ or } 1, \forall j = 1, \dots, n$$

Constructing an Index Fund

Properties Cont.

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Properties Cont.

R. Almohsen Optimization Methods in Finance

Constructing an Index Fund

Properties Cont.

• **Property 3**: In an optimal solution of the Lagrangian relaxation, *y_j* is equal to 1 for the *q* largest values of *C_j*, and the remaining *y_j* are equal to 0.

Constructing an Index Fund

A Linear Programming Model

Constructing an Index Fund

A Linear Programming Model

Constructing an Index Fund

A Linear Programming Model

 This approach assumes that we have identified important characteristics of the market index to be tracked.

Constructing an Index Fund

A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.

Constructing an Index Fund

A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let $a_{ij} = 1$ if company *j* has characteristic *i* and 0 if it does not.
Constructing an Index Fund

A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let $a_{ij} = 1$ if company *j* has characteristic *i* and 0 if it does not.
- Let x_i denote the optimum weight of asset j in the portfolio.

Constructing an Index Fund

A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let $a_{ij} = 1$ if company *j* has characteristic *i* and 0 if it does not.
- Let x_i denote the optimum weight of asset j in the portfolio.
- Assume that initially, the portfolio has weights x_i^0 .

Constructing an Index Fund

A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let $a_{ij} = 1$ if company *j* has characteristic *i* and 0 if it does not.
- Let *x_i* denote the optimum weight of asset *j* in the portfolio.
- Assume that initially, the portfolio has weights x_i^0 .
- Let y_j denote the fraction of asset *j* bought and z_j the fraction sold.

Constructing an Index Fund

Constructing an Index Fund

Constructing an Index Fund

min
$$\sum_{j=1}^{n} y_j + z_j$$

Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = f_i \ , \forall i = 1, \dots, m$$

Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = f_j , \forall i = 1, \dots, m$$
$$\sum_{i=1}^{n} x_j = 1$$

Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = f_i , \forall i = 1, \dots, m$$
$$\sum_{j=1}^{n} x_j = 1$$
$$x_j - x_j^0 \le y_j , \forall j = 1, \dots, n$$

Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$

$$\sum_{j=1}^{n} a_{ij}x_j = f_j , \forall i = 1, \dots, m$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_j - x_j^0 \le y_j , \forall j = 1, \dots, n$$

$$x_j^0 - x_j \le z_j , \forall j = 1, \dots, n$$

Constructing an Index Fund

Rebalancing the Portfolio

y

$$\min \sum_{j=1}^{n} y_j + z_j$$

$$\sum_{j=1}^{n} a_{ij}x_j = f_i , \forall i = 1, \dots, m$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_j - x_j^0 \le y_j , \forall j = 1, \dots, n$$

$$x_j^0 - x_j \le z_j , \forall j = 1, \dots, n$$

$$i_j \ge 0, x_j \ge 0, x_j \ge 0, \forall j = 1, \dots, n$$

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Markowitz Model

R. Almohsen Optimization Methods in Finance

Portfolio Optimization with Minimum Transaction Levels

Markowitz Model

• It assists in the selection of the most efficient portfolio.

Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.

Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.
- HM model shows investors how to reduce their risk.

Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.
- HM model shows investors how to reduce their risk.
- The HM model is also called Mean-Variance Model.

Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.
- HM model shows investors how to reduce their risk.
- The HM model is also called Mean-Variance Model.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Markowitz Model Assumptions

• Risk of a portfolio is based on the variability of returns from the said portfolio.

Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.

Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.

Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.

Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.
- Analysis is based on single period model of investment.

Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.
- Analysis is based on single period model of investment.
- An investor either maximizes his portfolio return for a given level of risk or maximizes his return for the minimum risk.

Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.
- Analysis is based on single period model of investment.
- An investor either maximizes his portfolio return for a given level of risk or maximizes his return for the minimum risk.
- An investor is rational in nature.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Determining the Efficient Set

• What is the efficient portfolio?

Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.

Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.
- Portfolios are selected as follows:

Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.
- Portfolios are selected as follows:
 - From the portfolios that have the same return, the investor will prefer the portfolio with lower risk.

Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.
- Portfolios are selected as follows:
 - From the portfolios that have the same return, the investor will prefer the portfolio with lower risk.
 - From the portfolios that have the same risk level, an investor will prefer the portfolio with higher rate of return.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio
Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$
$$C \cdot x > d$$

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

٩

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$
$$C \cdot x > d$$

with the additional property that:

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x_i* that are too small to execute.

٩

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$
$$C \cdot x > d$$

with the additional property that:

 $x_i > 0 \Rightarrow x_i \ge l_i$, where l_i are given minimum transaction levels.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

 Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.

Portfolio Optimization with Minimum Transaction Levels

- Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.
- This problem is considered by Bienstock.

Portfolio Optimization with Minimum Transaction Levels

- Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.
- This problem is considered by Bienstock.
- The portfolio optimization problem where there is an upper bound on the number of positive variables, that is:
 - $x_i > 0$ for at most K distinct $j = 1, \ldots, n$.

Portfolio Optimization with Minimum Transaction Levels

- Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.
- This problem is considered by Bienstock.
- The portfolio optimization problem where there is an upper bound on the number of positive variables, that is:
 - $x_j > 0$ for at most K distinct $j = 1, \ldots, n$.
- The constraint can easily be incorporated within a branch-and-bound algorithm.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

First solve the basic Markowitz model.

Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let *x*^{*} be the optimal solution found.

Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let *x*^{*} be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by *x**.

Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let x* be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by x*.
- *x*^{*} is also optimum to Markowitz model and the constraint, so we can stop.

Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let x* be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by x*.
- *x*^{*} is also optimum to Markowitz model and the constraint, so we can stop.
- Otherwise, let *j* be an index for which the constraint is violated by *x**.

Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let x* be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by x*.
- *x*^{*} is also optimum to Markowitz model and the constraint, so we can stop.
- Otherwise, let *j* be an index for which the constraint is violated by *x**.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

• Form two subproblems.

Portfolio Optimization with Minimum Transaction Levels

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.

Portfolio Optimization with Minimum Transaction Levels

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.
- The other obtained from the Markowitz model by adding the constraint $x_i \ge l_i$.

Portfolio Optimization with Minimum Transaction Levels

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.
- The other obtained from the Markowitz model by adding the constraint $x_i \ge l_i$.
- Both are quadratic programs that can be solved using the usual algorithms.

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.
- The other obtained from the Markowitz model by adding the constraint $x_i \ge l_i$.
- Both are quadratic programs that can be solved using the usual algorithms.

Check the Optimum Solutions

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.
- The other obtained from the Markowitz model by adding the constraint $x_i \ge l_i$.
- Both are quadratic programs that can be solved using the usual algorithms.

Check the Optimum Solutions

• Now check whether the optimum solutions to these two problems satisfy the transaction level constraint.

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.
- The other obtained from the Markowitz model by adding the constraint $x_i \ge l_i$.
- Both are quadratic programs that can be solved using the usual algorithms.

Check the Optimum Solutions

- Now check whether the optimum solutions to these two problems satisfy the transaction level constraint.
- If a solution violates the constraint for index k, then the corresponding problem is further divided by adding the constraint x_k = 0 on one side and x_k ≥ l_k on the other.

Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint $x_i = 0$.
- The other obtained from the Markowitz model by adding the constraint $x_i \ge l_i$.
- Both are quadratic programs that can be solved using the usual algorithms.

Check the Optimum Solutions

- Now check whether the optimum solutions to these two problems satisfy the transaction level constraint.
- If a solution violates the constraint for index k, then the corresponding problem is further divided by adding the constraint x_k = 0 on one side and x_k ≥ l_k on the other.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

 Assume that there is a given upper bound u_j on how much can be invested in stock j.

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u_j on how much can be invested in stock j.
- Assume $x_i \leq u_i$ are part of the formulation of Markowitz model .

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u_j on how much can be invested in stock j.
- Assume $x_j \leq u_j$ are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:
Portfolio Optimization with Minimum Transaction Levels

- Assume that there is a given upper bound u_j on how much can be invested in stock j.
- Assume $x_i \leq u_j$ are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:

$$\sum_{j} \frac{x_j}{u_j} \le K$$

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u_j on how much can be invested in stock j.
- Assume $x_j \leq u_j$ are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:

٩

$$\sum_{j} \frac{x_j}{u_j} \le \kappa$$

• We add this constraint to Markowitz model and solve the resulting quadratic program.

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u_j on how much can be invested in stock j.
- Assume $x_j \leq u_j$ are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:

٩

$$\sum_{j} \frac{x_j}{u_j} \le \kappa$$

• We add this constraint to Markowitz model and solve the resulting quadratic program.

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

• Let *x*^{*} be the optimal solution found.

Portfolio Optimization with Minimum Transaction Levels

- Let *x*^{*} be the optimal solution found.
- If *x** satisfies the constraint, then it is optimum to Markowitz model and we can stop.

Portfolio Optimization with Minimum Transaction Levels

- Let *x*^{*} be the optimal solution found.
- If x* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which $x_k > 0$.

Portfolio Optimization with Minimum Transaction Levels

- Let *x*^{*} be the optimal solution found.
- If x* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which $x_k > 0$.
- Form two subproblems:

Portfolio Optimization with Minimum Transaction Levels

- Let *x*^{*} be the optimal solution found.
- If x* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which $x_k > 0$.
- Form two subproblems:
- One obtained from Markowitz model by adding the constraint x_k = 0 (down branch),

Portfolio Optimization with Minimum Transaction Levels

- Let *x*^{*} be the optimal solution found.
- If *x** satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which $x_k > 0$.
- Form two subproblems:
- One obtained from Markowitz model by adding the constraint *x_k* = 0 (down branch),
- The other obtained from Markowitz model by adding the constraint $\sum_{j \neq k} \frac{x_j}{u_j} \leq K 1$ (up branch).

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

• The branch-and-bound tree is developped recursively.

Portfolio Optimization with Minimum Transaction Levels

- The branch-and-bound tree is developped recursively.
- When a set *T* of variables has been branched up, the constraint added to the basic Markowitz model becomes:

Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

• The branch-and-bound tree is developped recursively.

• When a set *T* of variables has been branched up, the constraint added to the basic Markowitz model becomes:

$$\sum_{j\notin T}\frac{x_j}{u_j}\leq K-|T|.$$

References

References

R. Almohsen Optimization Methods in Finance

References

References

 Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.

References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.

References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.
- S. Biswas and Y. Narahari. An iterative auction mechanism for combinatorial exchanges. Technical report, Electronic Enterprises Lab, Dept. of Computer Science and Automation, Indian Institute of Science, 2003.

References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.
- S. Biswas and Y. Narahari. An iterative auction mechanism for combinatorial exchanges. Technical report, Electronic Enterprises Lab, Dept. of Computer Science and Automation, Indian Institute of Science, 2003.
- Robert M. Nauss and Robert E. Markland, Solving Lock Box Location Problems, Vol. 8, No. 1 (Spring, 1979)

References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.
- S. Biswas and Y. Narahari. An iterative auction mechanism for combinatorial exchanges. Technical report, Electronic Enterprises Lab, Dept. of Computer Science and Automation, Indian Institute of Science, 2003.
- Robert M. Nauss and Robert E. Markland, Solving Lock Box Location Problems, Vol. 8, No. 1 (Spring, 1979)