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Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for
the selection of portfolios of securities (or asset classes) by considering the
trade-off between risk and return.

Consider assets S1,S2, · · · ,Sn (n ≥ 2) with random returns.

Let µi and σi denote the expected return and the standard deviation of the return
of asset Si .

For i 6= j , ρij denotes the correlation coefficient of the returns of assets Si and Sj .

Let µ = [µ1, · · · , µn]T , and Σ = (σij ) be the n × n symmetric covariance matrix
with σii = σ2

i and σij = ρij · σi · σj for i 6= j .
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Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

If we let xi denote the proportion of the total funds invested in Si , then the
expected return and variance of the portfolio x = (x1, · · · , xn) can be represented
as follows:

E [x] = µ1 · x1 + · · ·+ µn · xn = µT · x,

and
Var [x] =

∑
i,j

ρij · σi · σj · xi · xj = xT ·Σ · x,

where ρii ≡ 1.

Since variance is always nonnegative, it follows that xT ·Σ · x ≥ 0 for any x, i.e., Σ
is positive semidefinite.
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Markowitz theory of mean-variance optimization

Assumptions and constraints

We will assume that Σ is positive definite.
This is essentially equivalent to assuming that there are no redundant assets in our
collection S1,S2, · · · ,Sn.

We also assume that the set of admissible portfolios is a nonempty polyhedral set
and represent it as X := {x : A · x = b,C · x ≥ d}, where A is an m × n matrix, b
is an m-dimensional vector, C is a p × n matrix, and d is a p-dimensional vector.

In particular, one of the constraints in the set X is:

n∑
i=1

xi = 1.
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Markowitz theory of mean-variance optimization

Efficient Frontier

A feasible portfolio x is called efficient if it has the maximal expected return among
all portfolios with the same variance, or alternatively, if it has the minimum
variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the efficient frontier of the portfolio
universe.

The efficient frontier is often represented as a curve in a two-dimensional graph where
the coordinates of a plotted point corresponds to the standard deviation and the
expected return of an efficient portfolio.
When we assume that Σ is positive definite, the variance is a strictly convex function of
the portfolio variables and there exists a unique portfolio in X that has the minimum
variance.
Let us denote this portfolio with xmin and its return µT · xmin with Rmin. (Note that xmin is
an efficient portfolio.)
We let Rmax denote the maximum return for an admissible portfolio.
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Markowitz MVO problem formulation

Find the minimum variance portfolio that yields at least a target value of expected
return.

Mathematically, this formulation produces a quadratic programming problem:

min
x

1
2
· xT ·Σ · x

µT · x ≥ R

A · x = b

C · x ≥ d

By solving this problem for values of R ranging between Rmin and Rmax , we obtain
all efficient portfolios.
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KKT conditions

We have a convex QP problem for which the first-order conditions are both
necessary and sufficient for optimality.

Thus, xR is an optimal solution of the problem if and only if there exists λR ∈ R,
γE ∈ Rm, and γ I ∈ Rp satisfying the following KKT conditions:

Σ · xR − λR · µ− AT · γE − CT · γ I = 0

µT · xR ≥ R, A · xR = b, C · xR ≥ d

λR ≥ 0, λR · (µT · xR − R) = 0

γ I ≥ 0, γT
I · (C · xR − d) = 0
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Example

We apply Markowitz’ MVO model to the problem of constructing a portfolio of US
stocks, bonds, and cash.

We will use historical return data for these three asset classes to estimate their
future expected returns.

We use the S&P 500 Index for the returns on stocks, the 10-year Treasury Bond Index
for the returns on bonds, and we assume that the cash is invested in a money market
account whose return is the 1-day federal fund rate.

The annual times series for the “total return” for each asset between 1960 and
2003 are given in the next table.
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Table: Total returns for stocks, bonds, and money market

Year Stocks Bonds MM Year Stocks Bonds MM
1960 20.255 262.935 100.00 1982 115.308 777.332 440.68
1961 25.686 268.730 102.33 1983 141.316 787.357 482.42
1962 23.430 284.090 105.33 1984 150.181 907.712 522.84
1963 28.746 289.162 108.89 1985 197.829 1200.63 566.08
1964 33.448 299.894 113.08 1986 234.755 1469.45 605.20
1965 37.581 302.695 117.97 1987 247.080 1424.91 646.17
1966 33.784 318.197 124.34 1988 288.116 1522.40 702.77
1967 41.873 309.103 129.94 1989 379.409 1804.63 762.16
1968 46.480 316.051 137.77 1990 367.636 1944.25 817.87
1969 42.545 298.249 150.12 1991 479.633 2320.64 854.10
1970 44.221 354.671 157.48 1992 516.178 2490.97 879.04
1971 50.545 394.532 164.00 1993 568.202 2816.40 905.06
1972 60.146 403.942 172.74 1994 575.705 2610.12 954.39
1973 51.311 417.252 189.93 1995 792.042 3287.27 1007.84
1974 37.731 433.927 206.13 1996 973.897 3291.58 1061.15
1975 51.777 457.885 216.85 1997 1298.82 3687.33 1119.51
1976 64.166 529.141 226.93 1998 1670.01 4220.24 1171.91
1977 59.574 531.144 241.82 1999 2021.40 3903.32 1234.02
1978 63.488 524.435 266.07 2000 1837.36 4575.33 1313.00
1979 75.303 531.040 302.74 2001 1618.98 4827.26 1336.89
1980 99.780 517.860 359.96 2002 1261.18 5558.40 1353.47
1981 94.867 538.769 404.48 2003 1622.94 5588.19 1366.73
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Calculating rates of return

Let Iit denote the “total return” for asset i = 1, 2, 3 and t = 0, · · · ,T , where t = 0
corresponds to 1960 and t = T corresponds to 2003.

For each asset i , we can convert the raw data Iit , t = 0, · · · ,T , given in the
previous table into rates of return rit , t = 1, · · · ,T , using the formula

rit =
Ii,t − Ii,t−1

Ii,t−1

These rates of returns are shown in the next table.
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Table: Rates of return for stocks, bonds, and money market

Year Stocks Bonds MM Year Stocks Bonds MM
1961 26.810 2.200 2.33 1983 22.560 1.290 9.47
1962 -8.780 5.720 2.93 1984 6.270 15.290 8.38
1963 22.690 1.790 3.38 1985 31.170 32.270 8.27
1964 16.360 3.710 3.85 1986 18.670 22.39 6.91
1965 12.360 0.930 4.32 1987 5.250 -3.03 6.77
1966 -10.100 5.120 5.40 1988 16.610 6.84 8.76
1967 23.940 -2.860 4.51 1989 31.690 18.54 8.45
1968 11.000 2.250 6.02 1990 -3.100 7.74 7.31
1969 -8.470 -5.630 8.97 1991 30.460 19.36 4.43
1970 3.940 18.920 4.90 1992 7.620 7.34 2.92
1971 14.300 11.240 4.14 1993 10.080 13.06 2.96
1972 18.990 2.390 5.33 1994 1.320 -7.32 5.45
1973 -14.690 3.290 9.95 1995 37.580 25.94 5.60
1974 -26.470 4.000 8.53 1996 22.960 0.13 5.29
1975 37.230 5.520 5.20 1997 33.360 12.02 5.50
1976 23.930 15.560 4.65 1998 28.58 14.45 4.68
1977 -7.160 0.380 6.56 1999 21.04 -7.51 5.30
1978 6.570 -1.260 10.03 2000 -9.10 17.22 6.40
1979 18.610 -1.260 13.78 2001 -11.89 5.51 1.82
1980 32.500 -2.480 18.90 2002 -22.10 15.15 1.24
1981 -4.920 4.040 12.37 2003 28.68 0.54 0.98
1982 21.550 44.280 8.95
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Arithmetic mean

Let Ri denote the random rate of return of asset i .

From the historical data, we can compute the arithmetic mean rate of return for
each asset:

r̄i =
1
T

T∑
t=1

rit

This gives:

Stocks Bonds MM
Arithmetic mean r̄i 12.06% 7.85% 6.32%
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Geometric mean

Since the rates of return are multiplicative over time, we prefer to use the
geometric mean instead of the arithmetic mean.

The geometric mean is the constant yearly rate of return that needs to be applied in
years t = 0, · · · , (T − 1) in order to get the compounded total return IiT , starting from
Ii0.

The formula for the geometric mean is:

µi =

 T∏
t=1

(1 + rit )

1/T

− 1

We get the following results:

Stocks Bonds MM
Geometric mean µi 10.73% 7.37% 6.27%
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Covariance matrix

We also compute the covariance matrix:

cov(Ri ,Rj ) =
1
T

T∑
i=1

(rit − r̄i )(rjt − r̄j )

Covariance Stocks Bonds MM
Stocks 0.02778 0.00387 0.00021
Bonds 0.00387 0.01112 -0.00020

MM 0.00021 -0.00020 0.00115
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Volatility of the rate of return

The volatility (or standard deviation) of the rate of return on each asset is:

σi =
√

cov(Ri ,Ri )

Stocks Bonds MM
Volatility 16.67% 10.55% 3.40%
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Correlation matrix

The correlation matrix is computed using:

ρij =
cov(Ri ,Rj )

σi · σj

This gives:

Correlation Stocks Bonds MM
Stocks 1 0.2199 0.0366
Bonds 0.2199 1 -0.0545

MM 0.0366 -0.0545 1
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The quadratic program for this problem is as follows:

min
1
2
· [0.02778 · x2

S + 2 · 0.00387 · xS · xB + 2 · 0.00021 · xS · xM

+0.01112 · x2
B − 2 · 0.00020 · xB · xM + 0.00115 · x2

M ]

0.1073 · xS + 0.0737 · xB + 0.0627 · xM ≥ R

xS + xB + xM = 1

xS ,XB ,XM ≥ 0

Solving for R = 6.5% to R = 10.5% with increments of 0.5%, gives us the optimal
portfolios shown in the next table.
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Table of efficient portfolios

Rate of return R Variance Stocks Bonds MM
0.065 0.0010 0.03 0.10 0.87
0.070 0.0014 0.13 0.12 0.75
0.075 0.0026 0.24 0.14 0.62
0.080 0.0044 0.35 0.16 0.49
0.085 0.0070 0.45 0.18 0.37
0.090 0.0102 0.56 0.20 0.24
0.095 0.0142 0.67 0.22 0.11
0.100 0.0189 0.78 0.22 0.00
0.105 0.0246 0.93 0.07 0.00
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Large-scale portfolio optimization

Issues with large-scale portfolios

We will consider practical issues that arise when the mean-variance model is used
to construct a portfolio from a large underlying family of assets.

Example

Let us consider a portfolio of stocks constructed from a set of n stocks with known
expected returns and covariance matrix, where n may be in the hundreds or
thousands.
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Large-scale portfolio optimization

Diversification

In general, there is no reason to expect that solutions to the Markowitz model will
be well diversified portfolios.

This model tends to produce portfolios with unreasonably large weights in certain asset
classes.
This is often attributed to estimation errors.

Estimates that may be slightly “off” may lead the optimizer to chase phantom
low-risk high-return opportunities by taking large positions.

Positions chosen by this quadratic program may be subject to idiosyncratic risk
(i.e., risk specific to an asset or small group of assets having little or no correlation
with market risk).

Practitioners often use additional constraints on the xi s to insure themselves
against estimation and model errors, and to ensure that the chosen portfolio is
well diversified.

For example, a limit m may be imposed on the size of each xi , say xi ≤ m for
i = 1, · · · , n.
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low-risk high-return opportunities by taking large positions.

Positions chosen by this quadratic program may be subject to idiosyncratic risk

(i.e., risk specific to an asset or small group of assets having little or no correlation
with market risk).

Practitioners often use additional constraints on the xi s to insure themselves
against estimation and model errors, and to ensure that the chosen portfolio is
well diversified.

For example, a limit m may be imposed on the size of each xi , say xi ≤ m for
i = 1, · · · , n.
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Large-scale portfolio optimization

Diversification

One can also reduce sector risk by grouping together investments in securities of
a sector and setting a limit on the exposure of this sector.

For example, if mk is the maximum that can be invested in sector k , we add the
constraint ∑

i in sector k

xi ≤ mk

Note that the more constraints one adds to a model, the more the objective value
deteriorates.

So, this approach to producing diversification can be quite costly.
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Large-scale portfolio optimization

Transaction costs

We can add a portfolio turnover constraint to ensure that the change between the
current holdings x0 and the desired portfolio x is bounded by h.

To avoid big changes when reoptimizing the portfolio, turnover constraints may be
imposed.

Let yi be the amount of asset i bought and zi the amount sold.

We write

xi − x0
i ≤ yi , yi ≥ 0

x0
i − xi ≤ zi , zi ≥ 0

n∑
i=1

(yi + zi ) ≤ h
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Large-scale portfolio optimization

Transaction costs

We can also introduce transaction costs directly into the model.

Suppose that there is a transaction cost ti proportional to the amount of asset i
bought, and a transaction cost t ′i proportional to the amount of asset i sold.

Suppose that the portfolio is reoptimized once per period.
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Large-scale portfolio optimization

The reoptimized portfolio is obtained by solving the following QP problem:

min
1
2
·

n∑
i=1

n∑
j=1

σij · xi · xj

n∑
i=1

(µi · xi − ti · yi − t ′i · zi ) ≥ R

n∑
i=1

xi = 1

xi − x0
i ≤ yi , for i = 1, · · · , n

x0
i − xi ≤ zi , for i = 1, · · · , n

yi ≥ 0, for i = 1, · · · , n

zi ≥ 0, for i = 1, · · · , n

xi unrestricted for i = 1, · · · , n
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Large-scale portfolio optimization

Parameter estimation

The Markowitz model gives us an optimal portfolio assuming that we have perfect
information on the µi s and σij s for the assets that we are considering.

Therefore, an important practical issue is the estimation of the µi s and σij s.

A reasonable approach for estimating these data is the use time series of past
returns (rit = return of asset i from time t − 1 to time t , where i = 1, · · · , n,
t = 1, · · · ,T ).

Unfortunately, it has been observed that small changes in the time series rit lead
to changes in the µi s and σij s.

Such changes often lead to significant changes in the “optimal” portfolio.

Markowitz recommends using βs (unknown regression parameters of the
securities) to calculate the µi s and σij s.

The βs can be calculated, but they can also be purchased from financial research
groups and risk model providers.
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Unfortunately, it has been observed that small changes in the time series rit lead
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Large-scale portfolio optimization

Parameter estimation

The fundamental weakness of the Markowitz model remains, no matter how
cleverly the µi s and σij s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one µi may produce a totally different portfolio x.

So, what can be done in practice to overcome this problem, or at least reduce it?
Michaud recommends resampling returns from historical data to generate alternative µ

and σ estimates, solving the MVO problem repeatedly with inputs generated this way,
and then combining the optimal portfolios obtained in this manner.

Robust optimization approaches provide an alternative strategy to mitigate the
input sensitivity in MVO models.

Another interesting approach is the Black-Litterman model, which allows investors
to combine their unique views regarding the performance of various assets with
the market equilibrium in a manner that results in intuitive, diversified portfolios.
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The Black-Litterman Model

Combine investor’s view with the market equilibrium as follows:

The expected return vector µ is assumed to have a probability distribution that is
the product of two multivariate normal distributions.

The first distribution represents the returns at market equilibrium, with mean π
and covariance matrix τ ·Σ, where τ is a small constant and Σ = (σij ) denotes
the covariance matrix of asset returns.

Note that the factor τ should be small since the variance τ · σ2
i of the random variable

µi is typically much smaller than the variance σ2
i of the underlying asset returns.
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The Black-Litterman Model

Second distribution

The second distribution represents the investor’s view about the µi s.

These views are expressed as

P · µ = q + ε,

where P is a k × n matrix, q is a k -dimensional vector provided by the investor, ε
is a normally distributed random vector with mean 0.
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The Black-Litterman Model

Second distribution

The resulting distribution for µ is a multivariate normal distribution with mean

µ̄ = [(τ ·Σ)−1 + PT ·Ω−1 · P]−1 · [(τ ·Σ)−1 · π + PT ·Ω−1 · q].

Black and Litterman use µ̄ as the vector of expected returns in the Markowitz
model.

Ω is the diagonal covariance matrix.
The stronger the investor’s view, the smaller the corresponding ωi = Ωii .
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The Black-Litterman Model

Example (Illustrating the Black-Litterman approach)

Using our previous MVO example, the expected returns on Stocks, Bonds, and
Money Market were computed to be

Stocks Bonds MM
Market rate of return 10.73% 7.37% 6.27%

This is what we use for the vector π representing market equilibrium.
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The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

We need to choose the value of the small constant τ . So, take τ = 0.1.

We have two views that we would like to incorporate into the model.
First, we hold a strong view that the Money Market rate will be 2% next year.
Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by
5%, but we are not as confident about this view.

These two views can be expressed as follows:

µM = 0.02 strong view: ω1 = 0.00001,

µS − µB = 0.05 weaker view: ω2 = 0.001.

Thus, P =

(
0 0 1
1 −1 0

)
, q =

(
0.02
0.05

)
and Ω =

(
0.00001 0

0 0.001

)
.
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The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

Applying our formula to compute µ̄ gives:

Stocks Bonds MM
Market rate of return µ̄ 11.77% 7.51% 2.34%

We solve the same QP expect for the modified expected return constraint:

min
1
2
· [0.02778 · x2

S + 2 · 0.00387 · xS · xB + 2 · 0.00021 · xS · xM

+0.01112 · x2
B − 2 · 0.00020 · xB · xM + 0.00115 · x2

M ]

0.1177 · xS + 0.0751 · xB + 0.0234 · xM ≥ R

xS + xB + xM = 1

xS ,XB ,XM ≥ 0

Z. Donovan and M. Xu Optimization Methods in Finance
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The Black-Litterman Model

Black-Litterman efficient portfolios

Solving this QP for R = 4% to R = 11.5% with increments of 0.5% results in the
optimal portfolios shown in the table below.

Rate of return R Variance Stocks Bonds MM
0.040 0.0012 0.08 0.17 0.75
0.045 0.0015 0.11 0.21 0.68
0.050 0.0020 0.15 0.24 0.61
0.055 0.0025 0.18 0.28 0.54
0.060 0.0032 0.22 0.31 0.47
0.065 0.0039 0.25 0.35 0.40
0.070 0.0048 0.28 0.39 0.33
0.075 0.0059 0.32 0.42 0.26
0.080 0.0070 0.35 0.46 0.19
0.085 0.0083 0.38 0.49 0.13
0.090 0.0096 0.42 0.53 0.05
0.095 0.0111 0.47 0.53 0.00
0.100 0.0133 0.58 0.42 0.00
0.105 0.0163 0.70 0.30 0.00
0.110 0.0202 0.82 0.18 0.00
0.115 0.0249 0.94 0.06 0.00
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The Black-Litterman Model

Black-Litterman efficient portfolios

Solving this QP for R = 4% to R = 11.5% with increments of 0.5% results in the
optimal portfolios shown in the table below.

Rate of return R Variance Stocks Bonds MM
0.040 0.0012 0.08 0.17 0.75
0.045 0.0015 0.11 0.21 0.68
0.050 0.0020 0.15 0.24 0.61
0.055 0.0025 0.18 0.28 0.54
0.060 0.0032 0.22 0.31 0.47
0.065 0.0039 0.25 0.35 0.40
0.070 0.0048 0.28 0.39 0.33
0.075 0.0059 0.32 0.42 0.26
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0.085 0.0083 0.38 0.49 0.13
0.090 0.0096 0.42 0.53 0.05
0.095 0.0111 0.47 0.53 0.00
0.100 0.0133 0.58 0.42 0.00
0.105 0.0163 0.70 0.30 0.00
0.110 0.0202 0.82 0.18 0.00
0.115 0.0249 0.94 0.06 0.00

Z. Donovan and M. Xu Optimization Methods in Finance



Mean-Variance Optimization
Brief mention of other MVO models

Maximizing the Sharpe Ratio
More Topics not covered

References

The Black-Litterman Model

Black-Litterman efficient portfolios

Solving this QP for R = 4% to R = 11.5% with increments of 0.5% results in the
optimal portfolios shown in the table below.

Rate of return R Variance Stocks Bonds MM
0.040 0.0012 0.08 0.17 0.75
0.045 0.0015 0.11 0.21 0.68
0.050 0.0020 0.15 0.24 0.61
0.055 0.0025 0.18 0.28 0.54
0.060 0.0032 0.22 0.31 0.47
0.065 0.0039 0.25 0.35 0.40
0.070 0.0048 0.28 0.39 0.33
0.075 0.0059 0.32 0.42 0.26
0.080 0.0070 0.35 0.46 0.19
0.085 0.0083 0.38 0.49 0.13
0.090 0.0096 0.42 0.53 0.05
0.095 0.0111 0.47 0.53 0.00
0.100 0.0133 0.58 0.42 0.00
0.105 0.0163 0.70 0.30 0.00
0.110 0.0202 0.82 0.18 0.00
0.115 0.0249 0.94 0.06 0.00

Z. Donovan and M. Xu Optimization Methods in Finance



Mean-Variance Optimization
Brief mention of other MVO models

Maximizing the Sharpe Ratio
More Topics not covered

References

The Black-Litterman Model

Black-Litterman efficient portfolios

Solving this QP for R = 4% to R = 11.5% with increments of 0.5% results in the
optimal portfolios shown in the table below.

Rate of return R Variance Stocks Bonds MM
0.040 0.0012 0.08 0.17 0.75
0.045 0.0015 0.11 0.21 0.68
0.050 0.0020 0.15 0.24 0.61
0.055 0.0025 0.18 0.28 0.54
0.060 0.0032 0.22 0.31 0.47
0.065 0.0039 0.25 0.35 0.40
0.070 0.0048 0.28 0.39 0.33
0.075 0.0059 0.32 0.42 0.26
0.080 0.0070 0.35 0.46 0.19
0.085 0.0083 0.38 0.49 0.13
0.090 0.0096 0.42 0.53 0.05
0.095 0.0111 0.47 0.53 0.00
0.100 0.0133 0.58 0.42 0.00
0.105 0.0163 0.70 0.30 0.00
0.110 0.0202 0.82 0.18 0.00
0.115 0.0249 0.94 0.06 0.00

Z. Donovan and M. Xu Optimization Methods in Finance



Mean-Variance Optimization
Brief mention of other MVO models

Maximizing the Sharpe Ratio
More Topics not covered

References

The Sharpe Ratio

Definition of ‘Sharpe Ratio’

The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio
has become the industry standard for such calculations.

The Sharpe Ratio (reward-to-volatility ratio) is the average return earned in excess
of the risk-free rate per unit of volatility or total risk.

It was firstly introduced by Nobel Laureate William F. Sharpe to measure the
performance of mutual funds in 1966.

Subtracting the risk-free rate from the mean return, the performance associated
with risk-taking activities can be isolated.

One intuition of this calculation is that a portfolio engaging in “zero risk”
investment, such as the purchase of U.S. Treasury bills (for which the expected
return is the risk-free rate), has a Sharpe ratio of exactly zero.

Generally, the greater the value of the Sharpe ratio, the more attractive the risk
adjusted return.
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Capital Allocation Line (CAL)

Notation

rf = rate of return on the risk-free asset

rp = rate of return on the risky portfolio

rC = rate of return on the complete portfolio (including both the risk-free asset and
the risky portfolio)

y = proportion of the investment budget to be placed in the risky portfolio

σp = standard deviation of the return on the risky portfolio

σC = standard deviation of the return on the complete portfolio
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Characterization of the Complete Portfolio

Rate of return
rC = y · rp + (1− y) · rf

Expected rate of return
E(rC) = y · E(rp) + (1− y) · E(rf ) = y · E(rp) + (1− y) · rf

= rf + y · [E(rp)− rf ]

Variance
σC

2 = y2 · σp
2 + (1− y)2 · 0 + 2 · y · (1− y) · cov(rp, rf )

= y2 · σp
2

Standard deviation
σC = y · σp
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Example

rf = 7%

E(rp) = 15%

σp = 22%

y = 0.75

E(rC) = 0.75 · 15% + 0.25 · 7% = 13%

σC = y · σp = 0.75 · 22% = 16.5%

Slope of CAL = [E(rp)− rf ]/σp = 8%/22% = 0.36
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Efficient Frontier

Recall that Markowitz Efficient Frontier is the set of all portfolios of which expected
returns reach the maximum given a certain level of risk.

We denote with Rmin and Rmax the minimum and maximum expected returns for
efficient portfolios.

Define the function

σ(R) : [Rmin,Rmax ]→ R, σ(R) := (xR
T ·Σ · xR)1/2,

where xR denotes the unique solution of MVO problem.

Since we assumed that Σ is positive definite, it is easy to show that the function
σ(R) is strictly convex in its domain.

We will assume that rf < Rmin, which is natural since the portfolio xmin has a
positive risk associated with it while the risk-free asset does not.
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Maximize the Sharpe Ratio

Remark

Since CAL goes through a feasible point, the optimal CAL goes through a point on
the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

E(r)

σ

Efficient frontier

xmin

xmax

Feasible point
rf •

CAL

CALOptimal CAL

Optimal risky
portfolio
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Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

max
x

µT · x− rf

(xT ·Σ · x)1/2

A · x = b

C · x ≥ d

Remark

Although it has a nice polyhedral feasible region, its objective function is
somewhat complicated and possibly non-concave.

So it is not a convex optimization problem.

Z. Donovan and M. Xu Optimization Methods in Finance
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Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an
equivalent convex quadratic programming problem.

Assumptions

1 We assume that
∑n

i=1 xi = 1 for any feasible portfolio x.
This is a natural assumption since the xi s are the proportions of the portfolio in
different asset classes.

2 We assume that there exists a feasible portfolio x̂ with µT · x̂ > rf .
If all feasible portfolios have expected return bounded by the risk-free rate, there is
no need to optimize, the risk-free investment dominates all others.

Z. Donovan and M. Xu Optimization Methods in Finance
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Proposition

Given a set X of feasible portfolios with the properties that eT · x = 1, ∀x ∈ X and
∃x̂ ∈ X such that µT · x̂ > rf , the portfolio x∗ with the maximum Sharpe ratio in this set
can be found by solving the following problem

min yT ·Σ · y s.t . (y, κ) ∈ X+, (µ− rf · e)T · y = 1,

where
X+ := {x ∈ Rn, κ ∈ R | κ > 0,

x
κ
∈ X} ∪ (0, 0).

If (y, κ) is the solution of this problem, then x∗ = y
κ

.

Remark

This is a quadratic program and can be solved by IPMs.
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Proof of Proposition

By our second assumption, it suffices to consider only those x for which
(µ− rf · e)T · x > 0. Let us make the following change of variables:

κ = 1
(µ−rf ·e)T ·x

y = κ · x

Then,
√

xT ·Σ · x = 1
κ
·
√

yT ·Σ · y and the objective function can be written as
1/
√

yT ·Σ · y in terms of the new variables.
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Proof of Proposition (cont’d.)

Note also that
(µ− rf · e)T · x > 0, x ∈ X ⇔ κ > 0,

y
κ
∈ X ,

and
κ =

1
(µ− rf · e)T · x

⇔ (µ− rf · e)T · y = 1.

Since (µ− rf ·e)T ·y = 1 rules out (0, 0) as a solution, replacing κ > 0, (y, κ) ∈ X with
(y, κ) ∈ X+ dose not affect the solutions – it just makes the feasible set a closed set.
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Exercise

If X = {x | A · x ≥ b, C · x = d}, show that

X+ = {(x, κ) | A · x− b · κ ≥ 0, C · x− d · κ = 0, κ ≥ 0}.
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Exercise

Consider the previous MVO example. The covariance matrix is given as

Covariance Stocks Bonds MM
Stocks 0.02778 0.00387 0.00021
Bonds 0.00387 0.01112 -0.00020

MM 0.00021 -0.00020 0.00115

And the geometric mean is given as

Stocks Bonds MM
Geometric mean µi 10.73% 7.37% 6.27%

Also, the matrix A =
[

1 1 1
]

and b = 1.
Assume that the risk-free return rate is 3%. Find the program of optimal risky portfolio
and the equivalent quadratic programming problem.
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Solution

Σ =

 0.02778 0.00387 0.00021
0.00387 0.01112 −0.00020
0.00021 −0.00020 0.00115



µ =

 0.1073
0.0737
0.0627


So the program of optimal risky portfolio is

max
0.1073 · xS + 0.0737 · xB + 0.0627 · xM − 0.03(

0.02778 · x2
S + 2 · 0.00387 · xS · xB + 2 · 0.00021 · xS · xM

+0.01112 · x2
B − 2 · 0.00020 · xB · xM + 0.00115 · x2

M

)1/2

xS + xB + xM = 1.
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Solution

µ− rf · e =

 0.1073
0.0737
0.0627

−
 0.03

0.03
0.03

 =

 0.0773
0.0437
0.0327


We can find κ and y as below.

κ =
1

 0.0773
0.0437
0.0327




T

·

 xS

xB

xM


=

1
0.0773 · xS + 0.0437 · xB + 0.0327 · xM

y =

 yS

yB

yM

 =


xS

0.0773·xS +0.0437·xB+0.0327·xM
xB

0.0773·xS +0.0437·xB+0.0327·xM
XM

0.0773·xS +0.0437·xB+0.0327·xM
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And the equivalent quadratic programming problem is

min 0.02778 · y2
S + 2 · 0.00387 · yS · yB + 2 · 0.00021 · yS · yM

+0.01112 · y2
B − 2 · 0.00020 · yB · yM + 0.00115 · y2

M
yS

κ
+

yB

κ
+

yM

κ
= 1 (or yS + yB + yM − κ = 0)

0.0773 · yS + 0.0437 · yB + 0.0327 · yM = 1

y, κ ≥ 0
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1 G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge
University Press, 2007.

2 Website: http://www.investopedia.com/terms/s/sharperatio.asp

3 Website: http://mirceatrandafir.com/teaching/econ435/

4 Website: http://web.stanford.edu/˜wfsharpe/art/sr/sr.htm

Z. Donovan and M. Xu Optimization Methods in Finance

http://www.investopedia.com/terms/s/sharperatio.asp
http://mirceatrandafir.com/teaching/econ435/
http://web.stanford.edu/~wfsharpe/art/sr/sr.htm

	Mean-Variance Optimization
	Brief mention of other MVO models
	Maximizing the Sharpe Ratio
	More Topics not covered
	References

