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Convex sets and Convex functions

Definition (Convex Set)

A set S is said to be convex, if:
(∀x)(∀y)(∀α ∈ [0, 1]) x, y ∈ S → α · x + (1− α) · y ∈ S.

Definition (Convex function)

Given a convex set S, a function f : S → < is called convex, if ∀ x, y ∈ S, λ ∈ [0, 1],
we have,

f (λ · x + (1− λ) · y) ≤ λ · f (x) + (1− λ) · f (y).

If < holds as opposed to ≤, the function is said to be strictly convex.

Definition (Convex Combination)

Given two points x and y in Em, and α ∈ [0, 1], the parametric point α · x + (1− α) · y
is said to be a convex combination of x and y.
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Local optimum and Global optimum

Theorem

Consider the following optimization problem:

minx f (x)

s.t . x ∈ S

If S is a convex set and f is a convex function of x on S, the all local optima are also
global optima.
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Main ideas of the Simplex Method

Main Ideas

1 Convert the program into standard form:

max c · x
A · x = b

x ≥ 0

2 Partition A into (B : N) and c into (cB : cN), such that B is a feasible basis.
3 If B is not an optimal basis, exchange a column of B with a column of N, such that

the basis structure is preserved and there is finite improvement in the solution.

The canonical form of z and xB can be written as:

z = cB · B−1 · b−
∑
j∈J

(cB · B−1 · aj − cj )xj

xB = B−1 · b−
∑
j∈J

(B−1 · aj) · xj

where J denotes the index set of the nonbasic variables.
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Local optimality conditions of the Simplex Method

Local optimality

A basic feasible solution is optimal to (LP) if,
∂z
∂xj

= −(zj − cj ) = −(cB · B−1 · aj − cj ) ≤ 0, for all j ∈ J

or, equivalently, if (zj − cj ) = (cB · B−1 · aj − cj ) ≥ 0, for all j ∈ J.
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Finding an initial basis

Initial Basis

Consider the system:

max 3 · x1 − 4 · x2 x ≥ 0

[
2 3 1 0
−2 3 0 1

]
·


x1
x2
x3
x4

 =

[
−3
5

]

Change the system to:

max 3 · x1 − 4 · x2 x ≥ 0

[
−2 −3 −1 0
−2 3 0 1

]
·


x1
x2
x3
x4

 =

[
3
5

]
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Finding initial basis (contd.)

Finding a bfs

Insert an artificial basis as follows:

max 3 · x1 − 4 · x2 x ≥ 0

[
−2 −3 −1 0 1 0
−2 3 0 1 0 1

]
·


x1
x2
x3
x4
x5
x6

 =

[
3
5

]

Finally drive x5 and x6 out of the system, by changing the system to:
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Other Methodologies

Alternatives

1 Computational Complexity.
2 The Klee Minty observation.
3 Borgwardt’s analysis.
4 The Fourier-Motzkin approach.
5 The ellipsoid algorithm.
6 Karmarkar’s algorithm.
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A Motivating Example

Example

max z = 4 · x1 + x2 + 5 · x3 + 3 · x4 (1)

x1 − x2 − x3 + 3 · x4 ≤ 1 (2)

5 · x1 + x2 + 3 · x3 + 8 · x4 ≤ 55 (3)

− x1 + 2 · x2 + 3 · x3 − 5 · x4 ≤ 3 (4)

x1, x2, x3, x4 ≥ 0 (5)

Establishing bounds on z∗

Consider the point (0, 0, 1, 0). Can you conclude z∗ ≥ 5.

From the point (3, 0, 2, 0), we can conclude that z∗ ≥ 22.

How about an upper bound? (3)+(4) gives 4 · x1 + 3 · x2 + 6 · x3 + 3 · x4 ≤ 58.

Can you conclude z∗ ≤ 58?
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Finding bounds

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest
upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y1, y2, y3, where the yi ≥ 0, we get,

(y1 + 5 · y2 − y3) · x1 + (−y1 + y2 + 2 · y3) · x2+

(−y1 + 3 · y2 + 3 · y3) · x3 + (3 · y1 + 8 · y2 − 5 · y3) · x4 ≤ (y1 + 55 · y2 + 3 · y3)

In order to get the best bound on z, we must minimize (y1 + 55 · y2 + 3 · y3) so that,

y1 + 5 · y2 − y3 ≥ 4

−y1 + y2 + 2 · y3 ≥ 1

−y1 + 3 · y2 + 3 · y3 ≥ 5

3 · y1 + 8 · y2 − 5 · y3 ≥ 3
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(y1 + 5 · y2 − y3) · x1 + (−y1 + y2 + 2 · y3) · x2+

(−y1 + 3 · y2 + 3 · y3) · x3 +

(3 · y1 + 8 · y2 − 5 · y3) · x4 ≤ (y1 + 55 · y2 + 3 · y3)

In order to get the best bound on z, we must minimize (y1 + 55 · y2 + 3 · y3) so that,

y1 + 5 · y2 − y3 ≥ 4

−y1 + y2 + 2 · y3 ≥ 1

−y1 + 3 · y2 + 3 · y3 ≥ 5

3 · y1 + 8 · y2 − 5 · y3 ≥ 3
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Dual of the Canonical form

Dual

Given the system (Primal)

z = max c · x
A · x ≤ b

x ≥ 0

the dual is defined as:

w = min b · y
y · A ≥ c

y ≥ 0

The constraint system y · A ≥ c can also be written as: AT · y ≥ c.

Duals exist for general forms of linear programs as well.
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Example

Example

Find the dual of:

max 4 · x1 + 2 · x2

x1 + x2 ≤ 2

x1 + 2 · x2 ≤ 15

2 · x1 − x2 ≤ 12

x1, x2 ≥ 0

Theorem

The dual of the dual is the primal. (Self-involutory).
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The Weak Duality theorem

Theorem

Given the primal and dual forms discussed above,

z = c · x′ ≤ y′ · b = w

where x′ and y′ are any primal feasible and dual feasible solution respectively.

Proof

Since x′ is primal feasible, we must have, A · x′ ≤ b, x′ ≥ 0.

Since y′ is dual feasible, we must have, y′ · A ≥ c, y′ ≥ 0.

It follows that y′ · A · x′ ≤ y′ · b and y′ · A · x′ ≥ c · x′.

The theorem follows.
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Consequences of the weak duality theorem

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

If the dual is unbounded, the primal is infeasible.

Example

What is the primal dual relationship in the following linear program:

max x1 + 2 · x2

−x1 + 2 · x2 ≤ −2

x1 − 2 · x2 ≤ −2

x1, x2 ≥ 0
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Optimality theorem from Weak duality

Theorem

If x is primal feasible and y is dual feasible, and c · x = y · b, then x is primal optimal
and y is dual optimal.
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The Strong Duality Theorem

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are
feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for
the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

max c · x
A · x + xs = b

x, xs ≥ 0

Let B denote the optimal basis of the primal in standard form.

Then the optimal point is x =
(B−1·b

0

)
and the the optimal solution for the primal is

z = cB · B−1 · b.
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Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is:

cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have

(zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b!

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

Linear Programming Optimization Methods in Finance



Review of Concepts
Duality

Applications to Finance

Complementary Slackness

Theorem

Let s = b− A · x denote the set of slack variables and let t = y · A− c denote the
vector of surplus variables. If x∗ is primal optimal and y∗ is dual optimal, then,
x∗j · t

∗
j = 0 for all j , and y∗i · s

∗
i = 0, for all i .

Proof

Observe that,

c · x∗ = (y∗ · A− t∗) · x∗

= y∗ · A · x∗ − t∗ · x∗

= y∗ · (b− s∗)− t∗ · x∗

= y∗ · b− y∗ · s∗ − t∗ · x∗

⇒ 0 = y∗ · s∗ + t∗ · x∗

The theorem follows.
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Application of concepts

Example

Solve the linear program

max 10 · x1 + 6 · x2 − 4 · x3 + x4 + 12 · x5

2 · x1 + x2 + x3 + 3 · x5 ≤ 18

x1 + x2 − x3 + x4 + 2 · x5 ≤ 6

x1, x2, x3, x4, x5 ≥ 0
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Geometric interpretation of Duality

Karush Kuhn Tucker conditions

For the primal and dual forms discussed above, we need to find a solution to the
following system of constraints:

A · x ≤ b
x ≥ 0

y · A ≥ c
y ≥ 0

yi · (bi − ai · x) = 0, i = 1, 2, . . .m

(y · aj − cj ) · xj = 0, j = 1, 2, . . . n

Theorem

At the primal optimal solution, the gradient of the objective function can be written as a
non-negative linear combination of the gradients of the binding constraints.
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Applications

1 Short term financing.
2 Dedication.
3 Arbitrage.
4 Derivative securities and asset pricing.
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Short-term financing

The problem

1 Companies routinely face the problem of short-term commitments.
2 We need an optimal combination of financial instruments to meet those

commitments.
3 Consider the following table:

Month Jan Feb March April May June
Net Cash flow −150 −100 200 −200 50 300

4 The company has a credit line of $100 K at an interest rate of 1% per month.
5 In any of the first three months, it can issue 90-day commercial paper.
6 Excess funds can be reinvested at an interest rate of 0.3% per month.
7 Any paper issued in January through March requires a 2% interest rate payment

three months later.
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Modeling

Decision Variables

Let xi denote the amount drawn from the credit line in month i , yi denote the amount of
commercial paper issued in month i , zi denote the excess funds in month i and v
denote the company’s wealth after June.

Objective Function

max v
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Modeling (contd.)

Constraints

x1 + y1 − z1 = 150

x2 + y2 − 1.01 · x1 + 1.003 · z1 − z2 = 100

x3 + y3 − 1.01 · x2 + 1.003 · z2 − z3 = −200

x4 − 1.02 · y1 − 1.01 · x3 + 1.003 · z3 − z4 = 200

x5 − 1.02 · y2 − 1.01 · x4 + 1.003 · z4 − z5 = −50

−1.02 · y3 − 1.01 · x5 + 1.003 · z5 − v = −300

xi ≤ 100, i = 1, 2, 3, 4, 5

xi , yi , zi ≥ 0
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Dedication (Cash flow matching)

The problem

1 Technique to fund known liabilities in the future.
2 Form a portfolio of assets, whose cash inflows exactly offset the cash outflows of

liabilities.
3 The liabilities will thus be paid off without the need to buy or sell future assets.
4 Typically, such a portfolio consists of risk-free bonds.
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Arbitrage

Definition

An arbitrage is a trading strategy that:
1 has a positive initial cash flow and has no risk of a loss later (type A), or
2 requires no initial cash input, has no risk of loss and a positive probability of

making profits in the future (type B).
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Arbitrage (contd.)

Definition

Let Si , i = 1, 2, . . . , n denote a collection of securities.
Let Ω = {ω1, ω2, . . . , ωm} denote m distinct states.
Let Si

1(ωj ) denote the price of security Si at time 1 and state ωj .
We use S0 to denote the riskless security that pays interest r% at time 1.
We assume that S0

0 = 1 and S0
1(ωj ) = R = 1 + r , ∀j .

A risk-neutral probability measure on Ω is a positive vector p = (p1, p2, . . . , pm) such
that

∑m
j=1 pj = 1 and for every security Si , i = 0, 1, . . . , n,

Si
0 =

1
R

(
m∑

j=1

pj · Si
1(ωj )) =

1
R

E[Si
1],

where E[S] denotes the expected value of the random variable S, under the probability
distribution p.
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Asset Pricing

Theorem

A risk neutral probability measure exists if and only if there is no arbitrage.
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