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Stochastic programming assumes that the uncertain parameters are random
variables with known probability distributions.

This information is then used to transform the stochastic program into a so-called
deterministic equivalent which might be:

a linear program,
a nonlinear program, or
an integer program
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The uncertainty is described by:

a certain sample space Ω , Ω is often a finite set {ω1, ..., ωs}
σ field of random events, and
a probability measure P

The corresponding probabilities p(ωk ) ≥ 0 satisfy
S∑

k=1
p(ωk ) = 1

For example, to represent the outcomes of flipping a fair coin twice in a row, we
would use four random events Ω = {HH,HT ,TH,TT}, each with probability 1/4.
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Stochastic programming models can include anticipative and/or adaptive decision
variables.

Anticipative variables correspond to those decisions that must be made
here-and-now and cannot depend on the future observations/partial realizations of
the random parameters.

Adaptive variables correspond to wait-and-see decisions that can be made after
some (or, sometimes all) of the random parameters are observed.

Stochastic programming models that include both anticipative and adaptive
variables are called recourse models.
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In investment planning, each new trading opportunity represents a new decision to
be made.

Therefore, trading dates where investment portfolios can be rebalanced become
natural choices for decision stages.

These problems can be formulated conveniently as multi-stage stochastic
programming problems with recourse.
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Exercise 1:

Suppose that we have two six-sided dice.

Dice one gives a result a1

Dice two gives a result a2

Assume the dice are fair, we have discrete probability distributions for a1 and a2
as:

a1 = i (i = 1, ..., 6) with probability 1/6
a2 = j (j = 1, ..., 6) with probability 1/6

Consider a simple LP with two variables and one constraint:

min 5x + 6y subject to:

a1x + a2y ≥ 3

x , y ≥ 0
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Exercise 1

If a1 and a2 were known numbers we will have LP problem,

but they are not.

One interpretation could be that we wish the constraint a1x + a2y ≥ 3 to hold for
all possible values of a1 and a2.

Then we simply have a deterministic LP with two variables and 36 constraints:

min 5 · x + 6 · y subject to:

i · x + j · y ≥ 3

i, j = 1, ...., 6

x , y ≥ 0
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Exercise 1

Suppose now that instead of insisting that the constraint

a1 · x + a2 · y ≥ 3 holds
for all possible values of a1 and a2.

We insist that it holds only with a specified probability 1− α (where 0 < α < 1).

For example, if α = 0.05 would mean that we want the constraint
a1 · x + a2 · y ≥ 3 to hold with probability 0.95.

Here, the constraint need not always be true now, rather it need only be true 95%
of the time.

Hence the problem is:

min 5 · x + 6 · y subject to:

Prob(a1 · x + a2 · y ≥ 3) ≥ 1− α

x , y ≥ 0
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min 5 · x + 6 · y subject to:

Prob(a1 · x + a2 · y ≥ 3) ≥ 1− α

x , y ≥ 0
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Exercise 1

To summarize:

a1 and a2 are unknown here,

we merely have probability distribution information
for them.

We are required to choose values for x and y such that:
The objective function is minimized and
The probability that the constraint a1 · x + a2 · y ≥ 3 is satisfied is at least 1− α.

Now:

For each pair of values (a1, a2) we have an associated joint probability (1/36)

Given values for x ≥ 0 and y ≥ 0 we can easily check whether the constraint is
true with probability 1− α.
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Exercise 1

Let us enumerate possibilities for x = 0, y = 1 and α = 0.05

a1 a2 Is a1 · 0 + a2 · 1 ≥ 3? Probability
1 1 No 1/36
1 2 No 1/36
etc

In this case, x = 0 and y = 1 is not a feasible solution, since we already have a
probability of 2/36 = 0.0555 that the constraint is infeasible.
It is impossible for the constraint to be feasible with probability 0.95 (since
1-0.0555 = 0.9445).

This particular problem (because it contains just two variables) can be easily
solved by a simple numeric search procedure.

For example, for α = 0.01 the solution is x = 3, y = 0 and for α = 0.05 the
solution is x = 1, y = 1
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Recourse Problems
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Two-Stage Problems with Recourse
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Two-Stage Problems with Recourse

The generic form of a two-stage stochastic linear program with recourse:

max aT x + E [max
y(ω)

c(ω)T y(ω)] (1)

Ax = b

B(ω)x + C(ω)y(ω) = d(ω)

x ≥ 0, y(ω) ≥ 0

The first-stage:
Decisions are represented by vector x. These decisions are made before the random
event ω is observed.

The second-stage:
Decisions are represented by vector y(ω). These decisions are made after the random
event ω has been observed, and therefore the vector y is a function of ω.
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Two-Stage Problems with Recourse

A and b define deterministic constraints on the first-stage decisions x

B(ω), C(ω), and d(ω) define stochastic constraints linking the recourse decisions
y(ω) to the first-stage decisions x .

The objective function contains a deterministic term aT x and the expectation of
the second-stage objective C(ω)T y(ω) taken over all realizations of the random
event ω.

Notice that the first-stage decisions will not necessarily satisfy the linking
constraints B(ω)x + C(ω)y(ω) = d(ω),

Therefore, recourse allows one to make sure that the initial decisions can be
”corrected” with respect to this second set of feasibility equations.
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Two-Stage Problems with Recourse

Problem (1) can be represented in an alternative manner by considering the
second-stage or recourse problem that is defined as follows,

given x, the
first-stage decisions:

f (x , ω) = max c(ω)T y(ω) (2)

C(ω)y(ω) = d(ω)− B(ω)x

y(ω) ≥ 0
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Two-Stage Problems with Recourse

Let f (x) = E [f (x , ω)] denote the expected value of this optimum.

If the function f (x) is available, the two-stage stochastic linear program (1)
reduces to a deterministic nonlinear program:

max aT x + f (x) (3)

Ax = b, x ≥ 0
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reduces to a deterministic nonlinear program:

max aT x + f (x) (3)

Ax = b, x ≥ 0

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References
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Assume that Ω = {ω1, ...., ωS}

and let p = (p1, ...., pS) denote the probability
distribution on this sample space.

The S possibilities ωk , for k = 1, ....,S are also called SCENARIOS .

The expectation of the second-stage objective becomes:
E [max

y(ω)
c(ω)T y(ω)] =

∑S
k=1 pk max

y(ωk )
c(ωk )T y(ωk )
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For brevity, we write ck instead of c(ωk ), etc.

Under this scenario approach, the two-stage stochastic linear programming
problem (1) takes the following form:

max
x

aT x +
S∑

k=1

pk max
yk

cT
k yk (4)

Ax = b

Bk x + Ck yk = dk for k = 1, ....,S

x ≥ 0, yk ≥ 0 for k = 1, ....,S
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Two-Stage Problems with Recourse

There is a different second stage decision vector yk for each scenario k .

The maximum in the objective is achieved by optimizing over all variables x and yk

simultaneously.
Therefore, this optimization problem is:

max
x,y1,...,yS

aT x + p1cT
1 y1 + · · ·+ pScT

S yS (5)

Ax = b

B1x + C1y1 = d1
...

. . .
...

...
BSx + CSyS = dS

x ≥ 0, yk ≥ 0 for k = 1, ....,S
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Two-Stage Problems with Recourse - Exercise 2

Exercise 2:

Suppose that we have to make a decision about the amount of a product X to
produce.

Each unit of X that we make costs us $2.

X is made to meet demand from customers in the next time period.

However demand is stochastic, with a discrete probability distribution:
demand = Ds

with probability ps (s = 1, ...,S)

S is the possible future demand scenarios.
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Two-Stage Problems with Recourse - Exercise 2

Customer demand must be met.

We have the flexibility to buy in the product from an external supplier to meet
observed customer demand but this costs us $3 per unit (i.e. we have recourse
to an additional source of supply if demand exceeds production).

How much should we choose to make now before we know what customer
demand is?

One way to think of this two-stage model is:
Action, make a decision (amount to produce)
Observation, observe a realization of the stochastic elements (demand that occurs)
Reaction (recourse), further decisions, depending upon the realization observed (extra
production to meet demand if necessary)
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Two-Stage Problems with Recourse - Exercise 2

For example, suppose S = 2 and D1 = 500, p1 = 0.6; D2 = 700, p2 = 0.4

We have to decide how much to produce now before demand is known. If we were
to produce 600, then if demand is 500 we are OK, if demand is 700 however we
need recourse to an extra 100 units to meet it.
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Two-Stage Problems with Recourse - Exercise 2

Let x1 ≥ 0 be the number of units of X to produce now (at the first stage)

Let y2s ≥ 0 be the number of units of X to buy from the external supplier at the
second stage in scenario s when the stochastic realization of the demand is Ds

(s = 1, 2).

Then the constraints to ensure that demand is always satisfied are:

x1 + y2s ≥ Ds s = 1, 2
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Two-Stage Problems with Recourse - Exercise 2

The SP is:

min 2 · x1 +
2∑

s=1

ps(3 · y2s)

x1 + y2s ≥ Ds s = 1, 2

x1 ≥ 0

y2s ≥ 0 s = 1, 2
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Recall here that D1 = 500, p1 = 0.6; D2 = 700, p2 = 0.4 with ordinary production
costing 2 and recourse production costing 3.

The complete SP is:

min 2 · x1 + 1.8 · y21 + 1.2 · y22

x1 + y21 ≥ 500

x1 + y22 ≥ 700

x1 ≥ 0

y21, y22 ≥ 0

The above program can be solved using Linear Programming.The production
quantity that minimizes expected cost is x1 = 500 and the minimum cost is 1240
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Multi-Stage Problems

The recourse decisions can be taken at several points in time, called stages.

Let n ≥ 2 be the number of stages.

The random event ω is a vector (o1, . . . , on−1) that gets revealed progressively
over time.

The first-stage decisions are taken before any component of ω is revealed.

Then o1 is revealed. With this knowledge, one takes the second-stage decisions.

After that, o2 is revealed, and so on.

We assume that Ω = {ω1, . . . , ωS} is a finite set.

Let pk be the probability of scenario ωk , for k = 1, . . . ,S.
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Multi-Stage Problems

Some scenarios ωk may be identical in their first components and only become
differentiated in the later stages.

Therefore, it is convenient to introduce the scenario tree.

Scenario tree illustrates how the scenarios branch off at each stage.
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Multi-Stage Problems

The nodes are labeled 1 through N

Node 1 is the root.
Each node is in one stage.
The root is the unique node in stage 1.
Each node i in stage k ≥ 2 is adjacent to a unique node a(i) in stage k − 1.
Node a(i) is called the father of node i .

The paths from the root to the leaves (in stage n) represent the scenarios.
Thus the last stage has as many nodes as scenarios.
These nodes are called the terminal nodes.
The collection of scenarios passing through node i in stage k have identical components
(o1, . . . , ok−1).
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Multi-Stage Problems

Node 1 is the root,

Nodes 4, 5, 6 and 7 are the terminal nodes.

The father of Node 6 is Node 2, in other words a(6) = 2.
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Multi-Stage Problems

Associated with each node i is a recourse decision vector xi .

For a node i in stage k , the decisions xi are taken based on the information that
has been revealed up to stage k .

Let qi be the probability of node i , conditional on being in Stage k .

The multi-stage stochastic program with recourse can be formulated as follows:

max
x1...xN

N∑
i=1

qi cT
i xi (6)

Ax1 = b

Bi xa(i) + Ci xi = di for i = 2 . . .N

xi ≥ 0
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Multi-Stage Problems

A and b are deterministic constraints on the first stage decisions x1

Bi , Ci , and di are stochastic constraints linking the recourse decisions xi in node i
to the recourse decisions xa(i) in its father node.
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Multi-Stage Problems - Exercise 3

Exercise 3: Develop the Linear program (6) for the following scenario tree:

The terminal nodes 4 to 7 correspond to scenarios 1 to 4 respectively.

Thus we have q4 = p1, q5 = p2, q6 = p3 and q7 = p4, where pk is the probability
of scenario k . We also have q2 = p1 + p2 + p3, q3 = p4 and q2 + q3 = 1.
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max cT
1 x1 + q2cT

2 x2 + q3cT
3 x3 + p1cT

4 x4 + p2cT
5 x5 + p3cT

6 x6 + p4cT
7 x7

Ax1 = b

B2x1 + C2x2 = d2

B3x1 + C3x3 = d3

B4x2 + C4x4 = d4

B5x2 + C5x5 = d5

B6x2 + C6x6 = d6

B7x3 + C7x7 = d7

xi ≥ 0
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Multi-Stage Problems - Exercise 4

Exercise 4: Develop the Linear program (6) for the following scenario tree:

The terminal nodes 4 to 7 correspond to scenarios 1 to 4 respectively.

Thus we have q4 = p1, q5 = p2, q6 = p3 and q7 = p4, where pk is the probability
of scenario k . We also have q2 = p1 + p2, q3 = p4 + p3 and q2 + q3 = 1.
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Multi-Stage Problems - Exercise 5

Exercise 5: Extend the two-stage problem we have considered in Exercise 2 to three
stages.

Consider the three-stage binary scenario tree shown below.
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Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:

a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6

a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand,

but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500,

then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3

a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

We initially make a decision about how much to produce.

At the second stage, we have two possible realizations of the stochastic demand:
a demand of 500 with probability 0.6
a demand of 700 with probability 0.4

After this realization, we make a decision as to how much to produce to meet
demand in the next period (THE THIRD-STAGE).

At the third stage, we have two possible realizations of the stochastic demand, but
these are different depending upon the realization at the second stage.

For example, if the realized demand at the second stage was 500, then the
possible realizations at the third stage are:

a demand of 600 with probability 0.3
a demand of 700 with probability 0.7

Note here at each level in the scenario tree the appropriate probabilities must sum
to one.

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Multi-Stage Problems - Exercise 5

The four possible scenarios of the future:

Scenario Second Stage Third Stage Probability
1 500 600 0.6(0.3) = 0.18
2 500 700 0.6(0.7) = 0.42
3 700 900 0.4(0.2) = 0.08
4 700 800 0.4(0.8) = 0.32

Note here that these probabilities add to one (these 4 scenarios are the only
possible futures that we can have).
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Let:

x1 ≥ 0 be the number of units of X to produce now (at the first stage)
y2s ≥ 0 be the number of units of X to buy from the external supplier at the second
stage in scenario s (s = 1, ..., 4)

x2s ≥ 0 be the number of units of X to produce at the second stage in scenario s
(s = 1, ..., 4)

y3s ≥ 0 be the number of units of X to buy from the external supplier at the third stage in
scenario s (s = 1, ..., 4)

To summarize:
In the first stage a decision as to how much to produce, x1

In the second stage a realization of the stochastic element (demand)
A decision as to the values of the recourse variables, y2s

In the second stage a decision as to how much to produce, x2s

In the third stage a realization of the stochastic element (demand)
A decision as to the values of the recourse variables, y3s
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y3s ≥ 0 be the number of units of X to buy from the external supplier at the third stage in
scenario s (s = 1, ..., 4)

To summarize:
In the first stage a decision as to how much to produce, x1

In the second stage a realization of the stochastic element (demand)
A decision as to the values of the recourse variables, y2s

In the second stage a decision as to how much to produce, x2s

In the third stage a realization of the stochastic element (demand)
A decision as to the values of the recourse variables, y3s
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Consider the first stage, the constraints to ensure customer demand is satisfied
are:

x1 + y2s ≥ 500 (s = 1, 2)

x1 + y2s ≥ 700 (s = 3, 4)

Now at the second stage we will have units left over (i.e. inventory) to help meet
future demand. This inventory level will be:

x1 + y2s − 500 (s = 1, 2)

x1 + y2s − 700 (s = 3, 4)

To ensure that demand is met in the third stage we have:
INVENTORY + AMOUNT PRODUCED + AMOUNT BOUGHT EXTERNALLY ≥ DEMAND

x1 + y2s − 500 + x2s + y3s ≥ 600 (s = 1)

x1 + y2s − 500 + x2s + y3s ≥ 700 (s = 2)

x1 + y2s − 700 + x2s + y3s ≥ 900 (s = 3)

x1 + y2s − 700 + x2s + y3s ≥ 800 (s = 4)
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Multi-Stage Problems - Exercise 5

Scenarios with a common history must (logically) have the same set of decisions:

Scenario 1 and 2, second stage:
y21 = y22
x21 = x22

Scenario 3 and 4, second stage:
y23 = y24
x23 = x24

We have just one cost incurred with certainty, namely 2 · x1, all other costs are
probabilistic.

The easiest way to summarize these costs is to look at each scenario in turn:

Scenario Probability Cost
1 0.18 2 · x21 + 3 · y21 + 3 · y31

2 0.42 2 · x22 + 3 · y22 + 3 · y32

3 0.08 2 · x23 + 3 · y23 + 3 · y33

4 0.32 2 · x24 + 3 · y24 + 3 · y34
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Thus, The complete three- stage stochastic program is:

min 2 · x1 + 0.18 · (2 · x21 + 3 · y21 + 3 · y31) + 0.42 · (2 · x22 + 3 · y22 + 3 · y32)

+0.08 · (2 · x23 + 3 · y23 + 3 · y33) + 0.32 · (2 · x24 + 3 · y24 + 3 · y34)

subject to

x1 + y2s − 500 + x2s + y3s ≥ 600 (s = 1)

x1 + y2s − 500 + x2s + y3s ≥ 700 (s = 2)

x1 + y2s − 700 + x2s + y3s ≥ 900 (s = 3)

x1 + y2s − 700 + x2s + y3s ≥ 800 (s = 4)

y21 = y22, x21 = x22, y23 = y24, x23 = x24

all variables ≥ 0
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Solving the previous problem using LP solver:

Cost will be 2664

x1 = 700

y21 = y22 = 0, y23 = y24 = 0

x21 = x22 = 500

y31 = y32 = 0

x23 = x24 = 800

y33 = 100, y34 = 0
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Decomposition

The size of the linear program (6) depends on the number of decision stages and
the branching factor at each node of the scenario tree.

For example, a 4-stage model with 25 branches at each node has
25x25x25x25 = 390625 scenarios.

Increasing the number of stages and branches quickly results in an explosion of
dimensionality.

Obviously, the size of (6) can be a limiting factor in solving realistic problems.

When this occurs, it becomes essential to take advantage of the special structure
of the linear program (6).
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Decomposition- Bender Decomposition

Bender Decomposition

Bender Decomposition is a technique in mathematical programming that allows
the solution of very large linear programming problems that have a special block
structure.

This structure often occurs in applications such as stochastic programming.

The structure that we want to exploit is that of the two-stage problem (5).

The constraint matrix of (5) has the following form:


A
B1 C1
...

. . .

BS CS


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Decomposition- Bender Decomposition

Note that the blocks C1, · · · ,CS of the constraint matrix are only interrelated
through the blocks B1, · · · ,BS which correspond to the first-stage decisions.

In other words, once the first-stage decisions x have been fixed, (5) decomposes
into S independent linear programs.

The idea of Benders decomposition is to solve:
A ”master problem” involving only the variables x
A series of independent ”recourse problems” each involving a different vector of
variables yk .

The master problem and recourse problems are linear programs.

The size of these linear programs is much smaller than the size of full model (5).
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Decomposition- Bender Decomposition

The recourse problems are solved for a given vector x and their solutions are used
to generate inequalities that are added to the master problem.

Solving the new master problem produces a new x and the process is repeated.

Let us write (5) as:

max
x

aT x + P1(x) + · · ·+ PS(x) (7)

Ax = b

x ≥ 0
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For k = 1, · · · ,S:

Pk (x) = max
yk

pk cT
k yk (8)

Ck yk = dk − Bk x

yk ≥ 0
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The dual linear program of the recourse problem (8) is:

Pk (x) = min
uk

uT
k (dk − Bk x) (9)

CT
k uk ≥ pk ck

We assume that the dual (9) is feasible, which is the case of interest in
applications.

The recourse linear program (8) will be solved for a sequence of vectors x i .
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The initial vector x0 might be obtained by solving:

max
x

aT x (10)

Ax = b, x ≥ 0

For a given vector x i , two possibilities can occur for the recourse linear program
(8): either (8) has an optimal solution or it is infeasible.
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If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,

then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program. Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,
then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program. Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,
then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program. Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,
then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program. Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,
then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program. Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,
then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program.

Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) has an optimal solution y i
k , and ui

k is the corresponding optimal dual solution,
then (9) implies that

Pk (x i ) = (ui
k )T (dk − Bk x i )

Since

Pk (x) ≤ (ui
k )T (dk − Bk x)

We get that

Pk (x) ≤ (ui
k )T (dk − Bk x i ) + Pk (x i )

This inequality, which is called an optimality cut, can be added to the current
master linear program. Initially, the master linear program is just (10).

Sinan Sabri Optimization Methods in Finance



Introduction
Probabilistic Constraints

Recourse Problems
Decomposition

Scenario Generation
References

Decomposition- Bender Decomposition

If (8) is infeasible,

then the dual problem is unbounded. Let ui
k a direction where

(9) is unbounded

(ui
k )T (dk − Bk x i ) < 0

CT
k ui

k ≥ pk ck

Since we are only interested in first-stage decisions x that lead to feasible
second-stage decisions yk , the following feasibility cut can be added to the current
master linear program:

(ui
k )T (dk − Bk x) ≥ 0
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After solving the recourse problems (8) for each k ,

we have the following lower
bound on the optimal value of (5):

LB = aT x i + P1(x i ) + · · ·+ PS(x i )

where we set Pk (x i ) = −∞ if the corresponding recourse problem is infeasible.

Adding all the optimality and feasibility cuts found so far (for j = 0, · · · , i) to the
master linear program, we obtain:

maxx,z1,··· ,zS aT x +
∑S

k=1 zk

Ax = b
zk ≤ (uj

k )T (Bk x j − Bk x) + pk (x j ) for some pairs (j, k)

0 ≤ (uj
k )T (dk − Bk x) for the remaining pairs (j, k)

x ≥ 0
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Denoting by x i+1, z i+1
1 , · · · , z i+1

S an optimal solution to this linear program,

we get
an upper bound on the optimal value of (5):

UB = aT x i+1 + z i+1
1 + · · ·+ z i+1

S

Benders decomposition alternately solves the recourse problems (8)

The master linear program with new optimality and feasibility cuts added at each
iteration until the gap between the upper bound UB and the lower bound LB falls
below a given threshold.
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iteration until the gap between the upper bound UB and the lower bound LB falls
below a given threshold.
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Decomposition- Bender Decomposition

Benders decomposition can also be used for multi-stage problems (6) in a
straightforward way.

The stages are partitioned into a first set that gives rise to the ”master problem” and a
second set that gives rise to the ”recourse problems”.

For example in a 6-stage problem, the variables of the first 2 stages could define the
master problem.

When these variables are fixed, (6) decomposes into separate linear programs each
involving variables of the last 4 stages.

The solutions of these recourse linear program provide optimality or feasibility cuts that
can be added to the master problem.

As before, upper and lower bounds are computed at each iteration and the algorithm
stops when the difference drops below a given tolerance.
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Scenario Generation

How should one generate scenarios in order to formulate a deterministic equivalent
formulation (6) that accurately represents the underlying stochastic program?

First, one needs to model the correlation over time among the random parameters.

For a pension fund, such a model might relate wage inflation (which influences the
liability side) to interest rates and stock prices (which influence the asset side).
Simpler autoregressive models can be used.

The second issue is the construction of a scenario tree from these models:
A finite number of scenarios must reflect as accurately as possible the random
processes modeled in the previous step.
Random Sampling and Tree Fitting are used.

On the other hand, the linear program (6) can only be solved if the size of the
scenario tree is reasonably small, suggesting a rather limited number of scenarios.
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