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The Casino Game

Example (1)

Suppose you are given the choice of playing one of two games at a casino.

Game X has a 5% chance of winning $1000, and a 95% chance of winning
nothing.

Game Y has a 5% chance of winning $5000. If you lose however, you have to pay
the casino $200.

You are allowed to play this game one time.

Which game would you choose to play?
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Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,

and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Portfolio Optimization

Example (2)

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Optimization Approach

An optimization approach to the decision problems:

Build a mathematical model of the decision problem.

Analyze available quantitative data to use in the mathematical model.

Use a numerical method to solve the mathematical model.

Infer the actual decision from the solution to the mathematical model.
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The Quadratic Programming Problem

The quadratic programming (QP) problem

Quadratic programming (QP) refers to the problem of optimizing a quadratic
function, subject to linear equality and inequality constraints.

The general quadratic program can be stated as follows:

Optimize
1
2
· xT · Q · x + cT · x

A · x {≤,=, or ≥} b

x ≥ 0

QPs are special classes of nonlinear optimization problems, and contain linear
programming problems as special cases.
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The Quadratic Programming Problem

The quadratic programming (QP) problem

In standard form, QPs may be represented as follows:

min
x

f (x) :=
1
2
· xT · Q · x + cT · x

A · x = b

x ≥ 0
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The Quadratic Programming Problem

Positive semidefinite matrix Q

Recall that, when Q is a positive semidefinite matrix, i.e., when yT · Q · y ≥ 0 for
all y, the objective function of the problem is a convex function of x.

In this case, a local minimizer of the objective function is also a global minimizer.

The figure below shows the graph and contours of a quadratic function with a
positive semidefinite Q.

Figure: Graph and contours of a convex function
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The Quadratic Programming Problem

Indefinite or negative semidefinite matrix Q

When Q is not a positive semidefinite matrix (either indefinite or negative
semidefinite), the objective function is nonconvex, and may have local minimizers
that are not global minimizers.

The figure below shows the graph and contours of a quadratic function with an
indefinite Q.

Figure: Graph and contours of a nonconvex function
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The Quadratic Programming Problem

The dual of the QP problem

As in linear programming, we can develop a dual of quadratic programming
problems.

The dual of f(x) is given below:

max
x,y,s

bT · y−
1
2
· xT · Q · x

AT · y− Q · x + s = c

x ≥ 0, s ≥ 0

Note that, unlike the case of linear programming, the variables of the primal
quadratic programming problem also appear in the dual QP.
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Karush-Kuhn-Tucker (KKT) Optimality Conditions

Karush-Kuhn-Tucker Theorem (as applied to the QP problem)

Suppose that x is a local optimal solution of the QP such that it satisfies
A · x = b, x ≥ 0, and assume that Q is a positive semidefinite matrix.

Then, there exist vectors y and s such that the following conditions hold:

AT · y− Q · x + s = c

s ≥ 0

xi · si = 0, ∀i

Futhermore, x is a global optimal solution.
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Karush-Kuhn-Tucker (KKT) Optimality Conditions

More about the KKT theorem

The positive semidefiniteness condition related to the Hessian of the Lagrangian
function in the KKT theorem is automatically satisfied for convex quadratic
programming problems, and therefore is not included in the theorem above.

If vectors x, y, and s satisfy conditions of the KKT theorem as well as the primal
feasibility conditions

A · x = b

x ≥ 0

then x is a global optimal solution.

In other words, all 5 conditions are both necessary and sufficient for x, y, and s to
describe a global optimal solution of the QP problem.
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KKT conditions

In a manner similar to linear programming, the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

KKT conditions

In a manner similar to linear programming, the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

KKT conditions

In a manner similar to linear programming,

the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

KKT conditions

In a manner similar to linear programming, the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

KKT conditions

In a manner similar to linear programming, the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

KKT conditions

In a manner similar to linear programming, the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

KKT conditions

In a manner similar to linear programming, the optimality conditions can be seen
as a collection of conditions for:

1 primal feasibility: A · x = b, x ≥ 0;

2 dual feasibility: AT · y − Q · x + s = c, s ≥ 0;

3 complementary slackness: for each i = 1, · · · , n we have xi · si = 0.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Karush-Kuhn-Tucker (KKT) Optimality Conditions

Exercise 3

Consider the following quadratic program

min 2 · x2
1 + x2

2 + 4 · x2
3

x1 + 2 · x2 − x3 = 6

2 · x1 − 2 · x2 + 3 · x3 = 12

x1, x2, x3 ≥ 0
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Exercise 3

Is the quadratic function convex? Yes.

Q =

 4 0 0
0 2 0
0 0 8

 which is a positive semidefinite matrix.

Set up the KKT conditions for the optimal solution in matrix form, and show how
you would solve for x and y.
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Our KKT conditions for the optimal solution in matrix form is as follows:[
−Q AT

A 0

] [
x
y

]
+

[
s
0

]
=

[
c
b

]

Where

Q =

 4 0 0
0 2 0
0 0 8

 , A =

[
1 2 −1
2 −2 3

]
, c =

 0
0
0

 , b =

[
6

12

]
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Exercise 3

We get the following linear system:
−4 0 0 1 2
0 −2 0 2 −2
0 0 −8 −1 3
1 2 −1 0 0
2 −2 3 0 0




x1

x2

x3

y1

y2

 +


0
0
0
0
0

 =


0
0
0
6

12



After solving the system, we find that x = (5.045, 1.194, 1.433) is an optimal
solution with y = (7.522, 6.328) and s = (0, 0, 0).
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Interior-Point Methods

Interior-Point Method

Interior-Point Method(IPM) finds primal-dual solutions (x, y, s) by applying variants of
Newton’s method to the optimality conditions and modifying the search directions and
step lengths so that x ≥ 0 and s ≥ 0 are satisfied strictly at every iteration.

Rewrite the Optimality Conditions

F(x, y, s) =

ATy− Qx + s− c
Ax− b

XSe

 =

0
0
0

 , (x, s) ≥0

X and S are diagonal matrices such that Xii = xi and Xij = 0, i 6= j , and similarly for S.
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Strategy

Remark

xi · si is a nonlinear constraint, so we cannot solve this system using linear system
solution methods such as Gaussian elimination.

Since the system is square we can apply Newton’s method.

The existence of nonnegative constraints creates a difficulty, otherwise we can
use Newton’s method directly.

Since we are generating iterates for both the primal and dual problems, this
version of IPMs are often called primal-dual interior-point methods.

Strategy of Applying A Modified Newton’s Method

1 Identify an initial solution (x0, y0, s0), which satisfies the first two constraints
(linear) and (x0, s0) > 0, but not the third one.

2 Generate new points (xk, yk, sk) that also satisfy these same conditions and get
progressively closer to satisfying the third constraint.
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version of IPMs are often called primal-dual interior-point methods.

Strategy of Applying A Modified Newton’s Method

1 Identify an initial solution (x0, y0, s0), which satisfies the first two constraints
(linear) and (x0, s0) > 0, but not the third one.

2 Generate new points (xk, yk, sk) that also satisfy these same conditions and get
progressively closer to satisfying the third constraint.
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Algorithms for IPMs with pure Newton direction

Definition

Feasible set: F := {(x, y, s) : A · x = b,AT · y− Q · x + s = c, x ≥ 0, s ≥ 0}
(x, y, s) ∈ F is a feasible point.

Strictly feasible set:
F0 := {(x, y, s) : A · x = b,AT · y− Q · x + s = c, x > 0, s > 0}
(x, y, s) ∈ F0 is a strictly feasible solution, which lies in the interior of the region
defined by those constraints rather than being on the boundary. So F0 is the
relative interior of the set F .
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Exercise 4

Consider the quadratic programming problem given below:

min x1 · x2 + x2
1 +

3
2
· x2

2 + 2 · x2
3

+2 · x1 + x2 + 3 · x3

x1 + x2 + x3 = 1

x1 − x2 = 0

x1, x2, x3 ≥ 0

The current primal-dual estimate of the solution xk = ( 1
3 ,

1
3 ,

1
3 )T , yk = (1, 1

2 )T , and
sk = ( 3

2 ,
11
6 ,

10
3 )T . Is (x , y , s) ∈ F? How about F0?
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Algorithms for IPMs with pure Newton direction

Two Basic Ingredients of IPMs

1 A measure that can be used to evaluate and compare the quality of alternative
solutions and search directions.

2 A method to generate a better solution, with respect to the measure just
mentioned, from a non-optimal solution.
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Algorithms for IPMs with pure Newton direction

Pure Newton Step

Assume that we have a current estimate (xk , yk , sk ) of the optimal solution to the
problem.

The Newton step from this point is determined by solving the following system of linear
equations:

J(xk, yk, sk)

 ∆xk

∆yk

∆sk

 = −F(xk, yk, sk),

where J(xk, yk, sk) is the Jacobian of the function F and [∆xk,∆yk,∆sk]T is the
search direction.
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Pure Newton Step

First, we observe that

J(xk, yk, sk) =

 −Q AT I
A 0 0
Sk 0 Xk


where, Xk and Sk are diagonal matrices with the components of the vectors xk and sk

along their diagonals.
Furthermore, if (xk, yk, sk) ∈ F0, then

F(xk, yk, sk) =

 0
0

XkSke
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Pure Newton Step

The Newton equation reduces to −Q AT I
A 0 0
Sk 0 Xk


 ∆xk

∆yk

∆sk

 =

 0
0

−XkSke

 .
So by solving this equation system, we can find the search step for (k + 1)th iteration.

Exercise 5

Consider the quadratic programming problem given in Exercise 4 and the current
primal-dual estimate of the solution xk = ( 1

3 ,
1
3 ,

1
3 )T , yk = (1, 1

2 )T , and
sk = ( 3

2 ,
11
6 ,

10
3 )T . Form and solve the Newton equation for this problem at (xk, yk, sk).
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Algorithms for IPMs with pure Newton direction

Step-size Parameter

In our case, this action may not be permissible, since the Newton step may take
us to a new point that does not necessarily satisfy the nonnegativity constraints
x ≥ 0 and s ≥ 0.

To avoid such violations, we sill seek a step-size parameter αk ∈ (0, 1] such that
xk + αk ·∆xk > 0 and sk + αk ·∆sk > 0.

Once we determine the step-size parameter, we choose the next iterate as

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk · (∆xk,∆yk,∆sk).
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Algorithms for IPMs with pure Newton direction

Weakness of IPMs with pure Newton direction

We often can take only a small step along the direction (αk � 1) before violating
the condition xk + αk ·∆xk > 0 and sk + αk ·∆sk > 0; hence, the pure Newton
direction often does not allow us to make much more progress towards a solution.

Modify the basic Newton procedure in two important ways

1 They bias the search direction toward the interior of the nonnegative orthant
(x, s) ≥ 0 so that we can move further along the direction before one of the
components of (x, s) becomes negative.

2 They keep the component of (x, s) from moving “too close” to the boundary of the
nonnegative of orthant. Search directions computed from points that are close to
the boundary tend to be distorted, and little progress can be made along them.
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Algorithms for IPMs with centered Newton direction

The Central Path

The central path C is an arc of strictly feasible points(any point in C is in F0) that plays
a vital role in the theory of primal-dual algorithm. It is parameterized by a scalar τ > 0,
and the points (xτ , yτ , sτ ) on the central path are obtained as solutions of the
following system:

F(xτ , yτ , sτ ) =

 0
0
τ · e

 , (xτ , sτ ) > 0.

Then, the central path C is defined as

C = {(xτ , yτ , sτ ) : τ > 0}.

The third constraint can be rewritten as

(xτ )i · (sτ )i = τ, ∀i.
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The Central Path

Remark

Instead of the complementary condition, we require the products (xτ )i · (sτ )i have
the same value for all i .

The system has a unique solution for every τ > 0, provided that F0 is nonempty.

As τ → 0, the conditions defining the points on the central path approximate the
set of optimality conditions more and more closely.

If F0 is nonempty, (xτ , yτ , sτ ) will converge to an optimal solution of the problem.
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The Central Path

Exercise 6

Recall the quadratic programming problem given in Exercise 4 and the current
primal-dual estimate of the solution xk = ( 1

3 ,
1
3 ,

1
3 )T , yk = (1, 1

2 )T , and
sk = ( 3

2 ,
11
6 ,

10
3 )T . Verify that (xk, yk, sk) is not on the central path.
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IPMs with Centered Newton directions

Centered Newton directions

To get over the weakness with pure Newton directions, most interior-point methods take
a step toward points on the central path C corresponding to predetermined value of τ .

Since such directions are aiming for central points, they are called centered directions.
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IPMs with Centered Newton directions

Description

A centered direction is obtained by applying Newton update to the following system:

F̂(x, y, s) =

AT · y− Q · x + s− c
A · x− b

X · S · e− τ · e

 =

0
0
0

 .
Since the Jacobian of F̂ is identical to the Jacobian of F , proceeding as the previous
Newton equation, we obtain the following (modified) Newton equation for the centered
direction:  −Q AT I

A 0 0
Sk 0 Xk


 ∆xk

c

∆yk
c

∆sk
c

 =

 0
0

τ · e− Xk · Sk · e

 .
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IPMs with Centered Newton directions

Description

We introduce a centering parameter σ ∈ [0, 1] and a duality gap (or average
complementarity) µ defined by:

µ = µ(x, s) :=

∑n
i=1 xi · si

n
=

xT · s
n

.

Note that, when (x, y, s) satisfy the conditions A · x = b, x ≥ 0 and
AT · y− Q · x + s = c, s ≥ 0, then (x, y, s) are optimal if and only if µ(x, s) = 0. If µ is
large, then we are far away from the solution. Therefore, µ serves as a measure of
optimality for feasible points – the smaller the duality gap, the closer the point of
optimality.
For a central point (xτ , yτ , sτ ) we have

µ(xτ , sτ ) =

∑n
i=1(xτ )i · (sτ )i

n
=

∑n
i=1 τ

n
= τ.
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IPMs with Centered Newton directions

Description

Using a simple change in notation, the centered direction can now be describe as the
solution of the following system: −Q AT I

A 0 0
Sk 0 Xk


 ∆xk

c

∆yk
c

∆sk
c

 =

 0
0

σk ·muk · e− Xk · Sk · e

 ,
where µk := µ(xk, sk) = (xk)

T ·sk

n and σk ∈ [0, 1] is a user defined quantity describing
the ratio of the duality gap at the target central point and the current point.
When σk = 1, we have a pure centering direction.
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IPMs with Centered Newton directions

Remark

We have three ways to choose to target a central point:

At a lower level than our current point (τ < µ(x, s));

At the same level as our current point (τ = µ(x, s));

At a higher level than our current point (τ > µ(x, s)).

In most circumstances, the third option is not a good choice as it targets a central point
that is ”farther” than the current iterate to the optimal solution.

Therefore, we will always choose τ ≤ µ(x, s) in defining centered directions.
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Generic Interior Point Algorithm

General Interior Point Algorithm I

With these basic concepts in hand, we can define a general primal-dual interior point
algorithm.

Choose (x0, y0, s0) ∈ F0. For k = 0, 1, 2, ... repeat the following steps.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Generic Interior Point Algorithm

General Interior Point Algorithm I

With these basic concepts in hand, we can define a general primal-dual interior point
algorithm.

Choose (x0, y0, s0) ∈ F0. For k = 0, 1, 2, ... repeat the following steps.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Generic Interior Point Algorithm

General Interior Point Algorithm I

With these basic concepts in hand, we can define a general primal-dual interior point
algorithm.

Choose (x0, y0, s0) ∈ F0. For k = 0, 1, 2, ... repeat the following steps.

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Generic Interior Point Algorithm

General Interior Point Algorithm II

Choose σk ∈ [0, 1], let µk = (xk)
T ·sk

n . Solve

 −Q AT I
A 0 0
Sk 0 Xk


 ∆xk

c

∆yk
c

∆sk
c

 =

 0
0

σk · µk · e− Xk · Sk · e

 .

Choose αk such that

xk + αk ·∆xk > 0, sk + αk ·∆sk > 0.

Set
(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk · (∆xk,∆yk,∆sk),

and k := k + 1.
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Starting From an Infeasible Point

Motivation

The generic interior point method starts with a strictly feasible iterate.

It is not practical since finding such a starting point is not always a trivial task.

Fortunately, however, we can accommodate infeasible starting points with a small
modification of the linear system we solve in each iteration.
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Starting From an Infeasible Point

Modification

We only require that the initial point (x0, y0, s0) satisfy the nonnegativity
restrictions strictly: x0 > 0 and s0 > 0.

Then the Newton equation from an infeasible point (xk, yk, sk) is reduced to −Q AT I
A 0 0
Sk 0 Xk


 ∆xk

∆yk

∆sk

 =

 c + Q · xk − AT · yk − sk

b− A · xk

τ · e− Xk · Sk · e


We no longer have zeros in the first and second blocks of the right-hand-side
vector since we are not assuming that the iterates satisfy A · xk = b and
AT · yk − Q · xk + sk = c.

Replacing the linear system in this case, the algorithms can work simultaneously.
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We only require that the initial point (x0, y0, s0) satisfy the nonnegativity
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Solving Motivating Example 2

Optimization model for Example 2: Quantifying the notion of “risk”

Markowitz, in his Nobel prize winning work, showed that a rational investor’s
notion of minimizing risk can be closely approximated by minimizing the variance
of the return of the investment portfolio.
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Solving Motivating Example 2

Example

Recall that:

We wish to invest $1000.00 in stocks A, B, and C for a one month period.

We buy a stock at some dollar amount per share in the beginning of the month,
and sell it at some dollar amount per share at the end of the month.

The rate of return of each stock is a random variable with some expected value.

Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%.
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Optimization model for Example 2: The decision variables

Our decision variables are xi , i = 1, 2, 3, denoting the dollars invested in stock i .

Since we have a total of $1000.00 to invest, then the xi ’s should satisfy:

3∑
i=1

xi ≤ 1000

xi ≥ 0, i = 1, 2, 3
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Optimization model for Example 2: Covariance matrix

Let Q denote the covariance matrix of rates of stock returns.

The classical mean-variance model consists of minimizing portfolio risk, as
measured by

1
2
· xT · Q · x,

and subject to a set of constraints.

Since we want to have an expected return of at least $50.00, then

3∑
i=1

r̄i · xi ≥ 50

Where r̄i is the expected value of the random variable corresponding to the
monthly return per dollar for stock i .
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Optimization model for Example 2

Using matrices and vectors, our optimization model can be compactly stated as
follows:

min xT · Q · x

eT · x ≤ 1000

r̄T · x ≥ 50

x ≥ 0

Where x is the decision vector of size n (n is the number of stocks, n = 3 in our
example), e is an n-vector of ones, r̄ is the n-vector of expected returns of the
stocks, and Q is the n × n covariance matrix.
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Using MATLAB and Optimization Toolbox Function quadprog

Solving our motivating example using MATLAB

For our example, suppose that

Q =

0.0171 0.0033 0.0012
0.0033 0.0059 0.0045
0.0012 0.0045 0.0630

 , and r̄ =

0.026
0.008
0.074


So,

A =

[
1 1 1

−0.026 −0.008 −0.074

]
, and b =

[
1000
−50

]
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We find that our optimal solution is x* =

500
0

500

.
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Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
,

c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,

A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,

b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80



We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is

x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

Using MATLAB and Optimization Toolbox Function quadprog

Solving another example using MATLAB

min
x

1
2
· x2

1 + 3 · x1 + 4 · x2

x1 + 3 · x2 ≥ 15

2 · x1 + 5 · x2 ≤ 100

3 · x1 + 4 · x2 ≤ 80

x1, x2 ≥ 0

Q =

[
1 0
0 0

]
, c =

[
3
4

]
,A =

 −1 −3
2 5
3 4

 ,b =

 −15
100
80


We find that our optimal solution is x* = (0, 5).

Z. Donovan and M. Xu Optimization Methods in Finance



Motivating Examples
The Quadratic Programming Problem

Optimality Conditions
Interior-Point Methods

Examples and QP Software
References

References

References

1 Stephen J. Wright, Primal-Dual Interior-Point Methods, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997.
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