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A product mix problem

Example

We have two gadgets to produce: α and β.
1 The return for a unit of α is $20.
2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
3 The return for a unit of β is $30.
4 Each unit of β requires 3 hours of assembly and 2 hours of testing.
5 We must produce at least 25 units of α.
6 We have a total of 240 hours available for assembly and 140 hours for testing.

How many units of α and β should be produced to maximize our return?
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Portfolio optimization

Example

We want to invest $50, 000 among three strategies: savings certificates, municipal
bonds, and stocks.

1 The annual return on each investment is 7%, 9%, and 14% respectively.
2 We will not re-invest the interest at the end of the year.
3 We do not want to invest less than $10, 000 in bonds.
4 The investment in stocks should not exceed the combined total investment in the

other two strategies.
5 The savings certificate investment should be between $5, 000 and $15, 000.

How should we invest the money in order to maximize our return?
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Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.
1 An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans,

and 55 bushels of oats.
2 To receive federal subsidies, we may not plant more than 120 acres of soybeans.
3 We require at least 10, 000 bushels of corn product due to a contract with a local

dairy farm.
4 The total wheat acreage should not be less than that used for soybeans and oats.
5 The selling price per bushel of corn is $0.36; of wheat, $0.90; of soybeans, $0.82;

of oats, $0.98.

How many acres of each product should be grown to maximize our profit?
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Transportation

Example

We have three warehouses and four clients.
1 Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available

respectively.
2 Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
3 The cost to ship a unit from a given warehouse to a given client varies according

to the following table:

Client
Warehouse 1 2 3 4

1 7 3 8 4
2 8 5 6 3
3 4 6 9 6

4 Items should be shipped from warehouses to clients, so all client demands are
met.

How can we perform the shipping while minimizing our shipping cost?
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Formulating a linear program

1 Determine the decision (or control or structural) variables.
2 Formulate the objective function.
3 Formulate the constraints.
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Optimize z = c1 · x1 + c2 · x2 + · · ·+ cn · xn

Subject to

a1,1 · x1 + · · · a1,n · xn{≤,=, or ≥}b1
...

am,1 · x1 + · · · am,n · xn{≤,=, or ≥}bm

x1, . . . , xn ≥ 0
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Compact representation

Compact form

This can be written more compactly as

Optimize z =
∑n

j=1 cj · xj

Subject to ∑n
j=1 ai,j · xj{≤,=, or ≥}bi for i = 1, . . . , n

xi ≥ 0 for i = 1, . . . , n
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Assumptions of the linear programming model

Assumptions

1 Certainty - No stochastics in problem parameters.
2 Proportionality - Variable xij contributes cij · xij to the cost and aij · xij to the i th

constraint. No setup costs or economies of scale.
3 Additivity - Total cost is the sum of cost contributions of each variable. No

interactions reduce or increase the level of the combined contributions
4 Divisibility - Variables are continuous and not discrete.
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Forms of a linear program

Forms

1 General Form (already discussed).
2 Canonical form:

max c · x
A · x ≤ b

x ≥ 0

3 Standard form:

max c · x
A · x = b

x ≥ 0
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Converting linear programs into standard form

Objective function

1 If already in maximization form, nothing needs to be done.
2 If in minimization form, maximize the negative of the function.
3 If there is no objective function, use max 0 · x.

Variables

If a variable (say x1) is unrestricted in sign, replace it with x ′1 − x ′′1 , where both
x ′1, x

′′
1 ≥ 0.

Constraints

1 If a constraint is in the ≤ form, use a slack variable.
2 If a constraint is in the ≥ form, use a surplus variable.

Both slack and surplus variables are inherently non-negative.
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Equivalence of the feasibility and optimization versions

Equivalence

1 Can you solve the feasibility version of linear programs, given an oracle for the
optimization version?

2 Can you solve the optimization version of linear programs given an oracle for the
feasibility version?
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Exercise

Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

Minimize z = 2 · x1 − 3 · x2 + 5 · x3 + x4

subject to

−x1 + 3 · x2 − x3 + 2 · x4 ≤ −12

5 · x1 + x2 + 4 · x3 − x4 ≥ 10

3 · x1 − 2 · x2 + x3 − x4 = −8

x1, x2, x3, x4 ≥ 0
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Solution

Constraint conversion

Converting the constraints we get,

−x1 + 3 · x2 − x3 + 2 · x4 + s1 = −12
5 · x1 + x2 + 4 · x3 − x4 − s2 = 10

3 · x1 − 2 · x2 + x3 − x4 = −8

Adding the bounds on the slack and surplus variables

x1, x2, x3, x4, s1, s2 ≥ 0

Finally, converting the objective function

Maximize z = −2 · x1 + 3 · x2 − 5 · x3 − x4 + 0s1 + 0s2
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Representing constraints as sections of a plane

Geometric View of Constraints

An equality, such as x1 + x2 = 3, can be viewed as a line in the x1,x2 plane.

0

x1

x2

x1 + x2 = 3
(0,3)

(3,0)
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Geometric View of Constraints

Similarly an inequality, such as x1 + x2 ≤ 3, can be viewed as as the half plane above
or below a line in the x1,x2 plane.

0

x2

x1

x1 + x2 ≤ 3
(0,3)

(3,0)
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Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that
system is simply the intersection of the portions of the plane corresponding to each
constraint. For instance, the constraints

x1 ≤ 1

x2 ≥ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

would produce

0

x2

x1

x1 + x2 = 3

(0,3)

(3,0)

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that
system is simply the intersection of the portions of the plane corresponding to each
constraint. For instance, the constraints

x1 ≤ 1

x2 ≥ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

would produce

0

x2

x1

x1 + x2 = 3

(0,3)

(3,0)

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that
system is simply the intersection of the portions of the plane corresponding to each
constraint. For instance, the constraints

x1 ≤ 1

x2 ≥ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

would produce

0

x2

x1

x1 + x2 = 3

(0,3)

(3,0)

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that
system is simply the intersection of the portions of the plane corresponding to each
constraint. For instance, the constraints

x1 ≤ 1

x2 ≥ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

would produce

0

x2

x1

x1 + x2 = 3

(0,3)

(3,0)

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Geometric representation of the objective function

Objective Function

For a fixed z, the objective function is simply an equality, and can thus be represented
as a line in the x1 − x2 plane.

If we allow z to vary then the objective function can be represented as a series of
parallel lines each corresponding to a different value for z.

If we are trying to maximize z then we find the maximum z for which the corresponding
line passes though the portion of the plane corresponding to the system of constraints.

It also helps to find the gradient of z as it identifies the direction in which z grows the
fastest.
As the objective function is of the form z = c1 · x1 + c2 · x2, the gradient is simply the
vector (c1, c2).
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Handling the objective function

For example adding the objective function z = x1 + 2x2 to our previous example yields

0

x2

x1

x1 + x2 = 3

(0,3)

(3,0)

z = 2

z = 4

z = 6

Thus trying to maximize z would yield that maximum z to be 6 when x1 = 0 and
x2 = 3. Similarly trying to minimize z would yield that minimum z to be 2 when x1 = 0
and x2 = 1.
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Exercise 1

Solve the following linear program graphically

minimize z = 4 · x1 + 5 · x2

subject to

3 · x1 + 2 · x2 ≤ 24

x1 ≥ 5

3 · x1 − x2 ≤ 6

x1, x2 ≥ 0
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Solution

If the constraints are plotted onto a graph we see

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

There are no points which satisfy all three constraints. Thus no solution exists.
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Exercise 2

Solve the following system of constraints graphically

minimize z = x1 − 4 · x2

subject to

x1 + x2 ≤ 12

−2 · x1 + x2 ≤ 4

x2 ≤ 8

x1 − 3 · x2 ≤ 4

x1, x2 ≥ 0
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Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

x1 + x2 = 12

−2x1 + x2 = 4

x2 = 8

x1 − 3x2 = 4

z = 0

z = −10

z = −20

z = −30

Thus the minimum value of z is z = −30 and occurs at (x1, x2) = (2, 8).
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Thus the minimum value of z is z = −30 and occurs at (x1, x2) = (2, 8).
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Exercise 3

Solve the following linear program graphically

maximize z = x1 + 2 · x2

subject to

−2 · x1 + x2 ≤ 2

2 · x1 + 5 · x2 ≥ 10

x1 − 4 · x2 ≤ 2

x1, x2 ≥ 0

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Exercise 3

Solve the following linear program graphically

maximize z = x1 + 2 · x2

subject to

−2 · x1 + x2 ≤ 2

2 · x1 + 5 · x2 ≥ 10

x1 − 4 · x2 ≤ 2

x1, x2 ≥ 0

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Exercise 3

Solve the following linear program graphically

maximize z = x1 + 2 · x2

subject to

−2 · x1 + x2 ≤ 2

2 · x1 + 5 · x2 ≥ 10

x1 − 4 · x2 ≤ 2

x1, x2 ≥ 0

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10

z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Hyperplanes and Halfspaces

Definition (Hyperplane)

A hyperplane is a set of points, x = (x1, x2, . . . , xn)t , that satisfy a · x = b, where
a = (a1, a2, . . . , an) and b is a scalar.

Definition (Halfspace)

A closed halfspace corresponding to a hyperplane ax = b is either of the sets
H+ = {x : a · x ≥ b} or H− = {x : a · x ≤ b}. If the inequalities involved are strict then
the corresponding halfspace are referred to as open halfspaces.
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Convexity and Polyhedral Sets

Definition (Convex Set)

A set, S, is convex if for any two points x1, x2 ∈ S then all points on the line segment
connecting x1 and x2 are in S. This means that ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ S.

Definition (Polyhedral Set)

A set S is polyhedral if it is the intersection of a finite number of halfspaces.

Systems of constraints as Polyhedral Sets

A constraint system of the form S = {x : A · x ≤ b, x ≥ 0} is a polyhedral set as each
constraint corresponds to a halfspace.
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Convexity of polyhedra

Theorem

The set S = {x : A · x = b, x ≥ 0} is convex.
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Extreme points

Definition (Extreme Point)

A point x in a convex set S is said to be an extreme point if it does not lie on the interior
of a line segment connecting two distinct points in S.
Mathematically there do not exist x1, x2 ∈ S, x1 6= x2, and α ∈ (0, 1) such that
x = α · x1 + (1− α) · x2.
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Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an
extreme point of S , if and only if x is the intersection of n linearly independent
hyperplanes.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an
extreme point of S , if and only if x is the intersection of n linearly independent
hyperplanes.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n.

x is an
extreme point of S , if and only if x is the intersection of n linearly independent
hyperplanes.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an
extreme point of S , if and only if x is the intersection of n linearly independent
hyperplanes.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an
extreme point of S , if and only if x is the intersection of n linearly independent
hyperplanes.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of Rn to
be either bounded or unbounded.

Definition (Bounded Set)

A subset S of Rn is bounded if it can be contained within an n-dimensional ball.

Definition (Unbounded Set)

An unbounded set is a set which is not bounded.

Note

We will only be dealing with bounded polyhedra for the rest of this topic. Such
polyhedra are called polytopes.
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Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S. Then,

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S. Then,

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S.

Then,
1 S has at least one extreme point and at most a finite number of extreme points,

thus E = {x1, . . . , xp} 6= ∅.
2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S. Then,

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S. Then,

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S. Then,

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S. Then,

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 if x ∈ S, then x can be written as a convex combination of extreme points

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Extreme point solutions

Theorem

Let S = {x : A · x = b, x ≥ 0} and consider the following linear program.

maximize z = c · x
subject to x ∈ S.

Suppose S is bounded and has extreme points E = {x1, . . . , xp} 6= ∅. If S is bounded,
a finite optimal solution exists. Furthermore, an extreme point optimal solution exists.
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Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the
extreme points of the feasible space. However we still need to develop a way of finding
these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations A · x = b, where A is an m × n matrix
b = (b1, . . . , bm)t , and x = (x1, . . . , xn)t .
We will assume that rank(A) = m ≤ n. That is we assume that the rows of A are
linearly independent.
We also assume that the columns of A can be rearranged so that A can be written as
A = (B : N), where B is a nonsingular m ×m matrix.
We will refer to B as the basis matrix.
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Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,

otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · NxN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0 then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Connecting extreme points and basic feasible soluionts

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an
extreme point of S if and only if x is a basic feasible solution.
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Given the matrix A =

(
1 0 2
0 1 1

)
and vector b =

(
1
2

)
, find the basic feasible

solutions to A · x = b, x ≥ 0.

Solution

A =

(
1 0 2
0 1 1

)
and b =

(
1
2

)
.

B =

(
1 0
0 1

)
. Thus, B−1 =

(
1 0
0 1

)
so B−1b =

(
1
2

)
so x =

 1
2
0

.

B =

(
1 2
0 1

)
. Thus, B−1 =

(
1 −2
0 1

)
so B−1b =

(
−3
2

)
so x =

 −3
0
2

.

B =

(
0 2
1 1

)
. Thus, B−1 =

(
− 1

2 1
1
2 0

)
so B−1b =

( 3
2
1
2

)
so x =

 0
3
2
1
2

.
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Overview

Principal Ideas

1 If a finite optimal solution exists, then an extreme-point optimal solution exists.
2 Each extreme-point solution is a basic feasible solution of the linear constraint set:

A · x = b, x ≥ 0. We iteratively move from one extreme point to an adjacent
extreme point, until an extreme point with an optimal solution.

Questions: How to choose first, next and last (optimal) extreme point?
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Representing z and x

The standard linear programming problem

(LP) maximize z = c · x subject to A · x = b and x ≥ 0.

Clearly, A can be partitioned as:

A = (B : N),

where B is a basis. Since A · x = b, we have:

B · xB + N · xN = b
⇒ xB + B−1 · N · xN = B−1 · b

⇒ xB = B−1 · b− B−1 · N · xN

Basic Solution

x =

(
xB
xN

)
=

(
B−1 · b

0

)
. If xB = B−1b ≥ 0, then x is a basic feasible solution (bfs).
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Representations of objective function and bfs

Objective Function

The objective function z = c · x can be written as c = [cB : cN]. Accordingly,

z = c · x
= [cB : cN] · [xB : xN]

= cB · xB + cN · xN

= cB · (B−1 · b− B−1 · N · xN) + cN · xN

= cB · B−1 · b− (cB · B−1 · N− cN) · xN

Note that the current value of the objective function and the current bfs are:

z = cB · B−1 · b

x =

(
xB
xN

)
=

(
B−1b

0

)
≥ 0
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Motivating Examples
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Forms of a linear program
Foundations of the Simplex Method

Using the non-basic variables

Variable change

Let J denote the index set of the nonbasic variables.
The canonical form of z and xB can be written as:

z = cB · B−1 · b−
∑
j∈J

(cB · B−1 · aj − cj )xj

xB = B−1 · b−
∑
j∈J

(B−1 · aj) · xj

Main idea

The key idea of the simplex method is to move from an extreme point to an improving
adjacent extreme point by interchanging a column in B and a column in N.
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Checking for optimality

Optimality check

Based on the derived expression for z, the rate of change of z with respect to the
nonbasic variable xj is:

∂z
∂xj

= −(cB · B−1 · aj − cj )

Thus, if ∂z
∂xj

> 0, then increasing xj will increase z.

(cBB−1aj − cj ) is sometimes referred to as reduced cost and is denoted by (zj − cj ).

A basic feasible solution is optimal to (LP) if,
∂z
∂xj

= −(zj − cj ) = −(cBB−1aj − cj ) ≤ 0, for all j ∈ J

or, equivalently, if zj − cj = (cBB−1aj − cj ) ≥ 0, for all j ∈ J.

What is (zj − cj ) for a basic variable?
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Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which ∂z
∂xj

is the largest.

This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as
the entering variable.

xj will become a basic variable, and some current basic variable xk will become
non-basic. xk is called the departing variable.

Departing Variable

The departing variable xk must satisfy two requirements:

The columns of B, after ak is removed and aj is added, can form a basis, i.e. they
are linearly independent.

In order to make xk non-negative when xj is increased, xj needs to satisfy the
most restrictive upper bound.

xk is determined by a blocking constraint.
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The columns of B, after ak is removed and aj is added, can form a basis, i.e. they
are linearly independent.

In order to make xk non-negative when xj is increased, xj needs to satisfy the
most restrictive upper bound.

xk is determined by a blocking constraint.
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Forming a new basis

Theorem

Let B = (b1, b2, ..., bm) be a basis for Em, and let a ∈ Em, a 6= 0. Then a can be
written uniquely as a linear combination of b1, b2, ..., bm.

Theorem

Let B = (b1, b2, ..., bm) be a basis for Em, and let a ∈ Em, a 6= 0 be represented by
a =

∑m
j=1 λj bj . Without loss of generality, suppose λm 6= 0. Then, b1, b2, ..., bm−1, a

form a basis for Em.
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Example

Example

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Example

Example

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Example

Example

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Example

Example

maximize z = 2 · x1 + 3 · x2

subject to
x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Example

Example

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Example

Example

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Example

Example

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 ≤ 4
2 · x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Note

Solve the above problem graphically.

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Standardization

Standardizing the constraints

maximize z = 2 · x1 + 3 · x2
subject to

x1 − 2 · x2 + x3 = 4
2 · x1 + x2 + x4 = 18

x2 + x5 = 10
x1, x2, x3, x4, x5 ≥ 0

Summary

This problem can be summarized as follows:

A =

1 − 2 1 0 0
2 1 0 1 0
0 1 0 0 1


B =

 4
18
10


c = (2 3 0 0 0)
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Ploughing through

Locate the initial basis

An obvious choice is I. B = (a3, a4, a5) =

1 0 0
0 1 0
0 0 1

 = I

xB =

xB,1
xB,2
xB,3

 =

x3
x4
x5

.

Is this basis feasible?
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Moving from one basis to the next

Basic variables in terms of non-basic variables

Expressing z and xB in terms of xN, we get:
z = 2 · x1 + 3 · x2
x3 = 4− x1 + x2
x4 = 18− 2 · x1 − x2
x5 = 10− x2

Starting solution is obtained by setting the nonbasic variables equal to zero

z = 0

xB =

xB,1
xB,2
xB,3

 =

x3
x4
x5

 =

 4
18
10


xN =

(
0
0

)

Is the current basic solution optimal?
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Choosing the departing variables

Choosing the entering variable

∂z/∂x1 = 2. ∂z/∂x2 = 3 (maximal). We choose x2 as the entering variable.

How to pick the departing variable

As x2 is increased, we must ensure that x3 and x4 and x5 remain nonnegative.
x2 needs to satisfy the most restrictive upper bound x2 ≤ 10 due to x5.
x5 is the departing variable and the corresponding constant is called the blocking
constraint.

Pivot

The new canonically representation of z and xB is are formed using x2 = 10− x5 to
eliminate x2; i.e., to represent the basic variables x2, x3 and x4 by the non-basic
variables x1 and x5.

z = 2 · x1 + 3 · (10− x5) = 30 + 2 · x1 − 3 · x5
x3 = 4− x1 + 2 · (10− x5) = 24− x1 − 2 · x5
x4 = 18− 2 · x1 − (10− x5) = 8− 2 · x1 + x5
x2 = 10− x5
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New basis

Summary

The current solution and basis matrix can be summarized as follows:

z = 30

xB =

xB,1
xB2
xB3

 =

x3
x4
x2

 =

24
8

10


xN =

(
x1
x5

)
=

(
0
0

)
B = (a3, a4, a2) =

 1 0 -2
0 1 1
0 0 1


Is the current solution optimal? Clearly not, since ∂z/∂x1 = 2 ≥ 0. This also means

that x1 is the entering variable.
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Final move

Departing variable

z = 30 + 2 · x1 − 3 · x5
x3 = 24− x1 − 2 · x5
x4 = 8− 2 · x1 + x5
x2 = 10− x5

Clearly, x4 = 8− 2 · x1 + x5 is the blocking constraint.
Thus x1 can be raised up to 4. x4 is now the departing variable.

Replacing x1 with 4− 1
2 · x4 + 1

2 · x5, we get,
z = 30 + 2 · (4− 1

2 · x4 − 1
2 · x5)− 3 · x5 = 38− x4 − 2 · x5

x3 = 24− (4 + 1
2 · x5 − 1

2 · x4)− 2 · x5 = 20 + 1
2 · x4 − 5

2 · x5
x1 = 4− 1

2 x4 + 1
2 x5

x2 = 10− x5

Is the new solution optimal?
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Important observations

Note

1 There is finite progress being made at each pivot. If the optimum is finite, the
algorithm will converge (barring cycling).

2 How do we check for unboundedness?
3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Important observations

Note

1 There is finite progress being made at each pivot. If the optimum is finite, the
algorithm will converge (barring cycling).

2 How do we check for unboundedness?
3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Important observations

Note

1 There is finite progress being made at each pivot.

If the optimum is finite, the
algorithm will converge (barring cycling).

2 How do we check for unboundedness?
3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Important observations

Note

1 There is finite progress being made at each pivot. If the optimum is finite, the
algorithm will converge

(barring cycling).
2 How do we check for unboundedness?
3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Important observations

Note

1 There is finite progress being made at each pivot. If the optimum is finite, the
algorithm will converge (barring cycling).

2 How do we check for unboundedness?
3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Important observations

Note

1 There is finite progress being made at each pivot. If the optimum is finite, the
algorithm will converge (barring cycling).

2 How do we check for unboundedness?

3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

Important observations

Note

1 There is finite progress being made at each pivot. If the optimum is finite, the
algorithm will converge (barring cycling).

2 How do we check for unboundedness?
3 How do we get the initial bfs?

Linear Programming Optimization Methods in Finance



Motivating Examples
Fundamental Steps

Forms of a linear program
Foundations of the Simplex Method

The product mix problem

Example

We have two gadgets to produce: α and β.
1 The return for a unit of α is $20.
2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
3 The return for a unit of β is $30.
4 Each unit of β requires 3 hours of assembly and 2 hours of testing.
5 We must produce at least 25 units of α.
6 We have a total of 240 hours available for assembly and 140 hours for testing.

How many units of α and β should be produced to maximize our return?
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Modeling the product mix problem

Decision Variables

Let x1 denote the number of units of α and x2 denote the number of units of β to be
manufactured.

Objective function

max 20 · x1 + 30 · x2.

Constraints

4 · x1 + 3 · x2 ≤ 240

x1 + 2 · x2 ≤ 140

x1 ≥ 25

x1, x2 ≥ 0
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Portfolio optimization

Example

We want to invest $50, 000 among three strategies: savings certificates, municipal
bonds, and stocks.

1 The annual return on each investment is 7%, 9%, and 14% respectively.
2 We will not re-invest the interest at the end of the year.
3 We do not want to invest less than $10, 000 in bonds.
4 The investment in stocks should not exceed the combined total investment in the

other two strategies.
5 The savings certificate investment should be between $5, 000 and $15, 000.

How should we invest the money in order to maximize our return?
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Modeling the portfolio optimization problem

Decision Variables

Let x1, x2 and x3 denote the amounts to be invested in savings certificates, municipal
bonds and stocks respectively.

Objective Function

max 0.07 · x1 + 0.09 · x2 + 0.14 · x3.

Constraints

x2 ≥ 10, 000

x3 ≤ x1 + x2

x1 ≥ 5000

x1 ≤ 15, 000

x1 + x2 + x3 ≤ 50, 000

x1, x2, x3 ≥ 0
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Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.
1 An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans,

and 55 bushels of oats.
2 To receive federal subsidies, we may not plant more than 120 acres of soybeans.
3 We require at least 10, 000 bushels of corn product due to a contract with a local

dairy farm.
4 The total wheat acreage should not be less than that used for soybeans and oats.
5 The selling price per bushel of corn is $0.36; of wheat, $0.90; of soybeans, $0.82;

of oats, $0.98.

How many acres of each product should be grown to maximize our profit?
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Modeling the Farmland Use problem

Decision Variables

Let x1, x2, x3 and x4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

max(0.36) · 110 · x1 + (0.9) · 35 · x2 + (0.82) · 32 · x3 + (0.98) · 55 · x4.

Constraints

x1 + x2 + x3 + x4 ≤ 500

x3 ≤ 120

110 · x1 ≥ 10, 000

x2 ≥ x3 + x4

x1, x2, x3, x4 ≥ 0
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max(0.36) · 110 · x1 + (0.9) · 35 · x2 + (0.82) · 32 · x3 + (0.98) · 55 · x4.

Constraints

x1 + x2 + x3 + x4 ≤ 500

x3 ≤ 120

110 · x1 ≥ 10, 000

x2 ≥ x3 + x4

x1, x2, x3, x4 ≥ 0
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Transportation

Example

We have three warehouses and four clients.
1 Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available

respectively.
2 Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
3 The cost to ship a unit from a given warehouse to a given client varies according

to the following table:

Client
Warehouse 1 2 3 4

1 7 3 8 4
2 8 5 6 3
3 4 6 9 6

4 Items should be shipped from warehouses to clients, so all client demands are
met.

How can we perform the shipping while minimizing our shipping cost?
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Modeling the Transportation problem

Decision Variables

Let xi,j denote the number of units to be shipped from warehouse i to client j , where
i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}.

Objective Function

min 7 · x1,1 + 3 · x1,2 + 8 · x1,3 + 4 · x1,4

9 · x2,1 + 5 · x2,2 + 6 · x2,3 + 3 · x2,4

4 · x3,1 + 6 · x3,2 + 9 · x3,3 + 6 · x3,4
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Modeling (contd.)

Constraints

The supply constraints:

4∑
j=1

x1,j ≤ 6000

4∑
j=1

x2,j ≤ 9000

4∑
j=1

x3,j ≤ 4000

The demand constraints:

3∑
i=1

xi,1 = 3900

3∑
i=1

xi,2 = 5200

3∑
i=1

xi,3 = 2700

3∑
i=1

xi,4 = 6400

Non-negativity constraints:
xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4.
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Uncovered topics

Self-study

1 The Simplex tableau method.
2 Degeneracy and cycling.
3 The revised simplex method.
4 The bounded variables simplex method.
5 Decomposition.
6 Sensitivity analysis.
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Alternatives to the Simplex Method

Issues and Alternatives

1 Computational Complexity.
2 The Klee Minty observation.
3 Borgwardt’s analysis.
4 The Fourier-Motzkin approach.
5 The ellipsoid algorithm.
6 Karmarkar’s algorithm.
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