# Integer Programming Models: Constructing an Index Fund

#### Ranya Almohsen<sup>1</sup>

<sup>1</sup>Lane Department Of Computer Science And Electrical Engineering West Virginia University Morgantown, WV USA

April 14, 2015







































Conceptual Foundations Combinatorial Auctions The Lockbox Problem Portfolio Optimization . References

#### **Classification of Auctions**

 An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources
  - Market Structure

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources
  - Market Structure
  - Preference Structure

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources
  - Market Structure
  - Preference Structure
  - Bid Structure

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources
  - Market Structure
  - Preference Structure
  - Bid Structure
  - Matching Supply to Demand

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources
  - Market Structure
  - Preference Structure
  - Bid Structure
  - Matching Supply to Demand
  - Information Feedback

- An Auction is a mechanism to allocate a set of goods to a set of bidders on the basis of their bids.
- Framework for classifying auctions based on the requirements that need to be considered to set up an auction:
  - Resources
  - Market Structure
  - Preference Structure
  - Bid Structure
  - Matching Supply to Demand
  - Information Feedback

#### **Combinatorial Auctions**

• In combinatorial auctions (CAs), bidders can bid on combinations of items.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
  - Suppose an auctioneer is selling different goods.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
  - Suppose an auctioneer is selling different goods.
  - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
  - Suppose an auctioneer is selling different goods.
  - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
  - Suppose an auctioneer is selling different goods.
  - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.
- Substitutability:

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
  - Suppose an auctioneer is selling different goods.
  - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.
- Substitutability:
  - A bidder may be willing to pay for the whole only less than the sum of what he is willing to pay for parts.

- In combinatorial auctions (CAs), bidders can bid on combinations of items.
- For example, if A, B, and C are three different items, a bidder can place separate bids on seven possible combinations, namely, {*A*}, {*B*}, {*C*}, {*A*, *B*}, {*B*, *C*}, {*C*, *A*}, and {*A*, *B*, *C*}.
- In the case of CAs, the value of an item a bidder wins depends on other items that he wins. The notions of complementarity and substitutability are very important in CAs.
- Complementarity:
  - Suppose an auctioneer is selling different goods.
  - A bidder might be willing to pay more for the whole than the sum of what he is willing to pay for the parts.
- Substitutability:
  - A bidder may be willing to pay for the whole only less than the sum of what he is willing to pay for parts.
  - This is the case if the bidder has a limited budget or the goods are similar or interchangeable.

# Motivation Example: eBay

# Motivation Example: eBay

## Example (1)

R. Almohsen Optimization Methods in Finance

## Motivation Example: eBay

### Example (1)

• On-line auctions such as eBay.

## Motivation Example: eBay

#### Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.

## Motivation Example: eBay

#### Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.

## Motivation Example: eBay

#### Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
## Motivation Example: eBay

#### Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
- Buyers must place a bid higher than the last bid placed.

## Motivation Example: eBay

#### Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
- Buyers must place a bid higher than the last bid placed.
- At the end of the auction the buyer with the highest bid wins that item.

## Motivation Example: eBay

#### Example (1)

- On-line auctions such as eBay.
- The Online Auction Format is a type of selling format.
- A seller lists an item for a set amount of time.
- Buyers must place a bid to purchase.
- Buyers must place a bid higher than the last bid placed.
- At the end of the auction the buyer with the highest bid wins that item.

# **Combinatorial Auctions**

# **Combinatorial Auctions**

Problem description

R. Almohsen Optimization Methods in Finance

# **Combinatorial Auctions**

#### Problem description

• Auctioneer sells items  $M = \{1, ..., m\}$ .

### **Combinatorial Auctions**

#### Problem description

- Auctioneer sells items  $M = \{1, ..., m\}$ .
- Bid is a pair B<sub>j</sub> = (S<sub>j</sub>, p<sub>j</sub>), where S<sub>j</sub> ⊆ M is a nonempty set of items and p<sub>j</sub> is the price offer for this set.

### **Combinatorial Auctions**

#### Problem description

- Auctioneer sells items  $M = \{1, ..., m\}$ .
- Bid is a pair B<sub>j</sub> = (S<sub>j</sub>, p<sub>j</sub>), where S<sub>j</sub> ⊆ M is a nonempty set of items and p<sub>j</sub> is the price offer for this set.
- Suppose that the aucioneer has received *n* bids *B*<sub>1</sub>,...,*B*<sub>n</sub>.

### **Combinatorial Auctions**

#### Problem description

- Auctioneer sells items  $M = \{1, ..., m\}$ .
- Bid is a pair B<sub>j</sub> = (S<sub>j</sub>, p<sub>j</sub>), where S<sub>j</sub> ⊆ M is a nonempty set of items and p<sub>j</sub> is the price offer for this set.
- Suppose that the aucioneer has received *n* bids *B*<sub>1</sub>,...,*B*<sub>n</sub>.
- Question: How should auctioneer determine winners and losers in order to maximize his revenue?

# **Combinatorial Auctions**

# **Combinatorial Auctions**

Formulating Integer Programs

# **Combinatorial Auctions**

Formulating Integer Programs

• Let x<sub>i</sub> be a 0, 1 variable that takes the value1 if bid B<sub>i</sub> wins, and 0 if it loses.

### **Combinatorial Auctions**

#### Formulating Integer Programs

- Let x<sub>i</sub> be a 0, 1 variable that takes the value1 if bid B<sub>i</sub> wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

## **Combinatorial Auctions**

Formulating Integer Programs

- Let x<sub>i</sub> be a 0, 1 variable that takes the value1 if bid B<sub>i</sub> wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$

## **Combinatorial Auctions**

#### Formulating Integer Programs

- Let x<sub>i</sub> be a 0, 1 variable that takes the value1 if bid B<sub>i</sub> wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$

Subject to :

### **Combinatorial Auctions**

#### Formulating Integer Programs

- Let x<sub>i</sub> be a 0, 1 variable that takes the value1 if bid B<sub>i</sub> wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$
  
Subject to :  $\sum_{j:i \in S_{j}} x_{j} \leq 1, \quad \forall i = 1, \dots, m$ 

### **Combinatorial Auctions**

#### Formulating Integer Programs

- Let x<sub>i</sub> be a 0, 1 variable that takes the value1 if bid B<sub>i</sub> wins, and 0 if it loses.
- The auctioneer maximizes his revenue by solving the integer program:

$$\max \sum_{i=1}^{n} p_{j} x_{j}$$
  
Subject to:  $\sum_{j:i \in S_{j}} x_{j} \leq 1, \quad \forall i = 1, \dots, m$   
 $x_{j} = 0 \text{ or } 1, \quad \forall j = 1, \dots, n$ 

# **Combinatorial Auctions**

# **Combinatorial Auctions**

#### Example

R. Almohsen Optimization Methods in Finance

# **Combinatorial Auctions**

#### Example

• If there are four items for sale and the following bids have been received:

## **Combinatorial Auctions**

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$

## **Combinatorial Auctions**

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

# **Combinatorial Auctions**

#### Example

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

max  $6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$ 

# **Combinatorial Auctions**

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

max 
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$
  
 $x_1 + x_4 + x_6 \le 1$ 

# **Combinatorial Auctions**

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

max 
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$
  
 $x_1 + x_4 + x_6 \le 1$   
 $x_2 + x_5 < 1$ 

# **Combinatorial Auctions**

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax 
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$
  
 $x_1 + x_4 + x_6 \le 1$   
 $x_2 + x_5 \le 1$   
 $x_3 + x_4 + x_6 \le 1$ 

## **Combinatorial Auctions**

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax 
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$
  
 $x_1 + x_4 + x_6 \le 1$   
 $x_2 + x_5 \le 1$   
 $x_3 + x_4 + x_6 \le 1$   
 $x_3 + x_5 + x_6 \le 1$ 

## **Combinatorial Auctions**

n

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax 
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$
  
 $x_1 + x_4 + x_6 \le 1$   
 $x_2 + x_5 \le 1$   
 $x_3 + x_4 + x_6 \le 1$   
 $x_3 + x_5 + x_6 \le 1$   
 $x_j = 0 \text{ or } 1 \quad , \forall j = 1, \dots, 6$ 

## **Combinatorial Auctions**

n

- If there are four items for sale and the following bids have been received:
- $B_1 = (\{1\}, 6), B_2 = (\{2\}, 3), B_3 = (\{3, 4\}, 12), B_4 = (\{1, 3\}, 12), B_5 = (\{2, 4\}, 8), B_6 = (\{1, 3, 4\}, 16),$
- The winners can be determined by the following integer program:

nax 
$$6x_1 + 3x_2 + 12x_3 + 12x_4 + 8x_5 + 16x_6$$
  
 $x_1 + x_4 + x_6 \le 1$   
 $x_2 + x_5 \le 1$   
 $x_3 + x_4 + x_6 \le 1$   
 $x_3 + x_5 + x_6 \le 1$   
 $x_j = 0 \text{ or } 1 \quad , \forall j = 1, \dots, 6$ 

# **Combinatorial Auctions**

# **Combinatorial Auctions**

Several indistinguishable items

# **Combinatorial Auctions**

Several indistinguishable items

• In some auctions, there are multiple indistinguishable units of each item for sale.

## **Combinatorial Auctions**

#### Several indistinguishable items

- In some auctions, there are multiple indistinguishable units of each item for sale.
- A bid in this setting is defined as  $B_j = (\lambda_1^j, \lambda_2^j, \dots, \lambda_m^j; p_j)$ .

## **Combinatorial Auctions**

#### Several indistinguishable items

- In some auctions, there are multiple indistinguishable units of each item for sale.
- A bid in this setting is defined as  $B_j = (\lambda_1^j, \lambda_2^j, \dots, \lambda_m^j; p_j)$ .
- Where  $\lambda_i^j$  is the desired number of units of item *i* and  $p_i$  is the price offer.

# **Combinatorial Auctions**

# **Combinatorial Auctions**

Several indistinguishable items
# **Combinatorial Auctions**

Several indistinguishable items

## **Combinatorial Auctions**

#### Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:



## **Combinatorial Auctions**

#### Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:



Subject to:

$$\sum_{j:i\in S_j} \lambda_i^j x_j \le u_i \quad , \forall \ i = 1, \dots, m$$

## **Combinatorial Auctions**

#### Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:



Subject to:

$$\sum_{i:i \in S_j} \lambda_i^j x_j \le u_i \quad , \forall i = 1, \dots, m$$
$$x_j = 0 \text{ or } 1 \quad , \forall j = 1, \dots, n$$

### **Combinatorial Auctions**

#### Several indistinguishable items

• The auctioneer maximizes his revenue by solving the integer program:



Subject to:

$$\begin{split} \sum_{j:i\in S_j} \lambda_j^j x_j &\leq u_i \quad , \forall \ i=1,\ldots,m \\ x_j &= 0 \ or \ 1 \quad , \forall \ j=1,\ldots,n \end{split}$$

• Where *u<sub>i</sub>* is the number of units of item *i* for sale.

# **Combinatorial Auctions**

# **Combinatorial Auctions**

### Exercise

R. Almohsen Optimization Methods in Finance

## **Combinatorial Auctions**

### Exercise

• In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.

## **Combinatorial Auctions**

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ<sup>j</sup><sub>i</sub> values can be negative, as can the prices p<sub>i</sub>, representing selling instead of buying.

## **Combinatorial Auctions**

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ<sup>i</sup><sub>i</sub> values can be negative, as can the prices p<sub>i</sub>, representing selling instead of buying.
- Note that a single bid can be buying some items while selling other items.

## **Combinatorial Auctions**

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ<sup>l</sup><sub>i</sub> values can be negative, as can the prices p<sub>i</sub>, representing selling instead of buying.
- Note that a single bid can be buying some items while selling other items.
- Write an integer linear program that will maximize the surplus generated by the combinatorial exchange.

## **Combinatorial Auctions**

- In a combinatorial exchange, both buyers and sellers can submit combinatorial bids.
- Bids are like in the multiple item case, except that the λ<sup>l</sup><sub>i</sub> values can be negative, as can the prices p<sub>i</sub>, representing selling instead of buying.
- Note that a single bid can be buying some items while selling other items.
- Write an integer linear program that will maximize the surplus generated by the combinatorial exchange.

# **Combinatorial Auctions**

# **Combinatorial Auctions**

### Exercise

R. Almohsen Optimization Methods in Finance

## **Combinatorial Auctions**

#### Exercise

• Let  $B = \{1, ..., m\}$  be the set of buyer items, and the bid is  $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $b_j \subseteq B$ .

### **Combinatorial Auctions**

- Let  $B = \{1, ..., m\}$  be the set of buyer items, and the bid is  $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $b_j \subseteq B$ .
- Let  $S = \{1, ..., n\}$  be the set of seller items, and and the bid is  $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $s_j \subseteq S$ .

### **Combinatorial Auctions**

- Let  $B = \{1, ..., m\}$  be the set of buyer items, and the bid is  $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $b_j \subseteq B$ .
- Let  $S = \{1, ..., n\}$  be the set of seller items, and and the bid is  $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $s_j \subseteq S$ .
- $x_j = 0$  or 1 indicates  $b_j$  wins,  $y_j = 0$  or 1 indicates  $s_j$  wins.

### **Combinatorial Auctions**

#### Exercise

- Let  $B = \{1, ..., m\}$  be the set of buyer items, and the bid is  $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $b_j \subseteq B$ .
- Let  $S = \{1, ..., n\}$  be the set of seller items, and and the bid is  $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $s_j \subseteq S$ .

•  $x_i = 0$  or 1 indicates  $b_i$  wins,  $y_i = 0$  or 1 indicates  $s_i$  wins.

$$\max \sum_{j\in B}^{n} p_j x_j - \sum_{j\in S}^{n} p_j y_j$$

### **Combinatorial Auctions**

#### Exercise

- Let  $B = \{1, ..., m\}$  be the set of buyer items, and the bid is  $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $b_j \subseteq B$ .
- Let  $S = \{1, ..., n\}$  be the set of seller items, and and the bid is  $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $s_j \subseteq S$ .

•  $x_i = 0$  or 1 indicates  $b_i$  wins,  $y_i = 0$  or 1 indicates  $s_i$  wins.

$$\begin{array}{l} \max \ \sum\limits_{j \in \mathcal{B}}^{n} p_{j} x_{j} - \sum\limits_{j \in \mathcal{S}}^{n} p_{j} y_{j} \\ \text{Subject to} : \ \sum\limits_{j:i \in \mathcal{B}_{j}} \lambda_{j}^{i} x_{j} = \sum\limits_{j:i \in \mathcal{S}_{j}} \lambda_{i}^{i} y_{j} \end{array}$$

### **Combinatorial Auctions**

#### Exercise

- Let  $B = \{1, ..., m\}$  be the set of buyer items, and the bid is  $b_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $b_j \subseteq B$ .
- Let  $S = \{1, ..., n\}$  be the set of seller items, and and the bid is  $s_j = (\lambda_1^j, \lambda_2^j, ..., \lambda_m^j; p_j)$ , such that:  $s_j \subseteq S$ .

•  $x_j = 0$  or 1 indicates  $b_j$  wins,  $y_j = 0$  or 1 indicates  $s_j$  wins.

$$\max \sum_{j \in B}^{n} p_{j}x_{j} - \sum_{j \in S}^{n} p_{j}y_{j}$$
  
Subject to: 
$$\sum_{j:i \in B_{j}} \lambda_{i}^{j}x_{j} = \sum_{j:i \in S_{j}} \lambda_{i}^{j}y_{j}$$
$$x_{j} = 0 \text{ or } 1 \quad , \forall j = 1, \dots, m,$$
$$y_{j} = 0 \text{ or } 1 \quad , \forall j = 1, \dots, n$$

# The Lockbox Problem

## The Lockbox Problem

Construct the Problem

R. Almohsen Optimization Methods in Finance

## The Lockbox Problem

### Construct the Problem

• National firm in US receives checks from all over the country.

### The Lockbox Problem

#### Construct the Problem

- National firm in US receives checks from all over the country.
- Delay from obligation of customer (check postmarked) to clearing (check arrives).

## The Lockbox Problem

#### Construct the Problem

- National firm in US receives checks from all over the country.
- Delay from obligation of customer (check postmarked) to clearing (check arrives).
- Money should be available as soon as possible.

### The Lockbox Problem

#### Construct the Problem

- National firm in US receives checks from all over the country.
- Delay from obligation of customer (check postmarked) to clearing (check arrives).
- Money should be available as soon as possible.
- Idea: Open offices all over country to receive checks and to minimize delay.

# The Lockbox Problem

# The Lockbox Problem

### Example

R. Almohsen Optimization Methods in Finance

## The Lockbox Problem

### Example

• Suppose we receive payments from 4 regions (West, Midwest, East, and South).

### The Lockbox Problem

- Suppose we receive payments from 4 regions (West, Midwest, East, and South).
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively.

### The Lockbox Problem

- Suppose we receive payments from 4 regions (West, Midwest, East, and South).
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively.
- We are considering opening lockboxes in Los Angeles, Pittsburgh, Boston, and/or Houston.

### The Lockbox Problem

- Suppose we receive payments from 4 regions (West, Midwest, East, and South).
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively.
- We are considering opening lockboxes in Los Angeles, Pittsburgh, Boston, and/or Houston.
- Operating a lockbox costs \$90,000 per year.

# The Lockbox Problem

# The Lockbox Problem

### Example

R. Almohsen Optimization Methods in Finance

# The Lockbox Problem

| Clearing times |     |            |        |         |
|----------------|-----|------------|--------|---------|
| From           | L.A | Pittsburgh | Boston | Houston |
| West           | 2   | 4          | 6      | 6       |
| Midwest        | 4   | 2          | 5      | 5       |
| East           | 6   | 5          | 2      | 5       |
| South          | 7   | 5          | 6      | 3       |

# The Lockbox Problem
## The Lockbox Problem

### Example Cont.

R. Almohsen Optimization Methods in Finance

### The Lockbox Problem

#### Example Cont.

• First we must calculate the lost interest for each possible assignment.

### The Lockbox Problem

#### Example Cont.

- First we must calculate the lost interest for each possible assignment.
- For example, if the West sends its checks to a lockbox in Boston, then on average there will be \$3,600,000 = (6 × \$600,000) in process on any given day.

### The Lockbox Problem

#### Example Cont.

- First we must calculate the lost interest for each possible assignment.
- For example, if the West sends its checks to a lockbox in Boston, then on average there will be \$3,600,000 = (6 × \$600,000) in process on any given day.
- Assuming an investment rate of 5%, this corresponds to a yearly loss of \$180,000.

# The Lockbox Problem

# The Lockbox Problem

#### Example Cont.

R. Almohsen Optimization Methods in Finance

# The Lockbox Problem

### Example Cont.

| Lost Interest |     |            |        |         |
|---------------|-----|------------|--------|---------|
| From          | L.A | Pittsburgh | Boston | Houston |
| West          | 60  | 120        | 180    | 180     |
| Midwest       | 48  | 24         | 60     | 60      |
| East          | 216 | 180        | 72     | 180     |
| South         | 126 | 90         | 108    | 54      |

# The Lockbox Problem

### The Lockbox Problem

### The Lockbox Problem

Example Cont., Integer Programming Formulation

• Let  $y_i \in \{0, 1\}$  indicates whether lockbox *j* is open or not.

### The Lockbox Problem

- Let  $y_i \in \{0, 1\}$  indicates whether lockbox *j* is open or not.
- Let  $x_{ij} = 1$  if region *i* sends checks to lockbox *j*.

### The Lockbox Problem

- Let  $y_i \in \{0, 1\}$  indicates whether lockbox *j* is open or not.
- Let  $x_{ij} = 1$  if region *i* sends checks to lockbox *j*.
- What is the objective function?

## The Lockbox Problem

- Let  $y_i \in \{0, 1\}$  indicates whether lockbox *j* is open or not.
- Let  $x_{ij} = 1$  if region *i* sends checks to lockbox *j*.
- What is the objective function?
- The objective is to minimize total yearly costs:

### The Lockbox Problem

- Let  $y_j \in \{0, 1\}$  indicates whether lockbox *j* is open or not.
- Let  $x_{ij} = 1$  if region *i* sends checks to lockbox *j*.
- What is the objective function?
- The objective is to minimize total yearly costs:  $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + \dots$  $+90y_1 + 90y_2 + 90y_3 + 90y_4.$

### The Lockbox Problem

#### Example Cont., Integer Programming Formulation

- Let  $y_i \in \{0, 1\}$  indicates whether lockbox *j* is open or not.
- Let  $x_{ij} = 1$  if region *i* sends checks to lockbox *j*.
- What is the objective function?

• The objective is to minimize total yearly costs:  

$$60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + \dots$$
  
 $+90y_1 + 90y_2 + 90y_3 + 90y_4.$ 

Each region is assigned to exactly one lockbox:

### The Lockbox Problem

#### Example Cont., Integer Programming Formulation

- Let  $y_i \in \{0, 1\}$  indicates whether lockbox *j* is open or not.
- Let  $x_{ij} = 1$  if region *i* sends checks to lockbox *j*.
- What is the objective function?

• The objective is to minimize total yearly costs:  

$$60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + \dots$$
  
 $+90y_1 + 90y_2 + 90y_3 + 90y_4.$ 

• Each region is assigned to exactly one lockbox:  $\sum_{i} x_{ii} = 1$  for all *i*.

# The Lockbox Problem

# The Lockbox Problem

#### Example cont.

R. Almohsen Optimization Methods in Finance

### The Lockbox Problem

#### Example cont.

• Regions can only send to open lockboxes:

## The Lockbox Problem

#### Example cont.

• Regions can only send to open lockboxes:

 $\sum_{i} x_{ij} \leq 4y_j$  for all *j*.

### The Lockbox Problem

#### Example cont.

Regions can only send to open lockboxes:

 $\sum_{i} x_{ij} \leq 4y_j$  for all *j*.

• For lockbox 1 (Los Angeles), this can be written as:

### The Lockbox Problem

#### Example cont.

Regions can only send to open lockboxes:

 $\sum_{i} x_{ij} \leq 4y_j$  for all *j*.

• For lockbox 1 (Los Angeles), this can be written as:

 $x_{11} + x_{21} + x_{31} + x_{41} \le 4y_1.$ 

# The Lockbox Problem

### The Lockbox Problem

Integer Programming Formulation

### The Lockbox Problem

#### Integer Programming Formulation

• min  $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$ 

### The Lockbox Problem

#### Integer Programming Formulation

- min  $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$
- Subject to:

### The Lockbox Problem

#### Integer Programming Formulation

- min  $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$
- Subject to:

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &= 1\\ x_{21} + x_{22} + x_{23} + x_{24} &= 1\\ x_{31} + x_{32} + x_{33} + x_{34} &= 1\\ x_{41} + x_{42} + x_{43} + x_{44} &= 1\\ x_{11} + x_{21} + x_{31} + x_{41} - 4y_1 &\leq 0\\ x_{12} + x_{22} + x_{32} + x_{42} - 4y_2 &\leq 0\\ x_{13} + x_{23} + x_{33} + x_{43} - 4y_3 &\leq 0\\ x_{14} + x_{24} + x_{34} + x_{44} - 4y_4 &\leq 0 \end{aligned}$$

### The Lockbox Problem

#### Integer Programming Formulation

- min  $60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{21} + 24x_{22} + 60x_{23} + 60x_{24} + 216x_{31} + 180x_{32} + 72x_{33} + 180x_{34} + 126x_{41} + 90x_{42} + 108x_{43} + 54x_{44} + 90y_1 + 90y_2 + 90y_3 + 90y_4.$
- Subject to:

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &= 1\\ x_{21} + x_{22} + x_{23} + x_{24} &= 1\\ x_{31} + x_{32} + x_{33} + x_{34} &= 1\\ x_{41} + x_{42} + x_{43} + x_{44} &= 1\\ x_{11} + x_{21} + x_{31} + x_{41} - 4y_1 &\leq 0\\ x_{12} + x_{22} + x_{32} + x_{42} - 4y_2 &\leq 0\\ x_{13} + x_{23} + x_{33} + x_{43} - 4y_3 &\leq 0\\ x_{14} + x_{24} + x_{34} + x_{44} - 4y_4 &\leq 0 \end{aligned}$$

Al variables binary.

# The Lockbox Problem

### The Lockbox Problem

Integer Programming Formulation

### The Lockbox Problem

#### Integer Programming Formulation

• If we ignore integrality, then we can solve it as linear program.

## The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.

## The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

## The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

#### **Other Formulations**

## The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

#### **Other Formulations**

Consider the sixteen constraints of the form:

## The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

#### Other Formulations

Consider the sixteen constraints of the form:

$$x_{ij} \leq y_j$$
# The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

#### **Other Formulations**

Consider the sixteen constraints of the form:

$$x_{ij} \leq y_j$$

• These constraints also force a region to only use open lockboxes.

# The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

#### Other Formulations

Consider the sixteen constraints of the form:

 $x_{ij} \leq y_j$ 

- These constraints also force a region to only use open lockboxes.
- If we solve the linear program with the above constraints, we get the solution

 $x_{11} = x_{21} = x_{33} = x_{43} = y_1 = y_3 = 1$ , with the rest equal to zero.

# The Lockbox Problem

#### Integer Programming Formulation

- If we ignore integrality, then we can solve it as linear program.
- We get the solution  $x_{11} = x_{22} = x_{33} = x_{44} = 1$ ,  $y_1 = y_2 = y_3 = y_4 = 0.25$  and the rest equals 0.
- Note that we get no useful information out of this linear programming solution: all 4 regions look the same.

#### **Other Formulations**

Consider the sixteen constraints of the form:

 $x_{ij} \leq y_j$ 

- These constraints also force a region to only use open lockboxes.
- If we solve the linear program with the above constraints, we get the solution

 $x_{11} = x_{21} = x_{33} = x_{43} = y_1 = y_3 = 1$ , with the rest equal to zero.

• In fact, we have an integer solution, which must therefore be optimal!

# The Lockbox Problem

# The Lockbox Problem

### Exercise

R. Almohsen Optimization Methods in Finance

### The Lockbox Problem

#### Exercise

 Consider a lockbox problem where C<sub>ij</sub> is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.

## The Lockbox Problem

### Exercise

- Consider a lockbox problem where C<sub>ij</sub> is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.
  - Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.

## The Lockbox Problem

### Exercise

- Consider a lockbox problem where C<sub>ij</sub> is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.
  - Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.
  - O Formulate in two different ways the constraint that regions cannot send checks to closed lockboxes.

## The Lockbox Problem

### Exercise

- Consider a lockbox problem where C<sub>ij</sub> is the cost of assigning region *i* to a lockbox in region *j*, for *j* = 1,..., *n*. Suppose that we wish to open exactly *q* lockboxes where *q* is a given integer, 1 ≤ *q* ≤ *n*.
  - Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.
  - Pormulate in two different ways the constraint that regions cannot send checks to closed lockboxes.
  - For the following data,

# The Lockbox Problem

### Exercise

• Consider a lockbox problem where C<sub>ii</sub> is the cost of assigning region i to a lockbox in region *j*, for j = 1, ..., n. Suppose that we wish to open exactly *q* lockboxes where q is a given integer, 1 < q < n.



• Formulate as an integer linear program the problem of opening q lockboxes so as to minimize the total cost of assigning each region to an open lockbox.

- Pormulate in two different ways the constraint that regions cannot send checks to closed lockboxes.
- Sor the following data.

$$q=2, \mathbf{C}_{ij}=egin{pmatrix} 0&4&5&8&2\ 4&0&3&4&6\ 5&3&0&1&7\ 8&4&1&0&4\ 2&6&7&4&0 \end{pmatrix}$$

 Compare the linear programming relaxations of your two formulations in question (2).

## The Lockbox Problem

**Exercise Solution** 

R. Almohsen Optimization Methods in Finance

## The Lockbox Problem

#### **Exercise Solution**

• For (1). Use decision variables

$$x_{ij} = \begin{cases} 1 & \text{if region } i \text{ is assigned to lock-box } j \\ 0 & \text{otherwise} \end{cases}$$

## The Lockbox Problem

#### **Exercise Solution**

• For (1). Use decision variables

$$x_{ij} = \begin{cases} 1 & \text{if region } i \text{ is assigned to lock-box } j \\ 0 & \text{otherwise} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{if lock-box } j \text{ is opened} \\ 0 & \text{otherwise} \end{cases}$$

## The Lockbox Problem

#### Exercise Solution Cont.

R. Almohsen Optimization Methods in Finance

## The Lockbox Problem

Exercise Solution Cont.

## The Lockbox Problem

### Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

## The Lockbox Problem

### Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{i=1}^{n} y_{ij} = q$$

## The Lockbox Problem

### Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \ge 1 , \forall i = 1, \dots, n$$

## The Lockbox Problem

### Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \ge 1 , \forall i = 1, \dots, n$$
$$\sum x_{ij} \le n \cdot y_j , \forall j = 1, \dots, n$$

## The Lockbox Problem

#### Exercise Solution Cont.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \ge 1 , \forall i = 1, \dots, n$$
$$\sum x_{ij} \le n \cdot y_j , \forall j = 1, \dots, n$$
$$x_{ij}, y_j \in [0, 1].$$

## The Lockbox Problem

### Exercise Solution Cont.

R. Almohsen Optimization Methods in Finance

### The Lockbox Problem

### Exercise Solution Cont.

### The Lockbox Problem

### Exercise Solution Cont.

• For (2). The 3rd inequality in the ILP forbids that we can assign regions to closed lock-boxes. Alternatively it can be expressed with

 $x_{ij} \leq y_j \ \forall i = 1, \dots, n, \ and \ \forall j = 1, \dots, n$ 

## The Lockbox Problem

### Exercise Solution Cont.

• For (2). The 3rd inequality in the ILP forbids that we can assign regions to closed lock-boxes. Alternatively it can be expressed with

 $x_{ij} \leq y_j \ \forall i = 1, \dots, n, \text{ and } \forall j = 1, \dots, n$ 

Note that the integer solutions to both systems are exactly the same.

## The Lockbox Problem

### Exercise Solution Cont.

$$x_{ij} \leq y_j \ \forall i = 1, \dots, n, \text{ and } \forall j = 1, \dots, n$$

- Note that the integer solutions to both systems are exactly the same.
- For (3). One obtains the LP relaxation for above ILP by replacing the constraint  $x_{ij}$ ;  $y_j \in [0, 1]$  by  $0 \le x_{ij}$ ;  $y_j \le 1$ .

## The Lockbox Problem

### Exercise Solution Cont.

$$x_{ij} \leq y_j \ \forall i = 1, \dots, n, \ and \ \forall j = 1, \dots, n$$

- Note that the integer solutions to both systems are exactly the same.
- For (3). One obtains the LP relaxation for above ILP by replacing the constraint  $x_{ij}$ ;  $y_j \in [0, 1]$  by  $0 \le x_{ij}$ ;  $y_j \le 1$ .
- An optimum fractional solution of the system in (a) is  $x_{ii} = 1$  and  $y_i = 0.4$  for i = 1, ..., n (other values are 0). The objective value of this solution is 0. On optimum solution of the same LP but with the constraint from (2) gives  $y_3 = y_5 = 1$ ;  $x_{15} = x_{55} = x_{23} = x_{33} = x_{43} = 1$  with a value of 6. This is even an integer solution.

## The Lockbox Problem

### Exercise Solution Cont.

$$x_{ij} \leq y_j \ \forall i = 1, \dots, n, \ and \ \forall j = 1, \dots, n$$

- Note that the integer solutions to both systems are exactly the same.
- For (3). One obtains the LP relaxation for above ILP by replacing the constraint  $x_{ij}$ ;  $y_j \in [0, 1]$  by  $0 \le x_{ij}$ ;  $y_j \le 1$ .
- An optimum fractional solution of the system in (a) is  $x_{ii} = 1$  and  $y_i = 0.4$  for i = 1, ..., n (other values are 0). The objective value of this solution is 0. On optimum solution of the same LP but with the constraint from (2) gives  $y_3 = y_5 = 1$ ;  $x_{15} = x_{55} = x_{23} = x_{33} = x_{43} = 1$  with a value of 6. This is even an integer solution.
- Conclusion: The constraint from (2) is stronger (and therefore better).

# Definitions

# Definitions

Active and Passive Portfolio

### Definitions

### Active and Passive Portfolio

• Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.

## Definitions

#### Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

## Definitions

#### Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

### Types of Passive Portfolio

## Definitions

#### Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

#### Types of Passive Portfolio

 Buy and hold: where assets are selected on the basis of some fundamental criteria and there is no active selling or buying of these stocks afterwards.

## Definitions

#### Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

#### Types of Passive Portfolio

- Buy and hold: where assets are selected on the basis of some fundamental criteria and there is no active selling or buying of these stocks afterwards.
- Indexing: absolutely no attempt is made to identify mispriced securities.

## Definitions

#### Active and Passive Portfolio

- Active portfolio management tries to achieve superior performance by using technical and fundamental analysis as well as forecasting techniques.
- **Passive portfolio** management avoids any forecasting techniques and rather relies on diversification to achieve a desired performance.

#### Types of Passive Portfolio

- Buy and hold: where assets are selected on the basis of some fundamental criteria and there is no active selling or buying of these stocks afterwards.
- Indexing: absolutely no attempt is made to identify mispriced securities.
- The goal is to choose a portfolio that mirrors the movements of a broad market population or a market index. Such a portfolio is called an index fund.
# Constructing an Index Fund

# Constructing an Index Fund

Define an Index Fund

R. Almohsen Optimization Methods in Finance

# Constructing an Index Fund

#### Define an Index Fund

 An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.

# Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.

# Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
  - Market Efficiency.

# Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
  - Market Efficiency.
  - Empirical Performance.

### Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
  - Market Efficiency.
  - Empirical Performance.
  - Transaction Cost.

### Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
  - Market Efficiency.
  - Empirical Performance.
  - Transaction Cost.

### Constructing an Index Fund

- An index fund is a portfolio designed to track the movement of the market as a whole or some selected broad market segment.
- The Rising Popularity of Index Funds.
  - Market Efficiency.
  - Empirical Performance.
  - Transaction Cost.

# Constructing an Index Fund

# Constructing an Index Fund

# Constructing an Index Fund

#### Strategies for Forming Index Funds

 Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).

## Constructing an Index Fund

- Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).
- A pure indexing approach consists in purchasing all the issues in the index, with the same exact weights as in the index, (impractical).

## Constructing an Index Fund

- Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).
- A pure indexing approach consists in purchasing all the issues in the index, with the same exact weights as in the index, (impractical).
- An index fund with *q* stocks, where *q* is substantially smaller than the size *n* of the target population seems desirable.

## Constructing an Index Fund

- Choosing a broad market index as a proxy for an entire market, for example the Standard and Poor list of 500 stocks (S & P 500).
- A pure indexing approach consists in purchasing all the issues in the index, with the same exact weights as in the index, (impractical).
- An index fund with *q* stocks, where *q* is substantially smaller than the size *n* of the target population seems desirable.

# Constructing an Index Fund

# Constructing an Index Fund

# Constructing an Index Fund

A Large-Scale Deterministic Model

• Suppose a measure of similarity is available.

# Constructing an Index Fund

- Suppose a measure of similarity is available.
- $\rho_{ij}$  = similarity between stock *i* and stock *j*.

# Constructing an Index Fund

- Suppose a measure of similarity is available.
- $\rho_{ij} = \text{similarity between stock } i$  and stock j.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \leq 1$  for  $i \neq j$  and  $\rho_{ij}$  is larger for more similar stocks.

# Constructing an Index Fund

- Suppose a measure of similarity is available.
- $\rho_{ij} = \text{similarity between stock } i$  and stock j.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \leq 1$  for  $i \neq j$  and  $\rho_{ij}$  is larger for more similar stocks.

# Constructing an Index Fund

### Example

R. Almohsen Optimization Methods in Finance

# Constructing an Index Fund

### Example

 The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ii</sub>, where ρ<sub>ii</sub> = similarity between stock *i* and stock *j*.

# Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ij</sub>, where ρ<sub>ij</sub> = similarity between stock *i* and stock *j*.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \le 1$  for  $i \ne j$  and  $\rho_{ij}$  is larger for more similar stocks.

## Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ij</sub>, where ρ<sub>ij</sub> = similarity between stock *i* and stock *j*.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \le 1$  for  $i \ne j$  and  $\rho_{ij}$  is larger for more similar stocks.

$$(M) \quad Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$

## Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ij</sub>, where ρ<sub>ij</sub> = similarity between stock *i* and stock *j*.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \le 1$  for  $i \ne j$  and  $\rho_{ij}$  is larger for more similar stocks.

(M) 
$$Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$

## Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ij</sub>, where ρ<sub>ij</sub> = similarity between stock *i* and stock *j*.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \le 1$  for  $i \ne j$  and  $\rho_{ij}$  is larger for more similar stocks.

(M) 
$$Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} = 1, \forall i = 1, \dots, n$$

### Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ij</sub>, where ρ<sub>ij</sub> = similarity between stock *i* and stock *j*.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \le 1$  for  $i \ne j$  and  $\rho_{ij}$  is larger for more similar stocks.

$$(M) \quad Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} = 1, \forall i = 1, \dots, n$$
$$\sum x_{ij} \le y_j, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

### Constructing an Index Fund

- The correlation between the returns of stocks *i* and *j*. But one could choose other similarity indices ρ<sub>ij</sub>, where ρ<sub>ij</sub> = similarity between stock *i* and stock *j*.
- For example,  $\rho_{ii} = 1$ ,  $\rho_{ij} \le 1$  for  $i \ne j$  and  $\rho_{ij}$  is larger for more similar stocks.

$$(M) \quad Z = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} = 1, \forall i = 1, \dots, n$$
$$\sum x_{ij} \le y_j, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$
$$x_{ij}, y_j = 0 \text{ or } 1, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

# Constructing an Index Fund

# Constructing an Index Fund

### Example Cont.

R. Almohsen Optimization Methods in Finance

## Constructing an Index Fund

### Example Cont.

• A weight *w<sub>i</sub>* is calculated for each *j* in the fund:

## Constructing an Index Fund

- A weight *w<sub>j</sub>* is calculated for each *j* in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$ , where  $V_i$  is the market value of stock *i*.

# Constructing an Index Fund

- A weight *w<sub>i</sub>* is calculated for each *j* in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$ , where  $V_i$  is the market value of stock *i*.
- w<sub>j</sub> is the total market value of the stocks represented by stock j in the fund.

## Constructing an Index Fund

- A weight w<sub>i</sub> is calculated for each j in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$ , where  $V_i$  is the market value of stock *i*.
- w<sub>j</sub> is the total market value of the stocks represented by stock j in the fund.
- The fraction of the index fund to be invested in stock *j* is proportional to the weight  $w_j$ , such that:  $\frac{w_j}{\sum_{t=1}^{n} w_t}$

## Constructing an Index Fund

- A weight w<sub>i</sub> is calculated for each j in the fund:
- $w_j = \sum_{i=1}^{n} V_i x_{ij}$ , where  $V_i$  is the market value of stock *i*.
- w<sub>j</sub> is the total market value of the stocks represented by stock j in the fund.
- The fraction of the index fund to be invested in stock *j* is proportional to the weight  $w_j$ , such that:  $\frac{w_j}{\sum_{t=1}^{n} w_t}$
# Constructing an Index Fund

# Constructing an Index Fund

### Data Requirements

R. Almohsen Optimization Methods in Finance

## Constructing an Index Fund

### Data Requirements

We need a coefficient ρ<sub>ij</sub> which measures the similarity between stocks i and j.

## Constructing an Index Fund

#### **Data Requirements**

- We need a coefficient ρ<sub>ij</sub> which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

## Constructing an Index Fund

#### **Data Requirements**

- We need a coefficient ρ<sub>ij</sub> which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

#### Testing the Model

### Constructing an Index Fund

#### **Data Requirements**

- We need a coefficient ρ<sub>ij</sub> which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

#### Testing the Model

 Stocks comprising the S&P 500 were chosen as the target population to test the model.

## Constructing an Index Fund

#### **Data Requirements**

- We need a coefficient ρ<sub>ij</sub> which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

#### Testing the Model

- Stocks comprising the S&P 500 were chosen as the target population to test the model.
- A calibration period of sixty months was used.

## Constructing an Index Fund

#### **Data Requirements**

- We need a coefficient ρ<sub>ij</sub> which measures the similarity between stocks i and j.
- One approach is to consider the time series of stock prices over a calibration period *T* and to compute the correlation between each pair of assets.

#### Testing the Model

- Stocks comprising the S&P 500 were chosen as the target population to test the model.
- A calibration period of sixty months was used.
- Then a portfolio of 25 stocks was constructed using model (M) and held for periods ranging from three months to three years.

# Constructing an Index Fund

### Solution Strategy

R. Almohsen Optimization Methods in Finance

# Constructing an Index Fund

Solution Strategy

• Branch-and-bound is a natural candidate for solving model (M).

## Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.

### Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.
- Indeed, for the S&P 500, there are 250,000 variables  $x_{ij}$  and 250,000 constraints  $x_{ij} \leq y_j$ .

### Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.
- Indeed, for the S&P 500, there are 250,000 variables  $x_{ij}$  and 250,000 constraints  $x_{ij} \leq y_j$ .
- So the linear programming relaxation needed to get upper bounds in the branch-and-bound algorithm is a very large linear program to solve.

### Constructing an Index Fund

- Branch-and-bound is a natural candidate for solving model (M).
- Note however that the formulation is very large.
- Indeed, for the S&P 500, there are 250,000 variables  $x_{ij}$  and 250,000 constraints  $x_{ij} \leq y_j$ .
- So the linear programming relaxation needed to get upper bounds in the branch-and-bound algorithm is a very large linear program to solve.
- It turns out, however, that one does not need to solve this large linear program to obtain good upper bounds.

# Constructing an Index Fund

Performance of Stocks

# Constructing an Index Fund

### Performance of Stocks

| Performance of a 25 stock index fund |       |
|--------------------------------------|-------|
| Length                               | Ratio |
| 1 QTR                                | 1.006 |
| 2 QTR                                | .99   |
| 1 YR                                 | .985  |
| 3 YR                                 | .982  |

# Constructing an Index Fund

Lagrangian Relaxation

## Constructing an Index Fund

#### Lagrangian Relaxation

## Constructing an Index Fund

#### Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$

## Constructing an Index Fund

#### Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$
$$\sum_{j=1}^{n} y_j = q$$

## Constructing an Index Fund

#### Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum x_{ij} \le y_j \ , \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

## Constructing an Index Fund

#### Lagrangian Relaxation

$$L(u) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij} + \sum_{i=1}^{n} u_i (1 - \sum_{j=1}^{n} x_{ij})$$
$$\sum_{j=1}^{n} y_j = q$$
$$\sum_{ij} x_{ij} \le y_j , \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$
$$x_{ij}, y_j = 0 \text{ or } 1, \forall i = 1, \dots, n, \text{ and } j = 1, \dots, n$$

# Constructing an Index Fund

### Properties

R. Almohsen Optimization Methods in Finance

# Constructing an Index Fund

#### Properties

• **Property 1**:  $L(u) \ge Z$ , where Z is the maximum for model (M).

## Constructing an Index Fund

- **Property 1**:  $L(u) \ge Z$ , where Z is the maximum for model (M).
- Property 2:

### Constructing an Index Fund

- **Property 1**:  $L(u) \ge Z$ , where Z is the maximum for model (M).
- Property 2:

$$L(u) = \max \sum_{j=1}^{n} C_{j} y_{j} + \sum_{i=1}^{n} u_{i}$$

### Constructing an Index Fund

- **Property 1**:  $L(u) \ge Z$ , where Z is the maximum for model (M).
- Property 2:

$$L(u) = \max \sum_{j=1}^{n} C_j y_j + \sum_{i=1}^{n} u_i$$
$$\sum_{j=1}^{n} y_j = q$$

## Constructing an Index Fund

- **Property 1**:  $L(u) \ge Z$ , where Z is the maximum for model (M).
- Property 2:

$$L(u) = \max \sum_{j=1}^{n} C_j y_j + \sum_{i=1}^{n} u_i$$
$$\sum_{j=1}^{n} y_j = q$$
$$y_j = 0 \text{ or } 1, \forall j = 1, \dots, n$$

# Constructing an Index Fund

Properties Cont.

R. Almohsen Optimization Methods in Finance

# Constructing an Index Fund

Properties Cont.

R. Almohsen Optimization Methods in Finance

## Constructing an Index Fund

### Properties Cont.

• **Property 3**: In an optimal solution of the Lagrangian relaxation, *y<sub>j</sub>* is equal to 1 for the *q* largest values of *C<sub>j</sub>*, and the remaining *y<sub>j</sub>* are equal to 0.

# Constructing an Index Fund

A Linear Programming Model

# Constructing an Index Fund

A Linear Programming Model

# Constructing an Index Fund

### A Linear Programming Model

 This approach assumes that we have identified important characteristics of the market index to be tracked.

### Constructing an Index Fund

### A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.

### Constructing an Index Fund

#### A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let  $a_{ij} = 1$  if company *j* has characteristic *i* and 0 if it does not.
## Constructing an Index Fund

### A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let  $a_{ij} = 1$  if company *j* has characteristic *i* and 0 if it does not.
- Let x<sub>i</sub> denote the optimum weight of asset j in the portfolio.

## Constructing an Index Fund

### A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let  $a_{ij} = 1$  if company *j* has characteristic *i* and 0 if it does not.
- Let x<sub>i</sub> denote the optimum weight of asset j in the portfolio.
- Assume that initially, the portfolio has weights  $x_i^0$ .

## Constructing an Index Fund

### A Linear Programming Model

- This approach assumes that we have identified important characteristics of the market index to be tracked.
- Let us assume that there are *m* such characteristics that we would like our index fund to track as well as possible.
- Let  $a_{ij} = 1$  if company *j* has characteristic *i* and 0 if it does not.
- Let *x<sub>i</sub>* denote the optimum weight of asset *j* in the portfolio.
- Assume that initially, the portfolio has weights  $x_i^0$ .
- Let  $y_j$  denote the fraction of asset *j* bought and  $z_j$  the fraction sold.

# Constructing an Index Fund

# Constructing an Index Fund

# Constructing an Index Fund

min 
$$\sum_{j=1}^{n} y_j + z_j$$

# Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = f_i \ , \forall i = 1, \dots, m$$

# Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = f_j , \forall i = 1, \dots, m$$
$$\sum_{i=1}^{n} x_j = 1$$

# Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = f_i , \forall i = 1, \dots, m$$
$$\sum_{j=1}^{n} x_j = 1$$
$$x_j - x_j^0 \le y_j , \forall j = 1, \dots, n$$

# Constructing an Index Fund

$$\min \sum_{j=1}^{n} y_j + z_j$$

$$\sum_{j=1}^{n} a_{ij}x_j = f_j , \forall i = 1, \dots, m$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_j - x_j^0 \le y_j , \forall j = 1, \dots, n$$

$$x_j^0 - x_j \le z_j , \forall j = 1, \dots, n$$

# Constructing an Index Fund

## Rebalancing the Portfolio

y

$$\min \sum_{j=1}^{n} y_j + z_j$$

$$\sum_{j=1}^{n} a_{ij}x_j = f_i , \forall i = 1, \dots, m$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_j - x_j^0 \le y_j , \forall j = 1, \dots, n$$

$$x_j^0 - x_j \le z_j , \forall j = 1, \dots, n$$

$$i_j \ge 0, x_j \ge 0, x_j \ge 0, \forall j = 1, \dots, n$$

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

Markowitz Model

R. Almohsen Optimization Methods in Finance

# Portfolio Optimization with Minimum Transaction Levels

Markowitz Model

• It assists in the selection of the most efficient portfolio.

# Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.

# Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.
- HM model shows investors how to reduce their risk.

# Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.
- HM model shows investors how to reduce their risk.
- The HM model is also called Mean-Variance Model.

# Portfolio Optimization with Minimum Transaction Levels

- It assists in the selection of the most efficient portfolio.
- By choosing securities that do not 'move' exactly together.
- HM model shows investors how to reduce their risk.
- The HM model is also called Mean-Variance Model.

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

## Portfolio Optimization with Minimum Transaction Levels

Markowitz Model Assumptions

• Risk of a portfolio is based on the variability of returns from the said portfolio.

# Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.

# Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.

## Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.

## Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.
- Analysis is based on single period model of investment.

## Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.
- Analysis is based on single period model of investment.
- An investor either maximizes his portfolio return for a given level of risk or maximizes his return for the minimum risk.

## Portfolio Optimization with Minimum Transaction Levels

- Risk of a portfolio is based on the variability of returns from the said portfolio.
- An investor is risk averse.
- An investor prefers to increase consumption.
- The investor's utility function is concave and increasing, due to his risk aversion and consumption preference.
- Analysis is based on single period model of investment.
- An investor either maximizes his portfolio return for a given level of risk or maximizes his return for the minimum risk.
- An investor is rational in nature.

# Portfolio Optimization with Minimum Transaction Levels

## Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

Determining the Efficient Set

• What is the efficient portfolio?

# Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.

# Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.
- Portfolios are selected as follows:

# Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.
- Portfolios are selected as follows:
  - From the portfolios that have the same return, the investor will prefer the portfolio with lower risk.

# Portfolio Optimization with Minimum Transaction Levels

- What is the efficient portfolio?
- A portfolio that gives maximum return for a given risk, or minimum risk for given return is an efficient portfolio.
- Portfolios are selected as follows:
  - From the portfolios that have the same return, the investor will prefer the portfolio with lower risk.
  - From the portfolios that have the same risk level, an investor will prefer the portfolio with higher rate of return.

# Portfolio Optimization with Minimum Transaction Levels

## Portfolio Optimization with Minimum Transaction Levels

Solve for the Optimal Portfolio
## Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

## Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$

## Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$

## Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$
$$C \cdot x > d$$

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

٩

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$
$$C \cdot x > d$$

with the additional property that:

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• When solving the classical Markowitz model, the optimal portfolio often contains positions *x<sub>i</sub>* that are too small to execute.

٩

$$\min_{x} \cdot \frac{1}{2} \cdot x^{T} \cdot Q \cdot x$$
$$\mu^{T} \cdot x \ge R$$
$$A \cdot x = b$$
$$C \cdot x > d$$

with the additional property that:

 $x_i > 0 \Rightarrow x_i \ge l_i$ , where  $l_i$  are given minimum transaction levels.

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

 Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.

# Portfolio Optimization with Minimum Transaction Levels

- Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.
- This problem is considered by Bienstock.

# Portfolio Optimization with Minimum Transaction Levels

- Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.
- This problem is considered by Bienstock.
- The portfolio optimization problem where there is an upper bound on the number of positive variables, that is:
  - $x_i > 0$  for at most K distinct  $j = 1, \ldots, n$ .

# Portfolio Optimization with Minimum Transaction Levels

- Because the prevous constraint is not a simple linear constraint, it cannot be handled directly by quadratic programming.
- This problem is considered by Bienstock.
- The portfolio optimization problem where there is an upper bound on the number of positive variables, that is:
  - $x_j > 0$  for at most K distinct  $j = 1, \ldots, n$ .
- The constraint can easily be incorporated within a branch-and-bound algorithm.

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

First solve the basic Markowitz model.

# Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let *x*<sup>\*</sup> be the optimal solution found.

# Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let *x*<sup>\*</sup> be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by *x*\*.

# Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let x\* be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by x\*.
- *x*<sup>\*</sup> is also optimum to Markowitz model and the constraint, so we can stop.

# Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let x\* be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by x\*.
- *x*<sup>\*</sup> is also optimum to Markowitz model and the constraint, so we can stop.
- Otherwise, let *j* be an index for which the constraint is violated by *x*\*.

# Portfolio Optimization with Minimum Transaction Levels

- First solve the basic Markowitz model.
- Let x\* be the optimal solution found.
- If no minimum transaction level, then the constraint is violated by x\*.
- *x*<sup>\*</sup> is also optimum to Markowitz model and the constraint, so we can stop.
- Otherwise, let *j* be an index for which the constraint is violated by *x*\*.

# Portfolio Optimization with Minimum Transaction Levels

## Portfolio Optimization with Minimum Transaction Levels

## Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

• Form two subproblems.

## Portfolio Optimization with Minimum Transaction Levels

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .

# Portfolio Optimization with Minimum Transaction Levels

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .
- The other obtained from the Markowitz model by adding the constraint  $x_i \ge l_i$ .

# Portfolio Optimization with Minimum Transaction Levels

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .
- The other obtained from the Markowitz model by adding the constraint  $x_i \ge l_i$ .
- Both are quadratic programs that can be solved using the usual algorithms.

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .
- The other obtained from the Markowitz model by adding the constraint  $x_i \ge l_i$ .
- Both are quadratic programs that can be solved using the usual algorithms.

### Check the Optimum Solutions

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .
- The other obtained from the Markowitz model by adding the constraint  $x_i \ge l_i$ .
- Both are quadratic programs that can be solved using the usual algorithms.

### Check the Optimum Solutions

• Now check whether the optimum solutions to these two problems satisfy the transaction level constraint.

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .
- The other obtained from the Markowitz model by adding the constraint  $x_i \ge l_i$ .
- Both are quadratic programs that can be solved using the usual algorithms.

### Check the Optimum Solutions

- Now check whether the optimum solutions to these two problems satisfy the transaction level constraint.
- If a solution violates the constraint for index k, then the corresponding problem is further divided by adding the constraint x<sub>k</sub> = 0 on one side and x<sub>k</sub> ≥ l<sub>k</sub> on the other.

# Portfolio Optimization with Minimum Transaction Levels

### Solve for the Optimal Portfolio

- Form two subproblems.
- One obtained from the Markowitz model by adding the constraint  $x_i = 0$ .
- The other obtained from the Markowitz model by adding the constraint  $x_i \ge l_i$ .
- Both are quadratic programs that can be solved using the usual algorithms.

### Check the Optimum Solutions

- Now check whether the optimum solutions to these two problems satisfy the transaction level constraint.
- If a solution violates the constraint for index k, then the corresponding problem is further divided by adding the constraint x<sub>k</sub> = 0 on one side and x<sub>k</sub> ≥ l<sub>k</sub> on the other.

# Portfolio Optimization with Minimum Transaction Levels

## Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

# Portfolio Optimization with Minimum Transaction Levels

### Check the Upper Bound on the Number of Positive Variables

 Assume that there is a given upper bound u<sub>j</sub> on how much can be invested in stock j.

# Portfolio Optimization with Minimum Transaction Levels

### Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u<sub>j</sub> on how much can be invested in stock j.
- Assume  $x_i \leq u_i$  are part of the formulation of Markowitz model .

# Portfolio Optimization with Minimum Transaction Levels

### Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u<sub>j</sub> on how much can be invested in stock j.
- Assume  $x_j \leq u_j$  are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:
# Portfolio Optimization with Minimum Transaction Levels

- Assume that there is a given upper bound u<sub>j</sub> on how much can be invested in stock j.
- Assume  $x_i \leq u_j$  are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:

$$\sum_{j} \frac{x_j}{u_j} \le K$$

# Portfolio Optimization with Minimum Transaction Levels

#### Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u<sub>j</sub> on how much can be invested in stock j.
- Assume  $x_j \leq u_j$  are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:

٩

$$\sum_{j} \frac{x_j}{u_j} \le \kappa$$

• We add this constraint to Markowitz model and solve the resulting quadratic program.

# Portfolio Optimization with Minimum Transaction Levels

#### Check the Upper Bound on the Number of Positive Variables

- Assume that there is a given upper bound u<sub>j</sub> on how much can be invested in stock j.
- Assume  $x_j \leq u_j$  are part of the formulation of Markowitz model .
- Then, clearly, the upper bound constraint implies the weaker constraint:

٩

$$\sum_{j} \frac{x_j}{u_j} \le \kappa$$

• We add this constraint to Markowitz model and solve the resulting quadratic program.

# Portfolio Optimization with Minimum Transaction Levels

### Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

• Let *x*<sup>\*</sup> be the optimal solution found.

# Portfolio Optimization with Minimum Transaction Levels

- Let *x*<sup>\*</sup> be the optimal solution found.
- If *x*\* satisfies the constraint, then it is optimum to Markowitz model and we can stop.

# Portfolio Optimization with Minimum Transaction Levels

- Let *x*<sup>\*</sup> be the optimal solution found.
- If x\* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which  $x_k > 0$ .

# Portfolio Optimization with Minimum Transaction Levels

- Let *x*<sup>\*</sup> be the optimal solution found.
- If x\* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which  $x_k > 0$ .
- Form two subproblems:

# Portfolio Optimization with Minimum Transaction Levels

- Let *x*<sup>\*</sup> be the optimal solution found.
- If x\* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which  $x_k > 0$ .
- Form two subproblems:
- One obtained from Markowitz model by adding the constraint x<sub>k</sub> = 0 (down branch),

# Portfolio Optimization with Minimum Transaction Levels

- Let *x*<sup>\*</sup> be the optimal solution found.
- If *x*\* satisfies the constraint, then it is optimum to Markowitz model and we can stop.
- Otherwise, let *k* be an index for which  $x_k > 0$ .
- Form two subproblems:
- One obtained from Markowitz model by adding the constraint *x<sub>k</sub>* = 0 (down branch),
- The other obtained from Markowitz model by adding the constraint  $\sum_{j \neq k} \frac{x_j}{u_j} \leq K 1$  (up branch).

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

# Portfolio Optimization with Minimum Transaction Levels

Check the Upper Bound on the Number of Positive Variables

• The branch-and-bound tree is developped recursively.

# Portfolio Optimization with Minimum Transaction Levels

- The branch-and-bound tree is developped recursively.
- When a set *T* of variables has been branched up, the constraint added to the basic Markowitz model becomes:

# Portfolio Optimization with Minimum Transaction Levels

#### Check the Upper Bound on the Number of Positive Variables

• The branch-and-bound tree is developped recursively.

• When a set *T* of variables has been branched up, the constraint added to the basic Markowitz model becomes:

$$\sum_{j\notin T}\frac{x_j}{u_j}\leq K-|T|.$$

### References

#### References

R. Almohsen Optimization Methods in Finance

### References

#### References

 Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.

### References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.

### References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.
- S. Biswas and Y. Narahari. An iterative auction mechanism for combinatorial exchanges. Technical report, Electronic Enterprises Lab, Dept. of Computer Science and Automation, Indian Institute of Science, 2003.

### References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.
- S. Biswas and Y. Narahari. An iterative auction mechanism for combinatorial exchanges. Technical report, Electronic Enterprises Lab, Dept. of Computer Science and Automation, Indian Institute of Science, 2003.
- Robert M. Nauss and Robert E. Markland, Solving Lock Box Location Problems, Vol. 8, No. 1 (Spring, 1979)

### References

- Y. Narahari, Pankaj Dayama, Combinatorial Auctions for Electronic Business, game theory, survey.
- G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge University Press, 2007.
- S. Biswas and Y. Narahari. An iterative auction mechanism for combinatorial exchanges. Technical report, Electronic Enterprises Lab, Dept. of Computer Science and Automation, Indian Institute of Science, 2003.
- Robert M. Nauss and Robert E. Markland, Solving Lock Box Location Problems, Vol. 8, No. 1 (Spring, 1979)