Linear Programming - Duality and Applications

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

February 10, 2015

Outline

Outline

Outline

Review of Concepts

Review of Concepts

Main Concepts

Linear Programming Optimization Methods in Finance

Review of Concepts

Main Concepts

Convex sets and convex functions.

Review of Concepts

- Convex sets and convex functions.
- 2 Local optimum and Global optimum.

Review of Concepts

- Convex sets and convex functions.
- 2 Local optimum and Global optimum.
- Optimum of a convex function over a convex set.

Review of Concepts

- Convex sets and convex functions.
- 2 Local optimum and Global optimum.
- Optimum of a convex function over a convex set.
- 4 Main ideas of the Simplex method.

Review of Concepts

- Convex sets and convex functions.
- 2 Local optimum and Global optimum.
- Optimum of a convex function over a convex set.
- Main ideas of the Simplex method.
- Subscription Local optimality conditions for the Simplex method.

Review of Concepts

- Convex sets and convex functions.
- 2 Local optimum and Global optimum.
- Optimum of a convex function over a convex set.
- Main ideas of the Simplex method.
- Subscription Local optimality conditions for the Simplex method.
- Finding and initial basis.

Review of Concepts

- Convex sets and convex functions.
- 2 Local optimum and Global optimum.
- Optimum of a convex function over a convex set.
- Main ideas of the Simplex method.
- Subscription Local optimality conditions for the Simplex method.
- Finding and initial basis.
- Other methodologies.

Convex sets and Convex functions

Convex sets and Convex functions

Definition (Convex Set)

A set S is said to be convex, if:

Convex sets and Convex functions

Definition (Convex Set)

A set S is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1])$

Convex sets and Convex functions

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Convex sets and Convex functions

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Given a convex set *S*, a function $f : S \rightarrow \Re$ is called convex,

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Given a convex set *S*, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Convex Combination)

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Local optimum and Global optimum

Local optimum and Global optimum

Theorem

Linear Programming Optimization Methods in Finance

Local optimum and Global optimum

Theorem

Consider the following optimization problem:

 $\min_{\mathbf{x}} f(\mathbf{x})$ s.t. $\mathbf{x} \in \mathbf{S}$

Local optimum and Global optimum

Theorem

Consider the following optimization problem:

 $\min_{\mathbf{x}} f(\mathbf{x})$ s.t. $\mathbf{x} \in \mathbf{S}$

If S is a convex set and f is a convex function of \mathbf{x} on S, the all local optima are also global optima.

Main ideas of the Simplex Method

Main ideas of the Simplex Method

Main Ideas

Linear Programming Optimization Methods in Finance

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rcl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= & \mathbf{b} \\ \mathbf{x} &\geq & \mathbf{0} \end{array}$

2 Partition **A** into $(\mathbf{B} : \mathbf{N})$ and **c** into $(\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}})$, such that **B** is a feasible basis.

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

- 2 Partition A into (B : N) and c into $(c_B : c_N)$, such that B is a feasible basis.
- If B is not an optimal basis, exchange a column of B with a column of N, such that the basis structure is preserved and there is finite improvement in the solution.

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

- **2** Partition **A** into $(\mathbf{B} : \mathbf{N})$ and **c** into $(\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}})$, such that **B** is a feasible basis.
- If B is not an optimal basis, exchange a column of B with a column of N, such that the basis structure is preserved and there is finite improvement in the solution.

The canonical form of z and $\mathbf{x}_{\mathbf{B}}$ can be written as:

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

- **2** Partition **A** into $(\mathbf{B} : \mathbf{N})$ and **c** into $(\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}})$, such that **B** is a feasible basis.
- If B is not an optimal basis, exchange a column of B with a column of N, such that the basis structure is preserved and there is finite improvement in the solution.

The canonical form of z and $\mathbf{x}_{\mathbf{B}}$ can be written as:
Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

- 2 Partition A into (B : N) and c into $(c_B : c_N)$, such that B is a feasible basis.
- If B is not an optimal basis, exchange a column of B with a column of N, such that the basis structure is preserved and there is finite improvement in the solution.

The canonical form of z and $\mathbf{x}_{\mathbf{B}}$ can be written as:

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) x_j$$

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

- **2** Partition **A** into $(\mathbf{B} : \mathbf{N})$ and **c** into $(\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}})$, such that **B** is a feasible basis.
- If B is not an optimal basis, exchange a column of B with a column of N, such that the basis structure is preserved and there is finite improvement in the solution.

The canonical form of z and $\mathbf{x}_{\mathbf{B}}$ can be written as:

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{B}^{-1} \cdot \mathbf{a}_j) \cdot x_j$$

where J denotes the index set of the nonbasic variables.

Main ideas of the Simplex Method

Main Ideas

• Convert the program into standard form:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$

- **2** Partition **A** into $(\mathbf{B} : \mathbf{N})$ and **c** into $(\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}})$, such that **B** is a feasible basis.
- If B is not an optimal basis, exchange a column of B with a column of N, such that the basis structure is preserved and there is finite improvement in the solution.

The canonical form of z and $\mathbf{x}_{\mathbf{B}}$ can be written as:

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{B}^{-1} \cdot \mathbf{a}_j) \cdot x_j$$

where J denotes the index set of the nonbasic variables.

Local optimality conditions of the Simplex Method

Local optimality conditions of the Simplex Method

Local optimality

A basic feasible solution is optimal to (LP) if,

Local optimality conditions of the Simplex Method

Local optimality

A basic feasible solution is optimal to (LP) if,

$$rac{\partial z}{\partial x_{i}}=-(z_{j}-c_{j})=-(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_{j}-c_{j})\leq0,$$
 for all $j\in J$

Local optimality conditions of the Simplex Method

Local optimality

A basic feasible solution is optimal to (LP) if,

$$rac{\partial z}{\partial x_i} = -(z_j - c_j) = -(\mathbf{c_B} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) \leq 0$$
, for all $j \in J$

or, equivalently, if $(z_j - c_j) = (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) \ge 0$, for all $j \in J$.

Finding an initial basis

Finding an initial basis

Initial Basis

Finding an initial basis

Initial Basis

Consider the system:

$$\begin{bmatrix} 2 & 3 & 1 & 0 \\ -2 & 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

Finding an initial basis

Initial Basis

Consider the system:

$$\begin{bmatrix} 2 & 3 & 1 & 0 \\ -2 & 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

Change the system to:

$$\begin{bmatrix} -2 & -3 & -1 & 0 \\ -2 & 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Finding initial basis (contd.)

Finding initial basis (contd.)

Finding a bfs

Linear Programming Optimization Methods in Finance

Finding initial basis (contd.)

Finding a bfs

Insert an artificial basis as follows:

Finding initial basis (contd.)

Finding a bfs

Insert an artificial basis as follows:

$$\begin{bmatrix} -2 & -3 & -1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

 $\max 3 \cdot x_1 - 4 \cdot x_2 \quad \mathbf{x} > \mathbf{0}$

Finding initial basis (contd.)

Finding a bfs

Insert an artificial basis as follows:

$$\begin{bmatrix} -2 & -3 & -1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Finally drive x_5 and x_6 out of the system, by changing the system to:

Finding initial basis (contd.)

Finding a bfs

Insert an artificial basis as follows:

$$\begin{bmatrix} -2 & -3 & -1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Finally drive x_5 and x_6 out of the system, by changing the system to:

$$\begin{bmatrix} -2 & -3 & -1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Review of Concepts

Duality Applications to Finance

Other Methodologies

Other Methodologies

Alternatives

Linear Programming Optimization Methods in Finance

Other Methodologies

Alternatives

Computational Complexity.

Other Methodologies

- Computational Complexity.
- 2 The Klee Minty observation.

Other Methodologies

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.

Other Methodologies

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.
- O The Fourier-Motzkin approach.

Other Methodologies

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.
- O The Fourier-Motzkin approach.
- The ellipsoid algorithm.

Other Methodologies

- Computational Complexity.
- 2 The Klee Minty observation.
- Obrogwardt's analysis.
- O The Fourier-Motzkin approach.
- The ellipsoid algorithm.
- Sarmarkar's algorithm.

A Motivating Example

A Motivating Example

Example

Linear Programming Optimization Methods in Finance

A Motivating Example

Example

$$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4 \tag{1}$$

A Motivating Example

Example

$$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4 \tag{1}$$

$$x_1 - x_2 - x_3 + 3 \cdot x_4 \leq 1$$
 (2)

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)

$$5 \cdot x_1 + x_2 + 3 \cdot x_3 + 8 \cdot x_4 \leq 55$$

(3)

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1+x_2+3\cdot x_3+8\cdot x_4$	\leq	55	(3)
$-x_1+2\cdot x_2+3\cdot x_3-5\cdot x_4$	\leq	3	(4)

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1+x_2+3\cdot x_3+8\cdot x_4$	\leq	55	(3)
$-x_1+2\cdot x_2+3\cdot x_3-5\cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1+x_2+3\cdot x_3+8\cdot x_4$	\leq	55	(3)
$-x_1+2\cdot x_2+3\cdot x_3-5\cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z*

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1 + 2 \cdot x_2 + 3 \cdot x_3 - 5 \cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z^*

Consider the point (0, 0, 1, 0).

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1 + 2 \cdot x_2 + 3 \cdot x_3 - 5 \cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z^*

Consider the point (0, 0, 1, 0). Can you conclude $z^* \ge 5$.

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1 + 2 \cdot x_2 + 3 \cdot x_3 - 5 \cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z^*

Consider the point (0, 0, 1, 0). Can you conclude $z^* \ge 5$.

From the point (3, 0, 2, 0), we can conclude that $z^* \ge 22$.
A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1+2\cdot x_2+3\cdot x_3-5\cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z*

Consider the point (0, 0, 1, 0). Can you conclude $z^* \ge 5$.

From the point (3, 0, 2, 0), we can conclude that $z^* \ge 22$.

How about an upper bound?

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1+2\cdot x_2+3\cdot x_3-5\cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z*

Consider the point (0, 0, 1, 0). Can you conclude $z^* \ge 5$.

From the point (3, 0, 2, 0), we can conclude that $z^* \ge 22$.

How about an upper bound? (3)+(4) gives

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1 + 2 \cdot x_2 + 3 \cdot x_3 - 5 \cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z*

Consider the point (0, 0, 1, 0). Can you conclude $z^* \ge 5$.

From the point (3, 0, 2, 0), we can conclude that $z^* \ge 22$.

How about an upper bound? (3)+(4) gives $4 \cdot x_1 + 3 \cdot x_2 + 6 \cdot x_3 + 3 \cdot x_4 \le 58$.

A Motivating Example

Example

$\max z = 4 \cdot x_1 + x_2 + 5 \cdot x_3 + 3 \cdot x_4$			(1)
$x_1 - x_2 - x_3 + 3 \cdot x_4$	\leq	1	(2)
$5\cdot x_1 + x_2 + 3\cdot x_3 + 8\cdot x_4$	\leq	55	(3)
$-x_1+2\cdot x_2+3\cdot x_3-5\cdot x_4$	\leq	3	(4)
x_1, x_2, x_3, x_4	\geq	0	(5)

Establishing bounds on z*

Consider the point (0, 0, 1, 0). Can you conclude $z^* \ge 5$.

From the point (3, 0, 2, 0), we can conclude that $z^* \ge 22$.

How about an upper bound? (3)+(4) gives $4 \cdot x_1 + 3 \cdot x_2 + 6 \cdot x_3 + 3 \cdot x_4 \le 58$.

Can you conclude $z^* \leq 58$?

Finding bounds

Finding bounds

Establishing an upper bound

Finding bounds

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

Finding bounds

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Finding bounds

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 +$

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 + (-y_1 + y_2 + 2 \cdot y_3) \cdot x_2 +$

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 + (-y_1 + y_2 + 2 \cdot y_3) \cdot x_2 + (-y_1 + 3 \cdot y_2 + 3 \cdot y_3) \cdot x_3 +$

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 + (-y_1 + y_2 + 2 \cdot y_3) \cdot x_2 +$ $(-y_1 + 3 \cdot y_2 + 3 \cdot y_3) \cdot x_3 + (3 \cdot y_1 + 8 \cdot y_2 - 5 \cdot y_3) \cdot x_4 \le$

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 + (-y_1 + y_2 + 2 \cdot y_3) \cdot x_2 +$ $(-y_1 + 3 \cdot y_2 + 3 \cdot y_3) \cdot x_3 + (3 \cdot y_1 + 8 \cdot y_2 - 5 \cdot y_3) \cdot x_4 \le (y_1 + 55 \cdot y_2 + 3 \cdot y_3)$

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 + (-y_1 + y_2 + 2 \cdot y_3) \cdot x_2 +$ $(-y_1 + 3 \cdot y_2 + 3 \cdot y_3) \cdot x_3 + (3 \cdot y_1 + 8 \cdot y_2 - 5 \cdot y_3) \cdot x_4 \le (y_1 + 55 \cdot y_2 + 3 \cdot y_3)$

In order to get the best bound on z, we must minimize $(y_1 + 55 \cdot y_2 + 3 \cdot y_3)$ so that,

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y_1, y_2, y_3 , where the $y_i \ge 0$, we get,

 $(y_1 + 5 \cdot y_2 - y_3) \cdot x_1 + (-y_1 + y_2 + 2 \cdot y_3) \cdot x_2 +$ $(-y_1 + 3 \cdot y_2 + 3 \cdot y_3) \cdot x_3 + (3 \cdot y_1 + 8 \cdot y_2 - 5 \cdot y_3) \cdot x_4 \le (y_1 + 55 \cdot y_2 + 3 \cdot y_3)$

In order to get the best bound on z, we must minimize $(y_1 + 55 \cdot y_2 + 3 \cdot y_3)$ so that,

Dual of the Canonical form

Dual of the Canonical form

Dual

Dual of the Canonical form

Dual

Given the system

Dual of the Canonical form

Dual

Given the system (Primal)

Dual of the Canonical form

Dual

Given the system (Primal)

	$z = \max \mathbf{c} \cdot \mathbf{x}$	
A · x	\leq	b
x	>	0

Dual of the Canonical form

Dual

Given the system (Primal)

	$z = \max \mathbf{c} \cdot \mathbf{x}$	
A · x	\leq	b
х	>	0

the dual is defined as:

Dual of the Canonical form

Dual

Given the system (Primal)

	$z = \max \mathbf{c} \cdot \mathbf{x}$	
A · x	\leq	b
х	2	0

the dual is defined as:

$$w = \min \mathbf{b} \cdot \mathbf{y}$$

 $\mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}$
 $\mathbf{y} \ge \mathbf{0}$

Dual of the Canonical form

Dual

Given the system (Primal)

	$z = \max \mathbf{c} \cdot \mathbf{x}$	
A · x	\leq	b
х	\geq	0

the dual is defined as:

	$w = \min \mathbf{b} \cdot \mathbf{y}$	
y · A	\geq	С
у	\geq	0

The constraint system $\mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}$ can also be written as:

Dual of the Canonical form

	_
	<u> </u>
U	a
-	

Given the system (Primal)

	$z = \max \mathbf{c} \cdot \mathbf{x}$	
A · x	\leq	b
х	\geq	0

the dual is defined as:

	$w = \min \mathbf{b} \cdot \mathbf{y}$	
y · A	\geq	С
У	\geq	0

The constraint system $\mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}$ can also be written as: $\mathbf{A}^{\mathsf{T}} \cdot \mathbf{y} \ge \mathbf{c}$.

Dual of the Canonical form

Dual

Given the system (Primal)

	$z = \max \mathbf{c} \cdot \mathbf{x}$	
A · x	\leq	b
х	\geq	0

the dual is defined as:

	$w = \min \mathbf{b} \cdot \mathbf{y}$	
y·A	\geq	С
у	\geq	0

The constraint system $\mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}$ can also be written as: $\mathbf{A}^{\mathsf{T}} \cdot \mathbf{y} \ge \mathbf{c}$.

Duals exist for general forms of linear programs as well.

Example

Example

Find the dual of:

Example

Example

Find the dual of:

$\max 4 \cdot x_1 + 2 \cdot x_2$			
$x_1 + x_2$	\leq	2	
$x_1 + 2 \cdot x_2$	\leq	15	
$2 \cdot x_1 - x_2$	\leq	12	
<i>x</i> ₁ , <i>x</i> ₂	\geq	0	

Example

Example

Find the dual of:

$\max 4 \cdot x_1 + 2 \cdot x_2$			
$x_1 + x_2$	\leq	2	
$x_1 + 2 \cdot x_2$	\leq	15	
$2 \cdot x_1 - x_2$	\leq	12	
x_1, x_2	\geq	0	

Theorem

Example

Example

Find the dual of:

 $\max 4 \cdot x_1 + 2 \cdot x_2$ $x_1 + x_2 \leq 2$ $x_1 + 2 \cdot x_2 \leq 15$ $2 \cdot x_1 - x_2 \leq 12$ $x_1, x_2 \geq 0$

Theorem

The dual of the dual is the primal.

Example

Example

Find the dual of:

 $\max 4 \cdot x_1 + 2 \cdot x_2$ $x_1 + x_2 \leq 2$ $x_1 + 2 \cdot x_2 \leq 15$ $2 \cdot x_1 - x_2 \leq 12$ $x_1, x_2 \geq 0$

Theorem

The dual of the dual is the primal. (Self-involutory).

The Weak Duality theorem

Theorem

Given the primal and dual forms discussed above,

The Weak Duality theorem

Theorem

Given the primal and dual forms discussed above,

 $z = \mathbf{c} \cdot \mathbf{x}'$

The Weak Duality theorem

Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \leq \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.
Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \leq \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.

Proof

Since \mathbf{x}' is primal feasible, we must have,

Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \le \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.

Proof

Since \mathbf{x}' is primal feasible, we must have, $\mathbf{A} \cdot \mathbf{x}' \leq \mathbf{b}, \mathbf{x}' \geq \mathbf{0}$.

Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \le \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.

Proof

Since \mathbf{x}' is primal feasible, we must have, $\mathbf{A} \cdot \mathbf{x}' \leq \mathbf{b}, \mathbf{x}' \geq \mathbf{0}$.

Since y' is dual feasible, we must have,

Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \le \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.

Proof

Since \bm{x}' is primal feasible, we must have, $\bm{A}\cdot\bm{x}'\leq \bm{b},\,\bm{x}'\geq \bm{0}.$

Since \mathbf{y}' is dual feasible, we must have, $\mathbf{y}' \cdot \mathbf{A} \ge \mathbf{c}, \, \mathbf{y}' \ge \mathbf{0}$.

Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \le \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.

Proof

Since \mathbf{x}' is primal feasible, we must have, $\mathbf{A} \cdot \mathbf{x}' \leq \mathbf{b}, \mathbf{x}' \geq \mathbf{0}$.

Since \mathbf{y}' is dual feasible, we must have, $\mathbf{y}' \cdot \mathbf{A} \ge \mathbf{c}$, $\mathbf{y}' \ge \mathbf{0}$.

It follows that $\mathbf{y}' \cdot \mathbf{A} \cdot \mathbf{x}' \leq \mathbf{y}' \cdot \mathbf{b}$ and $\mathbf{y}' \cdot \mathbf{A} \cdot \mathbf{x}' \geq \mathbf{c} \cdot \mathbf{x}'$.

Theorem

Given the primal and dual forms discussed above,

$$z = \mathbf{c} \cdot \mathbf{x}' \le \mathbf{y}' \cdot \mathbf{b} = w$$

where \mathbf{x}' and \mathbf{y}' are any primal feasible and dual feasible solution respectively.

Proof

Since \mathbf{x}' is primal feasible, we must have, $\mathbf{A} \cdot \mathbf{x}' \leq \mathbf{b}, \mathbf{x}' \geq \mathbf{0}$.

Since \mathbf{y}' is dual feasible, we must have, $\mathbf{y}' \cdot \mathbf{A} \ge \mathbf{c}$, $\mathbf{y}' \ge \mathbf{0}$.

It follows that $\mathbf{y}' \cdot \mathbf{A} \cdot \mathbf{x}' \leq \mathbf{y}' \cdot \mathbf{b}$ and $\mathbf{y}' \cdot \mathbf{A} \cdot \mathbf{x}' \geq \mathbf{c} \cdot \mathbf{x}'$.

The theorem follows.

Consequences of the weak duality theorem

Consequences of the weak duality theorem

Theorem

Consequences of the weak duality theorem

Theorem

If the primal is unbounded,

Consequences of the weak duality theorem

Theorem

If the primal is unbounded, the dual is infeasible.

Consequences of the weak duality theorem

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

If the dual is unbounded,

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

If the dual is unbounded, the primal is infeasible.

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

If the dual is unbounded, the primal is infeasible.

Example

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

If the dual is unbounded, the primal is infeasible.

Example

What is the primal dual relationship in the following linear program:

Theorem

If the primal is unbounded, the dual is infeasible.

Theorem

If the dual is unbounded, the primal is infeasible.

Example

What is the primal dual relationship in the following linear program:

$$\begin{array}{cccc} \max x_{1}+2 \cdot x_{2} \\ -x_{1}+2 \cdot x_{2} & \leq & -2 \\ x_{1}-2 \cdot x_{2} & \leq & -2 \\ x_{1}, x_{2} & \geq & 0 \end{array}$$

Optimality theorem from Weak duality

Optimality theorem from Weak duality

Theorem

Linear Programming Optimization Methods in Finance

Optimality theorem from Weak duality

Theorem

If **x** is primal feasible and **y** is dual feasible, and $\mathbf{c} \cdot \mathbf{x} = \mathbf{y} \cdot \mathbf{b}$, then **x** is primal optimal and **y** is dual optimal.

The Strong Duality Theorem

The Strong Duality Theorem

Theorem

The Strong Duality Theorem

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

The Strong Duality Theorem

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

The Strong Duality Theorem

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

The Strong Duality Theorem

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

The Strong Duality Theorem

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

 $\begin{array}{rl} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} + \mathbf{x_s} &= \mathbf{b} \\ \mathbf{x}, \mathbf{x_s} &\geq \mathbf{0} \end{array}$

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

	max c · x	
$\mathbf{A} \cdot \mathbf{x} + \mathbf{x_s}$	=	b
$\mathbf{X}, \mathbf{X}_{\mathbf{S}}$	\geq	0

Let **B** denote the optimal basis of the primal in standard form.

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

	max c · x	
$\mathbf{A} \cdot \mathbf{x} + \mathbf{x_s}$	=	b
$\bm{X}, \bm{X_S}$	\geq	0

Let B denote the optimal basis of the primal in standard form.

Then the optimal point is $\mathbf{x} =$

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

	max c · x	
$\mathbf{A} \cdot \mathbf{x} + \mathbf{x_s}$	=	b
$\mathbf{X}, \mathbf{X}_{\mathbf{S}}$	\geq	0

Let **B** denote the optimal basis of the primal in standard form.

Then the optimal point is $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$ and the the optimal solution for the primal is z = z

Theorem

Given the primal and dual forms discussed above, if both the primal and the dual are feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

	max c · x	
$\mathbf{A} \cdot \mathbf{x} + \mathbf{x_s}$	=	b
$\mathbf{X}, \mathbf{X}_{\mathbf{S}}$	\geq	0

Let **B** denote the optimal basis of the primal in standard form.

Then the optimal point is $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$ and the the optimal solution for the primal is $z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b}$.

Proof of strong duality (contd.)

Proof of strong duality (contd.)

Proof

Linear Programming Optimization Methods in Finance

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

The value of the dual at this point is:

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

The value of the dual at this point is: $c_B \cdot B^{-1} \cdot b!$
Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

The value of the dual at this point is: $c_B \cdot B^{-1} \cdot b!$

Since B is an optimal basis, we must have

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

The value of the dual at this point is: $c_B \cdot B^{-1} \cdot b!$

Since **B** is an optimal basis, we must have $(z_j - c_j) \ge 0$ for all the columns of (**A**, **I**).

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

The value of the dual at this point is: $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b}!$

Since **B** is an optimal basis, we must have $(z_i - c_i) \ge 0$ for all the columns of (**A**, **I**).

It follows that $c_B \cdot B^{-1} \cdot A - c \ge 0$ and $c_B \cdot B^{-1} \cdot I \ge 0$.

Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1}$.

The value of the dual at this point is: $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b}!$

Since **B** is an optimal basis, we must have $(z_j - c_j) \ge 0$ for all the columns of (**A**, **I**).

It follows that $c_B \cdot B^{-1} \cdot A - c \ge 0$ and $c_B \cdot B^{-1} \cdot I \ge 0$.

In other words, $c_B \cdot B^{-1} \cdot A \ge c$ and $c_B \cdot B^{-1} \ge 0$.

Complementary Slackness

Complementary Slackness

Theorem

Complementary Slackness

Theorem

Let $s = b - A \cdot x$ denote the set of slack variables and let $t = y \cdot A - c$ denote the vector of surplus variables.

Complementary Slackness

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then,

Complementary Slackness

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_j^* \cdot t_j^* = 0$ for all *j*,

Complementary Slackness

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Complementary Slackness

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

Complementary Slackness

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

$${\boldsymbol{\mathsf{c}}}\cdot{\boldsymbol{\mathsf{x}}}^* \quad = \quad$$

Complementary Slackness

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

$$\label{eq:constraint} \textbf{c}\cdot \textbf{x}^* \quad = \quad (\textbf{y}^*\cdot \textbf{A} - \textbf{t}^*)\cdot \textbf{x}^*$$

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

$$\begin{array}{rcl} \mathbf{c} \cdot \mathbf{x}^* & = & (\mathbf{y}^* \cdot \mathbf{A} - \mathbf{t}^*) \cdot \mathbf{x}^* \\ & = & \mathbf{y}^* \cdot \mathbf{A} \cdot \mathbf{x}^* - \mathbf{t}^* \cdot \mathbf{x}^* \end{array}$$

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

$$\begin{array}{rcl} \mathbf{c}\cdot\mathbf{x}^* &=& (\mathbf{y}^*\cdot\mathbf{A}-\mathbf{t}^*)\cdot\mathbf{x}^*\\ &=& \mathbf{y}^*\cdot\mathbf{A}\cdot\mathbf{x}^*-\mathbf{t}^*\cdot\mathbf{x}^*\\ &=& \mathbf{y}^*\cdot(\mathbf{b}-\mathbf{s}^*)-\mathbf{t}^*\cdot\mathbf{x}^* \end{array}$$

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

$$\begin{aligned} \mathbf{c} \cdot \mathbf{x}^* &= (\mathbf{y}^* \cdot \mathbf{A} - \mathbf{t}^*) \cdot \mathbf{x}^* \\ &= \mathbf{y}^* \cdot \mathbf{A} \cdot \mathbf{x}^* - \mathbf{t}^* \cdot \mathbf{x}^* \\ &= \mathbf{y}^* \cdot (\mathbf{b} - \mathbf{s}^*) - \mathbf{t}^* \cdot \mathbf{x}^* \\ &= \mathbf{y}^* \cdot \mathbf{b} - \mathbf{y}^* \cdot \mathbf{s}^* - \mathbf{t}^* \cdot \mathbf{x}^* \end{aligned}$$

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

$$\begin{array}{rcl} \mathbf{c} \cdot \mathbf{x}^* &=& (\mathbf{y}^* \cdot \mathbf{A} - \mathbf{t}^*) \cdot \mathbf{x}^* \\ &=& \mathbf{y}^* \cdot \mathbf{A} \cdot \mathbf{x}^* - \mathbf{t}^* \cdot \mathbf{x}^* \\ &=& \mathbf{y}^* \cdot (\mathbf{b} - \mathbf{s}^*) - \mathbf{t}^* \cdot \mathbf{x}^* \\ &=& \mathbf{y}^* \cdot \mathbf{b} - \mathbf{y}^* \cdot \mathbf{s}^* - \mathbf{t}^* \cdot \mathbf{x}^* \\ &\Rightarrow \mathbf{0} &=& \mathbf{y}^* \cdot \mathbf{s}^* + \mathbf{t}^* \cdot \mathbf{x}^* \end{array}$$

Theorem

Let $\mathbf{s} = \mathbf{b} - \mathbf{A} \cdot \mathbf{x}$ denote the set of slack variables and let $\mathbf{t} = \mathbf{y} \cdot \mathbf{A} - \mathbf{c}$ denote the vector of surplus variables. If \mathbf{x}^* is primal optimal and \mathbf{y}^* is dual optimal, then, $x_i^* \cdot t_i^* = 0$ for all *j*, and $y_i^* \cdot s_i^* = 0$, for all *i*.

Proof

Observe that,

$$\begin{array}{rcl} \mathbf{c} \cdot \mathbf{x}^* &=& (\mathbf{y}^* \cdot \mathbf{A} - \mathbf{t}^*) \cdot \mathbf{x}^* \\ &=& \mathbf{y}^* \cdot \mathbf{A} \cdot \mathbf{x}^* - \mathbf{t}^* \cdot \mathbf{x}^* \\ &=& \mathbf{y}^* \cdot (\mathbf{b} - \mathbf{s}^*) - \mathbf{t}^* \cdot \mathbf{x}^* \\ &=& \mathbf{y}^* \cdot \mathbf{b} - \mathbf{y}^* \cdot \mathbf{s}^* - \mathbf{t}^* \cdot \mathbf{x}^* \\ &\Rightarrow \mathbf{0} &=& \mathbf{y}^* \cdot \mathbf{s}^* + \mathbf{t}^* \cdot \mathbf{x}^* \end{array}$$

The theorem follows.

Application of concepts

Application of concepts

Example

Linear Programming Optimization Methods in Finance

Application of concepts

Example

Solve the linear program

Application of concepts

Example

Solve the linear program

$$\max 10 \cdot x_1 + 6 \cdot x_2 - 4 \cdot x_3 + x_4 + 12 \cdot x_5$$

$$2 \cdot x_1 + x_2 + x_3 + 3 \cdot x_5 \le 18$$

$$x_1 + x_2 - x_3 + x_4 + 2 \cdot x_5 \le 6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Geometric interpretation of Duality

Geometric interpretation of Duality

Karush Kuhn Tucker conditions

Geometric interpretation of Duality

Karush Kuhn Tucker conditions

Geometric interpretation of Duality

Karush Kuhn Tucker conditions

$$\begin{array}{rrrrr} \mathsf{A}\cdot\mathsf{x} &\leq \mathsf{b} \\ \mathsf{x} &> \mathsf{0} \end{array}$$

Geometric interpretation of Duality

Karush Kuhn Tucker conditions

$$\begin{array}{rrrrr} \mathbf{A}\cdot\mathbf{x} &\leq & \mathbf{b} \\ & \mathbf{x} &\geq & \mathbf{0} \\ & \mathbf{y}\cdot\mathbf{A} &\geq & \mathbf{c} \\ & \mathbf{y} &\geq & \mathbf{0} \end{array}$$

Karush Kuhn Tucker conditions

$$\begin{array}{rrrrr} \mathbf{A} \cdot \mathbf{x} &\leq & \mathbf{b} \\ & \mathbf{x} &\geq & \mathbf{0} \\ & \mathbf{y} \cdot \mathbf{A} &\geq & \mathbf{c} \\ & \mathbf{y} &\geq & \mathbf{0} \\ & y_i \cdot (\mathbf{b}_i - \mathbf{a}^i \cdot \mathbf{x}) &= & \mathbf{0}, \ i = 1, 2, \dots m \end{array}$$

Karush Kuhn Tucker conditions

$$\begin{array}{rcl} {\bf A} \cdot {\bf x} & \leq & {\bf b} \\ {\bf x} & \geq & {\bf 0} \\ {\bf y} \cdot {\bf A} & \geq & {\bf c} \\ {\bf y} & \geq & {\bf 0} \\ y_i \cdot (b_i - {\bf a}^i \cdot {\bf x}) & = & 0, \ i = 1, 2, \dots m \\ ({\bf y} \cdot {\bf a}_j - {\bf c}_j) \cdot x_j & = & 0, \ j = 1, 2, \dots n \end{array}$$

Karush Kuhn Tucker conditions

For the primal and dual forms discussed above, we need to find a solution to the following system of constraints:

Theorem

Karush Kuhn Tucker conditions

For the primal and dual forms discussed above, we need to find a solution to the following system of constraints:

Theorem

At the primal optimal solution, the gradient of the objective function can be written as a non-negative linear combination of the gradients of the binding constraints.

Applications to Finance

Applications to Finance

Applications

Linear Programming Optimization Methods in Finance

Applications to Finance

Applications

Short term financing.

Linear Programming Optimization Methods in Finance

Applications to Finance

Applications

- Short term financing.
- 2 Dedication.

Applications to Finance

Applications

- Short term financing.
- 2 Dedication.
- Arbitrage.
Applications to Finance

Applications

- Short term financing.
- 2 Dedication.
- Arbitrage.
- Oerivative securities and asset pricing.

Short-term financing

Short-term financing

The problem

Linear Programming Optimization Methods in Finance

Short-term financing

The problem

• Companies routinely face the problem of short-term commitments.

- O Companies routinely face the problem of short-term commitments.
- We need an optimal combination of financial instruments to meet those commitments.

- O Companies routinely face the problem of short-term commitments.
- **3** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

Month	Jan	Feb	March	April	May	June
Net Cash flow	-150	-100	200	-200	50	300

The problem

- O Companies routinely face the problem of short-term commitments.
- We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

Month	Jan	Feb	March	April	May	June
Net Cash flow	-150	-100	200	-200	50	300

• The company has a credit line of \$100 K at an interest rate of 1% per month.

- O Companies routinely face the problem of short-term commitments.
- We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

Month	Jan	Feb	March	April	May	June
Net Cash flow	-150	-100	200	-200	50	300

- **O** The company has a credit line of \$100 K at an interest rate of 1% per month.
- In any of the first three months, it can issue 90-day commercial paper.

- O Companies routinely face the problem of short-term commitments.
- We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

Month	Jan	Feb	March	April	May	June
Net Cash flow	-150	-100	200	-200	50	300

- **O** The company has a credit line of \$100 K at an interest rate of 1% per month.
- In any of the first three months, it can issue 90-day commercial paper.
- Excess funds can be reinvested at an interest rate of 0.3% per month.

- O Companies routinely face the problem of short-term commitments.
- **3** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

Month	Jan	Feb	March	April	May	June
Net Cash flow	-150	-100	200	-200	50	300

- The company has a credit line of \$100 K at an interest rate of 1% per month.
- In any of the first three months, it can issue 90-day commercial paper.
- Excess funds can be reinvested at an interest rate of 0.3% per month.
- Any paper issued in January through March requires a 2% interest rate payment three months later.

Decision Variables

Linear Programming Optimization Methods in Finance

Decision Variables

Let x_i denote the amount drawn from the credit line in month i,

Decision Variables

Let x_i denote the amount drawn from the credit line in month *i*, y_i denote the amount of commercial paper issued in month *i*,

Decision Variables

Let x_i denote the amount drawn from the credit line in month *i*, y_i denote the amount of commercial paper issued in month *i*, z_i denote the excess funds in month *i* and

Decision Variables

Let x_i denote the amount drawn from the credit line in month *i*, y_i denote the amount of commercial paper issued in month *i*, z_i denote the excess funds in month *i* and *v* denote the company's wealth after June.

Decision Variables

Let x_i denote the amount drawn from the credit line in month *i*, y_i denote the amount of commercial paper issued in month *i*, z_i denote the excess funds in month *i* and *v* denote the company's wealth after June.

Objective Function

Decision Variables

Let x_i denote the amount drawn from the credit line in month *i*, y_i denote the amount of commercial paper issued in month *i*, z_i denote the excess funds in month *i* and *v* denote the company's wealth after June.

Objective Function

max v

Modeling (contd.)

Modeling (contd.)

Constraints

$$\begin{array}{rcrcrcrc} x_1+y_1-z_1 &=& 150\\ x_2+y_2-1.01\cdot x_1+1.003\cdot z_1-z_2 &=& 100\\ x_3+y_3-1.01\cdot x_2+1.003\cdot z_2-z_3 &=& -200\\ x_4-1.02\cdot y_1-1.01\cdot x_3+1.003\cdot z_3-z_4 &=& 200\\ x_5-1.02\cdot y_2-1.01\cdot x_4+1.003\cdot z_4-z_5 &=& -50\\ -1.02\cdot y_3-1.01\cdot x_5+1.003\cdot z_5-v &=& -300\\ x_i &\leq& 100, \ i=1,2,3,4,5\\ x_i,y_i,z_i &\geq& 0 \end{array}$$

Dedication (Cash flow matching)

Dedication (Cash flow matching)

The problem

Linear Programming Optimization Methods in Finance

Dedication (Cash flow matching)

The problem

• Technique to fund known liabilities in the future.

Dedication (Cash flow matching)

- Technique to fund known liabilities in the future.
- Form a portfolio of assets, whose cash inflows exactly offset the cash outflows of liabilities.

Dedication (Cash flow matching)

- Technique to fund known liabilities in the future.
- Form a portfolio of assets, whose cash inflows exactly offset the cash outflows of liabilities.
- The liabilities will thus be paid off without the need to buy or sell future assets.

Dedication (Cash flow matching)

- Technique to fund known liabilities in the future.
- Form a portfolio of assets, whose cash inflows exactly offset the cash outflows of liabilities.
- The liabilities will thus be paid off without the need to buy or sell future assets.
- Typically, such a portfolio consists of risk-free bonds.

Definition

An arbitrage is a trading strategy that:

Linear Programming Optimization Methods in Finance

Definition

An arbitrage is a trading strategy that:

has a positive initial cash flow and has no risk of a loss later (type A), or

Definition

An arbitrage is a trading strategy that:

- has a positive initial cash flow and has no risk of a loss later (type A), or
- Prequires no initial cash input, has no risk of loss and a positive probability of making profits in the future (type B).

Arbitrage (contd.)

Arbitrage (contd.)

Definition

Linear Programming Optimization Methods in Finance

Arbitrage (contd.)

Definition

Let S^i , i = 1, 2, ..., n denote a collection of securities.

Arbitrage (contd.)

Definition

Let S^i , i = 1, 2, ..., n denote a collection of securities. Let $\Omega = \{\omega_1, \omega_2, ..., \omega_m\}$ denote *m* distinct states.

Arbitrage (contd.)

Definition

Let S^i , i = 1, 2, ..., n denote a collection of securities. Let $\Omega = \{\omega_1, \omega_2, ..., \omega_m\}$ denote *m* distinct states. Let $S^i_1(\omega_j)$ denote the price of security S^i at time 1 and state ω_j .

Arbitrage (contd.)

Definition

Let S^i , i = 1, 2, ..., n denote a collection of securities. Let $\Omega = \{\omega_1, \omega_2, ..., \omega_m\}$ denote *m* distinct states. Let $S^i_1(\omega_j)$ denote the price of security S^i at time 1 and state ω_j . We use S^0 to denote the riskless security that pays interest r% at time 1.
Arbitrage (contd.)

Definition

Let S^i , i = 1, 2, ..., n denote a collection of securities. Let $\Omega = \{\omega_1, \omega_2, ..., \omega_m\}$ denote *m* distinct states. Let $S^i_1(\omega_j)$ denote the price of security S^i at time 1 and state ω_j . We use S^0 to denote the riskless security that pays interest r% at time 1. We assume that $S^0_0 = 1$ and $S^0_1(\omega_j) = R = 1 + r, \forall j$.

Arbitrage (contd.)

Definition

Let S^i , i = 1, 2, ..., n denote a collection of securities. Let $\Omega = \{\omega_1, \omega_2, ..., \omega_m\}$ denote *m* distinct states. Let $S^i_1(\omega_j)$ denote the price of security S^i at time 1 and state ω_j . We use S^0 to denote the riskless security that pays interest r% at time 1. We assume that $S^0_0 = 1$ and $S^0_1(\omega_j) = R = 1 + r, \forall j$. A risk-neutral probability measure on Ω is a positive vector $\mathbf{p} = (p_1, p_2, ..., p_m)$ such that $\sum_{j=1}^m p_j = 1$ and for every security S^i , i = 0, 1, ..., n,

$$S_0^i = rac{1}{R}(\sum_{j=1}^m p_j \cdot S_1^i(\omega_j)) = rac{1}{R} \mathbf{E}[S_1^i],$$

where E[S] denotes the expected value of the random variable *S*, under the probability distribution **p**.

Review of Concepts Duality Applications to Finance

Review of Concepts Duality Applications to Finance

Theorem

Linear Programming Optimization Methods in Finance

Review of Concepts Duality Applications to Finance

Theorem

A risk neutral probability measure exists if and only if there is no arbitrage.