Linear Programming - Theory and Algorithms

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

February 3, 2015

2 Fundamental Steps

2 Fundamental Steps

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

Linear Programming Optimization Methods in Finance

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

We have two gadgets to produce: α and β .

① The return for a unit of α is \$20.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

- **①** The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

- **①** The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of α .

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of α .
- We have a total of 240 hours available for assembly and 140 hours for testing.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

A product mix problem

Example

We have two gadgets to produce: α and β .

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of α .
- We have a total of 240 hours available for assembly and 140 hours for testing.

How many units of α and β should be produced to maximize our return?

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

Linear Programming Optimization Methods in Finance

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

We want to invest \$50,000 among three strategies: savings certificates, municipal bonds, and stocks.

• The annual return on each investment is 7%, 9%, and 14% respectively.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.
- The savings certificate investment should be between \$5,000 and \$15,000.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Portfolio optimization

Example

We want to invest \$50,000 among three strategies: savings certificates, municipal bonds, and stocks.

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.
- The savings certificate investment should be between \$5,000 and \$15,000.

How should we invest the money in order to maximize our return?

Motivating Examples Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

Linear Programming Optimization Methods in Finance

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn,

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn, 35 bushels of wheat,

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

• An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans,

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.
- The selling price per bushel of corn is \$0.36; of wheat, \$0.90; of soybeans, \$0.82; of oats, \$0.98.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.
- The selling price per bushel of corn is \$0.36; of wheat, \$0.90; of soybeans, \$0.82; of oats, \$0.98.

How many acres of each product should be grown to maximize our profit?

Transportation

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

We have three warehouses and four clients.

Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- 2 Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- ² Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

	Client			
Warehouse	1	2	3	4
1	7	3	8	4
2	8	5	6	3
3	4	6	9	6

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

We have three warehouses and four clients.

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

	Client			
Warehouse	1	2	3	4
1	7	3	8	4
2	8	5	6	3
3	4	6	9	6

 Items should be shipped from warehouses to clients, so all client demands are met.

Fundamental Steps Forms of a linear program Foundations of the Simplex Method

Transportation

Example

We have three warehouses and four clients.

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

	Client			
Warehouse	1	2	3	4
1	7	3	8	4
2	8	5	6	3
3	4	6	9	6

 Items should be shipped from warehouses to clients, so all client demands are met.

How can we perform the shipping while minimizing our shipping cost?

Basic Steps

Formulating a linear program

Linear Programming Optimization Methods in Finance

Basic Steps

Formulating a linear program

O Determine the decision (or control or structural) variables.

Basic Steps

Formulating a linear program

- O Determine the decision (or control or structural) variables.
- 2 Formulate the objective function.

Basic Steps

Formulating a linear program

- O Determine the decision (or control or structural) variables.
- 2 Formulate the objective function.
- Formulate the constraints.

General Form of a Linear Program

General Form of a Linear Program

General Form

The general form of a linear programming is:

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize $z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize $z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize $z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \leq =, \text{ or } \geq \} b_1$$

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \leq =, \text{ or } \geq \} b_1$$

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \le, =, \text{ or } \ge \} b_1$$

$$\vdots$$

$$a_{m,1} \cdot x_1 + \cdots + a_{m,n} \cdot x_n \{ \le, =, \text{ or } \ge \} b_m$$

General Form of a Linear Program

General Form

The general form of a linear programming is:

Optimize
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \le, =, \text{ or } \ge \} b_1$$

$$\vdots$$

$$a_{m,1} \cdot x_1 + \cdots + a_{m,n} \cdot x_n \{ \le, =, \text{ or } \ge \} b_m$$

$$x_1, \dots, x_n \ge 0$$

Compact representation

Compact representation

Compact form

This can be written more compactly as

Compact representation

Compact form

This can be written more compactly as

Optimize $z = \sum_{j=1}^{n} c_j \cdot x_j$

Compact representation

Compact form

This can be written more compactly as

Optimize
$$z = \sum_{j=1}^{n} c_j \cdot x_j$$

Compact representation

Compact form

This can be written more compactly as

Optimize
$$z = \sum_{j=1}^{n} c_j \cdot x_j$$

$$\sum_{j=1}^{n} a_{i,j} \cdot x_j \{ \leq , =, \text{ or } \geq \} b_i \text{ for } i = 1, \dots, n$$

Compact representation

Compact form

This can be written more compactly as

Optimize
$$z = \sum_{j=1}^{n} c_j \cdot x_j$$

$$\sum_{i=1}^{n} a_{i,i} \cdot x_i \{ \leq , =, \text{ or } \geq \} b_i \text{ for } i = 1, \dots, n$$

$$x_i \ge 0$$
 for $i = 1, ..., n$

Assumptions of the linear programming model

Assumptions of the linear programming model

Assumptions

Linear Programming Optimization Methods in Finance

Assumptions of the linear programming model

Assumptions

Certainty

Linear Programming Optimization Methods in Finance

Assumptions of the linear programming model

Assumptions

Certainty - No stochastics in problem parameters.

Assumptions of the linear programming model

Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality

Assumptions of the linear programming model

Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint.

Assumptions of the linear programming model

Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint. No setup costs or economies of scale.

Assumptions of the linear programming model

- Certainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint. No setup costs or economies of scale.
- Additivity

Assumptions of the linear programming model

- Certainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint. No setup costs or economies of scale.
- 3 Additivity Total cost is the *sum* of cost contributions of each variable.

Assumptions of the linear programming model

- Ocertainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint. No setup costs or economies of scale.
- Additivity Total cost is the sum of cost contributions of each variable. No interactions reduce or increase the level of the combined contributions

Assumptions of the linear programming model

Assumptions

- Ocertainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint. No setup costs or economies of scale.
- Additivity Total cost is the sum of cost contributions of each variable. No interactions reduce or increase the level of the combined contributions

Oivisibility

Assumptions of the linear programming model

- Ocertainty No stochastics in problem parameters.
- Proportionality Variable x_{ij} contributes c_{ij} · x_{ij} to the cost and a_{ij} · x_{ij} to the ith constraint. No setup costs or economies of scale.
- Additivity Total cost is the sum of cost contributions of each variable. No interactions reduce or increase the level of the combined contributions
- Oivisibility Variables are continuous and not discrete.

Forms of a linear program

Forms of a linear program

Forms

Linear Programming Optimization Methods in Finance

Forms of a linear program

Forms

General Form

Linear Programming Optimization Methods in Finance

Forms of a linear program

Forms

General Form (already discussed).

Forms of a linear program

Forms

- General Form (already discussed).
- 2 Canonical form:

Forms of a linear program

Forms

- General Form (already discussed).
- 2 Canonical form:

 $\begin{array}{rrrr} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} & \leq & \mathbf{b} \\ \mathbf{x} & \geq & \mathbf{0} \end{array}$

Forms of a linear program

Forms

- General Form (already discussed).
- 2 Canonical form:

 $\begin{array}{ccc} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} & \leq & \mathbf{b} \\ \mathbf{x} & \geq & \mathbf{0} \end{array}$

Standard form:

Forms of a linear program

Forms

- General Form (already discussed).
- 2 Canonical form:

		max c · x	
La construction de la constructi	A · x	\leq	b
	x	\geq	0
Standard form:			
		$\max \bm{c} \cdot \bm{x}$	
L L L L L L L L L L L L L L L L L L L	A · x	=	b
	x	\geq	0

Converting linear programs into standard form

Converting linear programs into standard form

Objective function

Converting linear programs into standard form

Objective function

If already in maximization form, nothing needs to be done.

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- 2 If in minimization form, maximize the negative of the function.

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- 2 If in minimization form, maximize the negative of the function.
- **3** If there is no objective function, use $\max \mathbf{0} \cdot \mathbf{x}$.

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- 2 If in minimization form, maximize the negative of the function.
- 3 If there is no objective function, use $\max \mathbf{0} \cdot \mathbf{x}$.

Variables

If a variable (say x_1) is unrestricted in sign, replace it with $x'_1 - x''_1$, where both $x'_1, x''_1 \ge 0$.

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- 2 If in minimization form, maximize the negative of the function.
- 3 If there is no objective function, use $\max \mathbf{0} \cdot \mathbf{x}$.

Variables

If a variable (say x_1) is unrestricted in sign, replace it with $x'_1 - x''_1$, where both $x'_1, x''_1 \ge 0$.

Constraints

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- If in minimization form, maximize the negative of the function.
- 3 If there is no objective function, use $\max \mathbf{0} \cdot \mathbf{x}$.

Variables

If a variable (say x_1) is unrestricted in sign, replace it with $x'_1 - x''_1$, where both $x'_1, x''_1 \ge 0$.

Constraints

• If a constraint is in the \leq form, use a slack variable.

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- If in minimization form, maximize the negative of the function.
- 3 If there is no objective function, use $\max \mathbf{0} \cdot \mathbf{x}$.

Variables

If a variable (say x_1) is unrestricted in sign, replace it with $x'_1 - x''_1$, where both $x'_1, x''_1 \ge 0$.

Constraints

- If a constraint is in the \leq form, use a slack variable.
- 2 If a constraint is in the \geq form, use a surplus variable.

Converting linear programs into standard form

Objective function

- If already in maximization form, nothing needs to be done.
- If in minimization form, maximize the negative of the function.
- If there is no objective function, use max 0 · x.

Variables

If a variable (say x_1) is unrestricted in sign, replace it with $x'_1 - x''_1$, where both $x'_1, x''_1 \ge 0$.

Constraints

- If a constraint is in the \leq form, use a slack variable.
- 2 If a constraint is in the \geq form, use a surplus variable.

Both slack and surplus variables are inherently non-negative.

Equivalence of the feasibility and optimization versions

Equivalence of the feasibility and optimization versions

Equivalence

Linear Programming Optimization Methods in Finance

Equivalence of the feasibility and optimization versions

Equivalence

O Can you solve the feasibility version of linear programs, given an oracle for the optimization version?

Equivalence of the feasibility and optimization versions

Equivalence

- O Can you solve the feasibility version of linear programs, given an oracle for the optimization version?
- On you solve the optimization version of linear programs given an oracle for the feasibility version?

Exercise

Exercise

Exercise on constraint conversion

Exercise

Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

Minimize $z = 2 \cdot x_1 - 3 \cdot x_2 + 5 \cdot x_3 + x_4$

Exercise

Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

Minimize $z = 2 \cdot x_1 - 3 \cdot x_2 + 5 \cdot x_3 + x_4$

subject to

Exercise

Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

$$\text{Minimize } z = 2 \cdot x_1 - 3 \cdot x_2 + 5 \cdot x_3 + x_4$$

subject to

Solution

Solution

Constraint conversion

Linear Programming Optimization Methods in Finance

Solution

Constraint conversion

Converting the constraints we get,

Solution

Constraint conversion

Converting the constraints we get,

$$-x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 = -12$$

$$5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 = 10$$

$$3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 = -8$$

Solution

Constraint conversion

Converting the constraints we get,

$$\begin{array}{l} -x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 = -12 \\ 5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 = 10 \\ 3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 = -8 \end{array}$$

Adding the bounds on the slack and surplus variables

 $x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$

Solution

Constraint conversion

Converting the constraints we get,

$$\begin{array}{l} -x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 = -12 \\ 5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 = 10 \\ 3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 = -8 \end{array}$$

Adding the bounds on the slack and surplus variables

$$x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$$

Finally, converting the objective function

Solution

Constraint conversion

Converting the constraints we get,

$$\begin{array}{r} -x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 = -12 \\ 5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 = 10 \\ 3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 = -8 \end{array}$$

Adding the bounds on the slack and surplus variables

 $x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$

Finally, converting the objective function

Maximize $z = -2 \cdot x_1 + 3 \cdot x_2 - 5 \cdot x_3 - x_4 + 0s_1 + 0s_2$

Representing constraints as sections of a plane

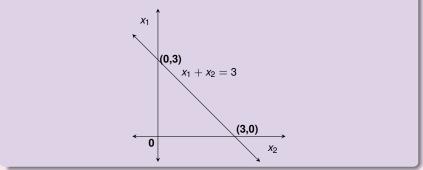
Representing constraints as sections of a plane

Geometric View of Constraints

Representing constraints as sections of a plane

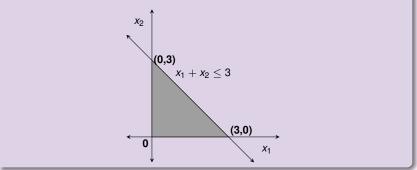
Geometric View of Constraints

An equality, such as $x_1 + x_2 = 3$, can be viewed as a line in the x_1, x_2 plane.



Geometric View of Constraints

Similarly an inequality, such as $x_1 + x_2 \le 3$, can be viewed as as the half plane above or below a line in the x_1, x_2 plane.



Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that system is simply the intersection of the portions of the plane corresponding to each constraint. For instance, the constraints

Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that system is simply the intersection of the portions of the plane corresponding to each constraint. For instance, the constraints

Geometric View of Constraints

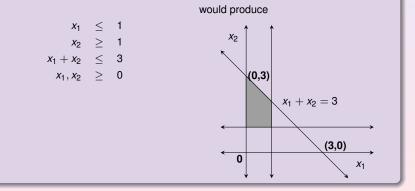
For a system of constraints the section of the plane corresponding to solutions to that system is simply the intersection of the portions of the plane corresponding to each constraint. For instance, the constraints

would produce

$$egin{array}{rcl} x_1 &\leq & 1 \ x_2 &\geq & 1 \ x_1 + x_2 &\leq & 3 \ x_1, x_2 &\geq & 0 \end{array}$$

Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that system is simply the intersection of the portions of the plane corresponding to each constraint. For instance, the constraints



Geometric representation of the objective function

Geometric representation of the objective function

Objective Function

Geometric representation of the objective function

Objective Function

For a fixed *z*, the objective function is simply an equality, and can thus be represented as a line in the $x_1 - x_2$ plane.

Geometric representation of the objective function

Objective Function

For a fixed *z*, the objective function is simply an equality, and can thus be represented as a line in the $x_1 - x_2$ plane.

If we allow z to vary then the objective function can be represented as a series of parallel lines each corresponding to a different value for z.

Geometric representation of the objective function

Objective Function

For a fixed *z*, the objective function is simply an equality, and can thus be represented as a line in the $x_1 - x_2$ plane.

If we allow z to vary then the objective function can be represented as a series of parallel lines each corresponding to a different value for z.

If we are trying to maximize z then we find the maximum z for which the corresponding line passes though the portion of the plane corresponding to the system of constraints.

Geometric representation of the objective function

Objective Function

For a fixed *z*, the objective function is simply an equality, and can thus be represented as a line in the $x_1 - x_2$ plane.

If we allow z to vary then the objective function can be represented as a series of parallel lines each corresponding to a different value for z.

If we are trying to maximize *z* then we find the maximum *z* for which the corresponding line passes though the portion of the plane corresponding to the system of constraints.

It also helps to find the gradient of z as it identifies the direction in which z grows the fastest.

Geometric representation of the objective function

Objective Function

For a fixed *z*, the objective function is simply an equality, and can thus be represented as a line in the $x_1 - x_2$ plane.

If we allow z to vary then the objective function can be represented as a series of parallel lines each corresponding to a different value for z.

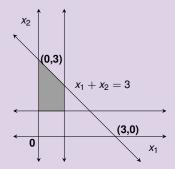
If we are trying to maximize z then we find the maximum z for which the corresponding line passes though the portion of the plane corresponding to the system of constraints.

It also helps to find the gradient of z as it identifies the direction in which z grows the fastest.

As the objective function is of the form $z = c_1 \cdot x_1 + c_2 \cdot x_2$, the gradient is simply the vector (c_1, c_2) .

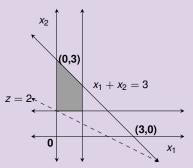
Handling the objective function

For example adding the objective function $z = x_1 + 2x_2$ to our previous example yields



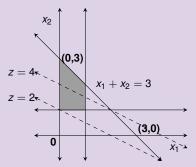
Handling the objective function

For example adding the objective function $z = x_1 + 2x_2$ to our previous example yields



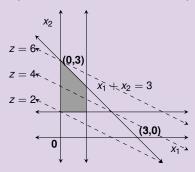
Handling the objective function

For example adding the objective function $z = x_1 + 2x_2$ to our previous example yields



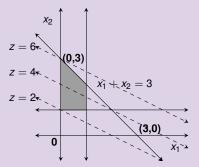
Handling the objective function

For example adding the objective function $z = x_1 + 2x_2$ to our previous example yields



Handling the objective function

For example adding the objective function $z = x_1 + 2x_2$ to our previous example yields



Exercise 1

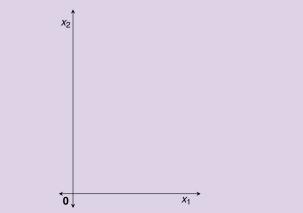
Solve the following linear program graphically

minimize $z = 4 \cdot x_1 + 5 \cdot x_2$

subject to

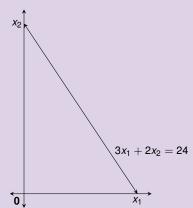
Solution

If the constraints are plotted onto a graph we see



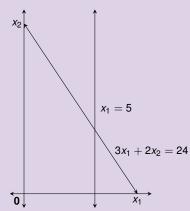
Solution

If the constraints are plotted onto a graph we see



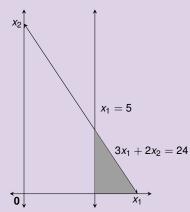
Solution

If the constraints are plotted onto a graph we see



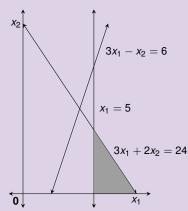
Solution

If the constraints are plotted onto a graph we see



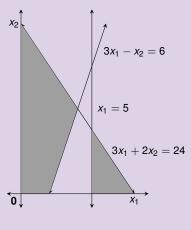
Solution

If the constraints are plotted onto a graph we see



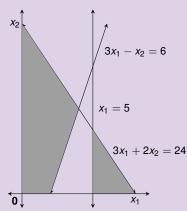
Solution

If the constraints are plotted onto a graph we see



Solution

If the constraints are plotted onto a graph we see



Exercise 2

Solve the following system of constraints graphically

minimize $z = x_1 - 4 \cdot x_2$

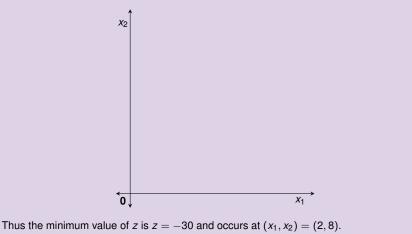
subject to

$$\begin{array}{rcrcrcr}
x_1 + x_2 &\leq& 12 \\
-2 \cdot x_1 + x_2 &\leq& 4 \\
x_2 &\leq& 8 \\
x_1 - 3 \cdot x_2 &\leq& 4 \\
x_1, x_2 &\geq& 0
\end{array}$$

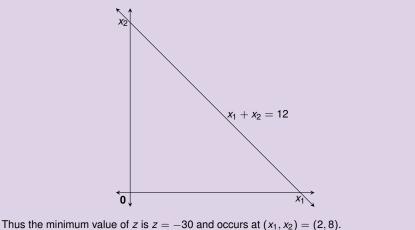
Solution

Solution

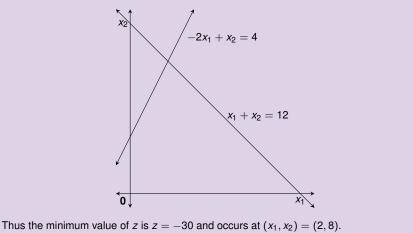
Plotting the constraints and then checking various values of z we get.



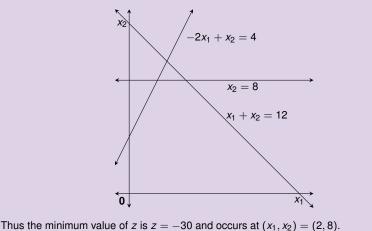
Solution



Solution

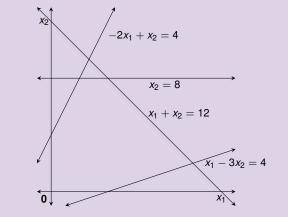


Solution



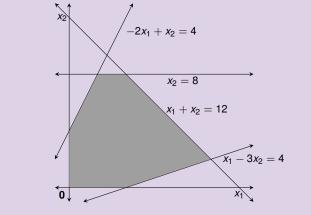
Solution

Plotting the constraints and then checking various values of z we get.



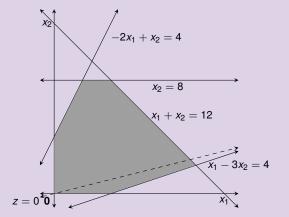
Solution

Plotting the constraints and then checking various values of z we get.



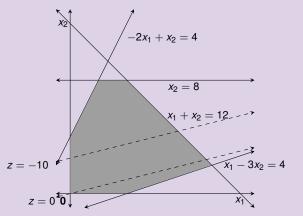
Solution

Plotting the constraints and then checking various values of z we get.



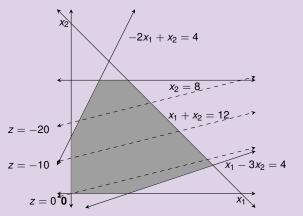
Solution

Plotting the constraints and then checking various values of z we get.

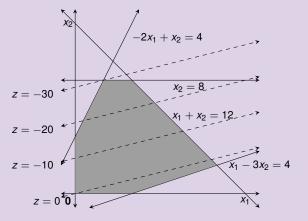


Solution

Plotting the constraints and then checking various values of z we get.

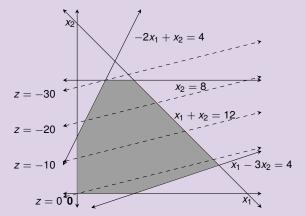


Solution



Solution

Plotting the constraints and then checking various values of z we get.



Exercise 3

Linear Programming Optimization Methods in Finance

Exercise 3

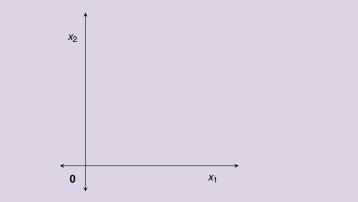
Solve the following linear program graphically

maximize $z = x_1 + 2 \cdot x_2$

subject to

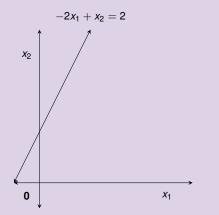
Solution

Plotting the constraints and then checking various values of z we get.



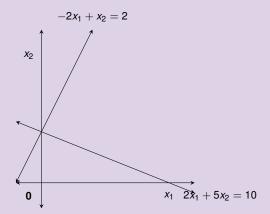
Solution

Plotting the constraints and then checking various values of z we get.



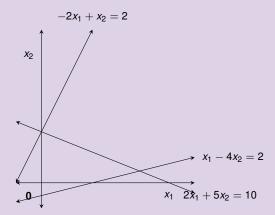
Solution

Plotting the constraints and then checking various values of z we get.



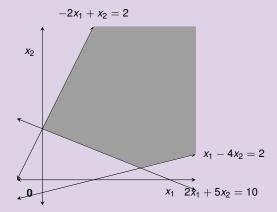
Solution

Plotting the constraints and then checking various values of z we get.



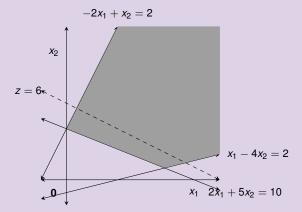
Solution

Plotting the constraints and then checking various values of z we get.



Solution

Plotting the constraints and then checking various values of z we get.



Solution

Plotting the constraints and then checking various values of z we get.



Solution

Plotting the constraints and then checking various values of z we get.

$$z = 10$$

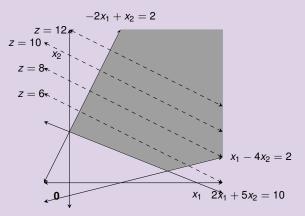
 $z = 8x$
 $z = 6x$
 $x_1 - 4x_2 = 2$
 $x_1 - 4x_2 = 10$

Thus there is no maximum value of z as z can be increased indefinitely and the system will still be feasible.

 $-2x_1 + x_2 = 2$

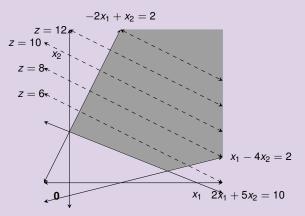
Solution

Plotting the constraints and then checking various values of z we get.

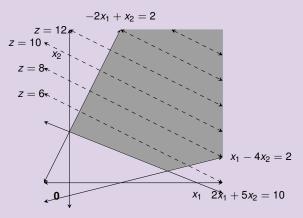


Solution

Plotting the constraints and then checking various values of z we get.

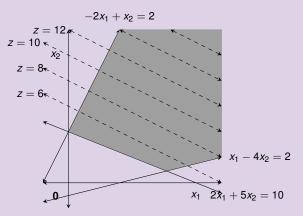


Solution



Solution

Plotting the constraints and then checking various values of z we get.



Motivating Examples Fundamental Steps Forms of a linear program

Foundations of the Simplex Method Hyperplanes and Halfspaces

Motivating Examples Fundamental Steps Forms of a linear program

Hyperplanes and Halfspaces

Definition (Hyperplane)

Hyperplanes and Halfspaces

Definition (Hyperplane)

A hyperplane is a set of points, $\mathbf{x} = (x_1, x_2, ..., x_n)^t$, that satisfy $\mathbf{a} \cdot \mathbf{x} = b$, where $\mathbf{a} = (a_1, a_2, ..., a_n)$ and *b* is a scalar.

Hyperplanes and Halfspaces

Definition (Hyperplane)

A hyperplane is a set of points, $\mathbf{x} = (x_1, x_2, ..., x_n)^t$, that satisfy $\mathbf{a} \cdot \mathbf{x} = b$, where $\mathbf{a} = (a_1, a_2, ..., a_n)$ and *b* is a scalar.

Definition (Halfspace)

Hyperplanes and Halfspaces

Definition (Hyperplane)

A hyperplane is a set of points, $\mathbf{x} = (x_1, x_2, ..., x_n)^t$, that satisfy $\mathbf{a} \cdot \mathbf{x} = b$, where $\mathbf{a} = (a_1, a_2, ..., a_n)$ and *b* is a scalar.

Definition (Halfspace)

A closed halfspace corresponding to a hyperplane $\mathbf{ax} = b$ is either of the sets $H^+ = \{\mathbf{x} : \mathbf{a} \cdot \mathbf{x} \ge b\}$ or $H^- = \{\mathbf{x} : \mathbf{a} \cdot \mathbf{x} \le b\}$.

Hyperplanes and Halfspaces

Definition (Hyperplane)

A hyperplane is a set of points, $\mathbf{x} = (x_1, x_2, ..., x_n)^t$, that satisfy $\mathbf{a} \cdot \mathbf{x} = b$, where $\mathbf{a} = (a_1, a_2, ..., a_n)$ and *b* is a scalar.

Definition (Halfspace)

A closed halfspace corresponding to a hyperplane $\mathbf{ax} = b$ is either of the sets $H^+ = \{\mathbf{x} : \mathbf{a} \cdot \mathbf{x} \ge b\}$ or $H^- = \{\mathbf{x} : \mathbf{a} \cdot \mathbf{x} \le b\}$. If the inequalities involved are strict then the corresponding halfspace are referred to as open halfspaces.

Motivating Examples Fundamental Steps Forms of a linear program

Convexity and Polyhedral Sets

Motivating Examples Fundamental Steps Forms of a linear program

Convexity and Polyhedral Sets

Definition (Convex Set)

Convexity and Polyhedral Sets

Definition (Convex Set)

A set, *S*, is convex if for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ then all points on the line segment connecting \mathbf{x}_1 and \mathbf{x}_2 are in *S*. This means that $\forall \alpha \in [0, 1], \alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$.

Convexity and Polyhedral Sets

Definition (Convex Set)

A set, *S*, is convex if for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ then all points on the line segment connecting \mathbf{x}_1 and \mathbf{x}_2 are in *S*. This means that $\forall \alpha \in [0, 1], \alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$.

Definition (Polyhedral Set)

Convexity and Polyhedral Sets

Definition (Convex Set)

A set, *S*, is convex if for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ then all points on the line segment connecting \mathbf{x}_1 and \mathbf{x}_2 are in *S*. This means that $\forall \alpha \in [0, 1], \alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$.

Definition (Polyhedral Set)

A set S is polyhedral if it is the intersection of a finite number of halfspaces.

Convexity and Polyhedral Sets

Definition (Convex Set)

A set, *S*, is convex if for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ then all points on the line segment connecting \mathbf{x}_1 and \mathbf{x}_2 are in *S*. This means that $\forall \alpha \in [0, 1], \alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$.

Definition (Polyhedral Set)

A set S is polyhedral if it is the intersection of a finite number of halfspaces.

Systems of constraints as Polyhedral Sets

Convexity and Polyhedral Sets

Definition (Convex Set)

A set, *S*, is convex if for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ then all points on the line segment connecting \mathbf{x}_1 and \mathbf{x}_2 are in *S*. This means that $\forall \alpha \in [0, 1], \alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$.

Definition (Polyhedral Set)

A set S is polyhedral if it is the intersection of a finite number of halfspaces.

Systems of constraints as Polyhedral Sets

A constraint system of the form $S = \{x : A \cdot x \le b, x \ge 0\}$ is a polyhedral set as each constraint corresponds to a halfspace.

Convexity of polyhedra

Convexity of polyhedra

Theorem

The set $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$ is convex.

Extreme points

Extreme points

Definition (Extreme Point)

Linear Programming Optimization Methods in Finance

Extreme points

Definition (Extreme Point)

A point **x** in a convex set S is said to be an extreme point if it does not lie on the interior of a line segment connecting two distinct points in S.

Extreme points

Definition (Extreme Point)

A point **x** in a convex set *S* is said to be an extreme point if it does not lie on the interior of a line segment connecting two distinct points in *S*. Mathematically there do not exist $\mathbf{x}_1, \mathbf{x}_2 \in S, \mathbf{x}_1 \neq \mathbf{x}_2$, and $\alpha \in (0, 1)$ such that $\mathbf{x} = \alpha \cdot \mathbf{x}_1 + (1 - \alpha) \cdot \mathbf{x}_2$.

Extreme points

Definition (Extreme Point)

A point **x** in a convex set *S* is said to be an extreme point if it does not lie on the interior of a line segment connecting two distinct points in *S*. Mathematically there do not exist $\mathbf{x}_1, \mathbf{x}_2 \in S, \mathbf{x}_1 \neq \mathbf{x}_2$, and $\alpha \in (0, 1)$ such that $\mathbf{x} = \alpha \cdot \mathbf{x}_1 + (1 - \alpha) \cdot \mathbf{x}_2$. Motivating Examples Fundamental Steps Forms of a linear program

Properties of Extreme points

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of constraints in standard form.

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of constraints in standard form.

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$, where \mathbf{A} is $m \times n$ and rank $(\mathbf{A}) = m < n$.

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of constraints in standard form.

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$, where \mathbf{A} is $m \times n$ and rank $(\mathbf{A}) = m < n$. $\mathbf{\overline{x}}$ is an extreme point of S, if and only if $\mathbf{\overline{x}}$ is the intersection of n linearly independent hyperplanes.

Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of constraints in standard form.

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$, where \mathbf{A} is $m \times n$ and rank $(\mathbf{A}) = m < n$. $\mathbf{\overline{x}}$ is an extreme point of S, if and only if $\mathbf{\overline{x}}$ is the intersection of n linearly independent hyperplanes.

Polytopes

Polytopes

Bounded and unbounded sets

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

A subset S of \mathbb{R}^n is bounded if it can be contained within an *n*-dimensional ball.

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

A subset S of \mathbb{R}^n is bounded if it can be contained within an *n*-dimensional ball.

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

A subset S of \mathbb{R}^n is bounded if it can be contained within an *n*-dimensional ball.

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

A subset S of \mathbb{R}^n is bounded if it can be contained within an *n*-dimensional ball.

Definition (Unbounded Set)

An unbounded set is a set which is not bounded.

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

A subset S of \mathbb{R}^n is bounded if it can be contained within an *n*-dimensional ball.

Definition (Unbounded Set)

An unbounded set is a set which is not bounded.

Note

We will only be dealing with bounded polyhedra for the rest of this topic.

Polytopes

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of \mathbb{R}^n to be either bounded or unbounded.

Definition (Bounded Set)

A subset S of \mathbb{R}^n is bounded if it can be contained within an *n*-dimensional ball.

Definition (Unbounded Set)

An unbounded set is a set which is not bounded.

Note

We will only be dealing with bounded polyhedra for the rest of this topic. Such polyhedra are called polytopes.

Motivating Examples Fundamental Steps Forms of a linear program

Representation theorem

Motivating Examples Fundamental Steps Forms of a linear program

Representation theorem

Theorem

Linear Programming Optimization Methods in Finance

Representation theorem

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$ be non-empty, and let E be the set of extreme points of S.

Motivating Examples Fundamental Steps Forms of a linear program

Representation theorem

Theorem

Let $S = {x : A \cdot x = b, x \ge 0}$ be non-empty, and let E be the set of extreme points of S. Then,

Motivating Examples Fundamental Steps Forms of a linear program

Representation theorem

Theorem

Let $S = {x : A \cdot x = b, x \ge 0}$ be non-empty, and let E be the set of extreme points of S. Then,

Representation theorem

Theorem

Let $S = {x : A \cdot x = b, x \ge 0}$ be non-empty, and let E be the set of extreme points of S. Then,

S has at least one extreme point and at most a finite number of extreme points, thus E = {x₁,...,x_p} ≠ Ø.

Representation theorem

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$ be non-empty, and let E be the set of extreme points of S. Then,

- S has at least one extreme point and at most a finite number of extreme points, thus E = {x₁,..., x_p} ≠ Ø.
- **2** if $\mathbf{x} \in S$, then \mathbf{x} can be written as a convex combination of extreme points

Motivating Examples Fundamental Steps Forms of a linear program

Extreme point solutions

Extreme point solutions

Theorem

Let $S = {$ **x** : **A** · **x** = **b**, **x** \geq **0** $}$ and consider the following linear program.

maximize $z = \mathbf{c} \cdot \mathbf{x}$ subject to $\mathbf{x} \in S$.

Extreme point solutions

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$ and consider the following linear program.

maximize $z = \mathbf{c} \cdot \mathbf{x}$ subject to $\mathbf{x} \in S$.

Suppose *S* is bounded and has extreme points $E = {\mathbf{x}_1, \dots, \mathbf{x}_p} \neq \emptyset$.

Extreme point solutions

Theorem

Let $S = {x : A \cdot x = b, x \ge 0}$ and consider the following linear program.

maximize $z = \mathbf{c} \cdot \mathbf{x}$ subject to $\mathbf{x} \in S$.

Suppose S is bounded and has extreme points $E = {x_1, ..., x_p} \neq \emptyset$. If S is bounded, a finite optimal solution exists.

Extreme point solutions

Theorem

Let $S = {x : A \cdot x = b, x \ge 0}$ and consider the following linear program.

maximize $z = \mathbf{c} \cdot \mathbf{x}$ subject to $\mathbf{x} \in S$.

Suppose *S* is bounded and has extreme points $E = {\mathbf{x}_1, ..., \mathbf{x}_p} \neq \emptyset$. If *S* is bounded, a finite optimal solution exists. Furthermore, an extreme point optimal solution exists.

Extreme points and basic feasible solutions

Extreme points and basic feasible solutions

Goal

Linear Programming Optimization Methods in Finance

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space.

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix $\mathbf{b} = (b_1, \dots, b_m)^t$, and $\mathbf{x} = (x_1, \dots, x_n)^t$.

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix $\mathbf{b} = (b_1, \dots, b_m)^t$, and $\mathbf{x} = (x_1, \dots, x_n)^t$. We will assume that $rank(\mathbf{A}) = m \le n$.

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix $\mathbf{b} = (b_1, \dots, b_m)^t$, and $\mathbf{x} = (x_1, \dots, x_n)^t$. We will assume that $rank(\mathbf{A}) = m \le n$. That is we assume that the rows of \mathbf{A} are linearly independent.

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix $\mathbf{b} = (b_1, \dots, b_m)^t$, and $\mathbf{x} = (x_1, \dots, x_n)^t$. We will assume that $rank(\mathbf{A}) = m \le n$. That is we assume that the rows of \mathbf{A} are linearly independent.

We also assume that the columns of ${\bf A}$ can be rearranged so that ${\bf A}$ can be written as ${\bf A}=({\bf B}:{\bf N}),$

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix $\mathbf{b} = (b_1, \dots, b_m)^t$, and $\mathbf{x} = (x_1, \dots, x_n)^t$.

We will assume that $rank(\mathbf{A}) = m \le n$. That is we assume that the rows of **A** are linearly independent.

We also assume that the columns of **A** can be rearranged so that **A** can be written as $\mathbf{A} = (\mathbf{B} : \mathbf{N})$, where **B** is a nonsingular $m \times m$ matrix.

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the extreme points of the feasible space. However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix $\mathbf{b} = (b_1, \dots, b_m)^t$, and $\mathbf{x} = (x_1, \dots, x_n)^t$.

We will assume that $rank(\mathbf{A}) = m \le n$. That is we assume that the rows of **A** are linearly independent.

We also assume that the columns of **A** can be rearranged so that **A** can be written as $\mathbf{A} = (\mathbf{B} : \mathbf{N})$, where **B** is a nonsingular $m \times m$ matrix.

We will refer to **B** as the basis matrix.

Finding basic feasible solutions

Finding basic feasible solutions

The Method

Finding basic feasible solutions

The Method

We can rewrite $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

This is equivalent to stating that $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \mathbf{x}_{N}$.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

This is equivalent to stating that $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \mathbf{x}_{N}$.

If we set $\mathbf{x}_{\mathbf{N}} = \mathbf{0}$ then $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b}$ and $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$.

This value is called a basic solution.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

This is equivalent to stating that $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \mathbf{x}_{N}$.

If we set $\mathbf{x}_{\mathbf{N}} = \mathbf{0}$ then $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b}$ and $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$.

This value is called a *basic solution*.

We refer to the \mathbf{x}_B as the vector of *basic variables* and we refer to \mathbf{x}_N as the vector of *nonbasic variables*.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

This is equivalent to stating that $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \mathbf{x}_{N}$.

If we set $\mathbf{x}_{\mathbf{N}} = \mathbf{0}$ then $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b}$ and $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$.

This value is called a *basic solution*.

We refer to the \mathbf{x}_B as the vector of *basic variables* and we refer to \mathbf{x}_N as the vector of *nonbasic variables*.

If $\mathbf{x} \ge \mathbf{0}$ then \mathbf{x} is called a *basic feasible solution*.

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

This is equivalent to stating that $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \mathbf{x}_{N}$.

If we set $\mathbf{x}_{\mathbf{N}} = \mathbf{0}$ then $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b}$ and $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$.

This value is called a *basic solution*.

We refer to the \mathbf{x}_B as the vector of *basic variables* and we refer to \mathbf{x}_N as the vector of *nonbasic variables*.

If $\mathbf{x} \ge \mathbf{0}$ then \mathbf{x} is called a *basic feasible solution*.

If any of the components of x_B is 0, then the basic solution is said to be *degenerate*,

Finding basic feasible solutions

The Method

We can rewrite
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$
 as $\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$, where $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix}$.

As **B** is non-singular, the inverse of **B** exists.

Thus, $\mathbf{B}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1} \cdot \mathbf{b}$.

This is equivalent to stating that $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \mathbf{x}_{N}$.

If we set $\mathbf{x}_{\mathbf{N}} = \mathbf{0}$ then $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b}$ and $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$.

This value is called a *basic solution*.

We refer to the \mathbf{x}_B as the vector of *basic variables* and we refer to \mathbf{x}_N as the vector of *nonbasic variables*.

If $\mathbf{x} \ge \mathbf{0}$ then \mathbf{x} is called a *basic feasible solution*.

If any of the components of x_B is 0, then the basic solution is said to be *degenerate*, otherwise it is *non-degenerate*.

Connecting extreme points and basic feasible soluionts

Connecting extreme points and basic feasible soluionts

Theorem

Let $S = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$, where \mathbf{A} is $m \times n$ and rank $(\mathbf{A}) = m < n$. \mathbf{x} is an extreme point of S if and only if \mathbf{x} is a basic feasible solution.

Example

Example

Example

Linear Programming Optimization Methods in Finance

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$,

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 1 \end{array} \right) \text{ and } \mathbf{b} = \left(\begin{array}{c} 1 \\ 2 \end{array} \right).$$

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

$$\begin{aligned} \mathbf{A} &= \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \\ \mathbf{B} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}. \end{aligned}$$

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}.$$

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} 0 \\ \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}.$$

Example

Example

Given the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the basic feasible solutions to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}.$$

$$\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}. \text{ Thus, } \mathbf{B}^{-1} = \begin{pmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix} \text{ so } \mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} 0 \\ \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}.$$

Overview

Overview

Principal Ideas

Linear Programming Optimization Methods in Finance

Overview

Principal Ideas

Linear Programming Optimization Methods in Finance

Overview

Principal Ideas

(If a finite optimal solution exists, then an extreme-point optimal solution exists.

Overview

Principal Ideas

(If a finite optimal solution exists, then an extreme-point optimal solution exists.

Overview

Principal Ideas

- **1** If a finite optimal solution exists, then an extreme-point optimal solution exists.
- **2** Each extreme-point solution is a basic feasible solution of the linear constraint set: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0.$

Overview

Principal Ideas

- **1** If a finite optimal solution exists, then an extreme-point optimal solution exists.
- ② Each extreme-point solution is a basic feasible solution of the linear constraint set:
 A ⋅ x = b, x ≥ 0. We iteratively move from one extreme point to an *adjacent* extreme point, until an extreme point with an optimal solution.

Overview

Principal Ideas

- **1** If a finite optimal solution exists, then an extreme-point optimal solution exists.
- ② Each extreme-point solution is a basic feasible solution of the linear constraint set:
 A ⋅ x = b, x ≥ 0. We iteratively move from one extreme point to an *adjacent* extreme point, until an extreme point with an optimal solution.

Overview

Principal Ideas

- **1** If a finite optimal solution exists, then an extreme-point optimal solution exists.
- ② Each extreme-point solution is a basic feasible solution of the linear constraint set:
 A ⋅ x = b, x ≥ 0. We iteratively move from one extreme point to an *adjacent* extreme point, until an extreme point with an optimal solution.

Questions: How to choose first, next and last (optimal) extreme point?

Representing z and x

The standard linear programming problem

Representing z and x

The standard linear programming problem

(LP) maximize $z = \mathbf{c} \cdot \mathbf{x}$ subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

where **B** is a basis.

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

$$\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$$

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

$$\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$$

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

where **B** is a basis. Since $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, we have:

$$\mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} = \mathbf{b}$$

 \Rightarrow

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

$$\begin{array}{rcl} \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} &= \mathbf{b} \\ \Rightarrow \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} &= \mathbf{B}^{-1} \cdot \mathbf{b} \end{array}$$

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

$$\begin{array}{rcl} \textbf{B} \cdot \textbf{x}_{\textbf{B}} + \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} + \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{B}^{-1} \cdot \textbf{b} \\ \Rightarrow \end{array}$$

Representing z and x

The standard linear programming problem

```
(LP) maximize z = \mathbf{c} \cdot \mathbf{x} subject to \mathbf{A} \cdot \mathbf{x} = \mathbf{b} and \mathbf{x} \ge 0.
```

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

$$\begin{array}{rcl} \textbf{B} \cdot \textbf{x}_{\textbf{B}} + \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} + \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{B}^{-1} \cdot \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} &= \textbf{B}^{-1} \cdot \textbf{b} - \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} \end{array}$$

Representing z and x

The standard linear programming problem

(LP) maximize
$$z = \mathbf{c} \cdot \mathbf{x}$$
 subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

where **B** is a basis. Since $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, we have:

$$\begin{array}{rcl} \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} &= \mathbf{b} \\ \Rightarrow \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} &= \mathbf{B}^{-1} \cdot \mathbf{b} \\ \Rightarrow \mathbf{x}_{\mathbf{B}} &= \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} \end{array}$$

Representing z and x

The standard linear programming problem

(LP) maximize
$$z = \mathbf{c} \cdot \mathbf{x}$$
 subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

where **B** is a basis. Since $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, we have:

$$\begin{array}{rcl} \textbf{B} \cdot \textbf{x}_{\textbf{B}} + \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} + \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{B}^{-1} \cdot \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} &= \textbf{B}^{-1} \cdot \textbf{b} - \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} \end{array}$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}$$

Representing z and x

The standard linear programming problem

(LP) maximize
$$z = \mathbf{c} \cdot \mathbf{x}$$
 subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

where **B** is a basis. Since $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, we have:

$$\begin{array}{rcl} \textbf{B} \cdot \textbf{x}_{\textbf{B}} + \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} + \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} &= \textbf{B}^{-1} \cdot \textbf{b} \\ \Rightarrow \textbf{x}_{\textbf{B}} &= \textbf{B}^{-1} \cdot \textbf{b} - \textbf{B}^{-1} \cdot \textbf{N} \cdot \textbf{x}_{\textbf{N}} \end{array}$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}. \text{ If } \mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} \geq \mathbf{0},$$

Representing z and x

The standard linear programming problem

(LP) maximize
$$z = \mathbf{c} \cdot \mathbf{x}$$
 subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

Clearly, A can be partitioned as:

$$\mathbf{A} = (\mathbf{B} : \mathbf{N}),$$

where **B** is a basis. Since $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, we have:

$$\begin{array}{rcl} \mathbf{B} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} &= \mathbf{b} \\ \Rightarrow \mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} &= \mathbf{B}^{-1} \cdot \mathbf{b} \\ \Rightarrow \mathbf{x}_{\mathbf{B}} &= \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}} \end{array}$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1} \cdot \mathbf{b} \\ \mathbf{0} \end{pmatrix}.$$
 If $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}$, then \mathbf{x} is a *basic feasible solution (bfs)*.

Representations of objective function and bfs

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as

Representations of objective function and bfs

Objective Function

Representations of objective function and bfs

Objective Function

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

Z =

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

 $z = \mathbf{c} \cdot \mathbf{x}$

Representations of objective function and bfs

Objective Function

$$\mathbf{z} = \mathbf{c} \cdot \mathbf{x}$$

= $[\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}] \cdot [\mathbf{x}_{\mathbf{B}} : \mathbf{x}_{\mathbf{N}}]$

Representations of objective function and bfs

Objective Function

$$\mathbf{c} = \mathbf{c} \cdot \mathbf{x}$$
$$= [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}] \cdot [\mathbf{x}_{\mathbf{B}} : \mathbf{x}_{\mathbf{N}}]$$
$$= \mathbf{c}_{\mathbf{D}} \cdot \mathbf{x}_{\mathbf{D}} + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$$

Representations of objective function and bfs

z

Objective Function

$$\begin{aligned} &= \mathbf{c} \cdot \mathbf{x} \\ &= [\mathbf{c}_{\mathsf{B}} : \mathbf{c}_{\mathsf{N}}] \cdot [\mathbf{x}_{\mathsf{B}} : \mathbf{x}_{\mathsf{N}}] \\ &= \mathbf{c}_{\mathsf{B}} \cdot \mathbf{x}_{\mathsf{B}} + \mathbf{c}_{\mathsf{N}} \cdot \mathbf{x}_{\mathsf{N}} \\ &= \mathbf{c}_{\mathsf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathsf{N}}) + \mathbf{c}_{\mathsf{N}} \cdot \mathbf{x}_{\mathsf{N}} \end{aligned}$$

Representations of objective function and bfs

7

Objective Function

$$\begin{aligned} \mathbf{c} &= \mathbf{c} \cdot \mathbf{x} \\ &= [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}] \cdot [\mathbf{x}_{\mathbf{B}} : \mathbf{x}_{\mathbf{N}}] \\ &= \mathbf{c}_{\mathbf{B}} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}} \\ &= \mathbf{c}_{\mathbf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}}) + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}} \\ &= \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{N} - \mathbf{c}_{\mathbf{N}}) \cdot \mathbf{x}_{\mathbf{N}} \end{aligned}$$

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

$$z = \mathbf{c} \cdot \mathbf{x}$$

= $[\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}] \cdot [\mathbf{x}_{\mathbf{B}} : \mathbf{x}_{\mathbf{N}}]$
= $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$
= $\mathbf{c}_{\mathbf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}}) + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$
= $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{N} - \mathbf{c}_{\mathbf{N}}) \cdot \mathbf{x}_{\mathbf{N}}$

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

$$z = \mathbf{c} \cdot \mathbf{x}$$

= $[\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}] \cdot [\mathbf{x}_{\mathbf{B}} : \mathbf{x}_{\mathbf{N}}]$
= $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$
= $\mathbf{c}_{\mathbf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}}) + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$
= $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{N} - \mathbf{c}_{\mathbf{N}}) \cdot \mathbf{x}_{\mathbf{N}}$

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

$$z = \mathbf{c} \cdot \mathbf{x}$$

= $[\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}] \cdot [\mathbf{x}_{\mathbf{B}} : \mathbf{x}_{\mathbf{N}}]$
= $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{x}_{\mathbf{B}} + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$
= $\mathbf{c}_{\mathbf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathbf{N}}) + \mathbf{c}_{\mathbf{N}} \cdot \mathbf{x}_{\mathbf{N}}$
= $\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{N} - \mathbf{c}_{\mathbf{N}}) \cdot \mathbf{x}_{\mathbf{N}}$

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b}$$

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

$$\begin{aligned} \mathbf{z} &= \mathbf{c} \cdot \mathbf{x} \\ &= [\mathbf{c}_{\mathsf{B}} : \mathbf{c}_{\mathsf{N}}] \cdot [\mathbf{x}_{\mathsf{B}} : \mathbf{x}_{\mathsf{N}}] \\ &= \mathbf{c}_{\mathsf{B}} \cdot \mathbf{x}_{\mathsf{B}} + \mathbf{c}_{\mathsf{N}} \cdot \mathbf{x}_{\mathsf{N}} \\ &= \mathbf{c}_{\mathsf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathsf{N}}) + \mathbf{c}_{\mathsf{N}} \cdot \mathbf{x}_{\mathsf{N}} \\ &= \mathbf{c}_{\mathsf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - (\mathbf{c}_{\mathsf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{N} - \mathbf{c}_{\mathsf{N}}) \cdot \mathbf{x}_{\mathsf{N}} \end{aligned}$$

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b}$$
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix} \ge \mathbf{0}$$

Representations of objective function and bfs

Objective Function

The objective function $z = \mathbf{c} \cdot \mathbf{x}$ can be written as $\mathbf{c} = [\mathbf{c}_{\mathbf{B}} : \mathbf{c}_{\mathbf{N}}]$. Accordingly,

$$\begin{aligned} \mathbf{z} &= \mathbf{c} \cdot \mathbf{x} \\ &= [\mathbf{c}_{\mathsf{B}} : \mathbf{c}_{\mathsf{N}}] \cdot [\mathbf{x}_{\mathsf{B}} : \mathbf{x}_{\mathsf{N}}] \\ &= \mathbf{c}_{\mathsf{B}} \cdot \mathbf{x}_{\mathsf{B}} + \mathbf{c}_{\mathsf{N}} \cdot \mathbf{x}_{\mathsf{N}} \\ &= \mathbf{c}_{\mathsf{B}} \cdot (\mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_{\mathsf{N}}) + \mathbf{c}_{\mathsf{N}} \cdot \mathbf{x}_{\mathsf{N}} \\ &= \mathbf{c}_{\mathsf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - (\mathbf{c}_{\mathsf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{N} - \mathbf{c}_{\mathsf{N}}) \cdot \mathbf{x}_{\mathsf{N}} \end{aligned}$$

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b}$$
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix} \ge \mathbf{0}$$

Using the non-basic variables

Using the non-basic variables

Variable change

Linear Programming Optimization Methods in Finance

Using the non-basic variables

Variable change

Let J denote the index set of the nonbasic variables.

Using the non-basic variables

Variable change

Using the non-basic variables

Variable change

Using the non-basic variables

Variable change

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{i \in J} (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_{i} - c_{i}) x_{i}$$

Using the non-basic variables

Variable change

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{B}^{-1} \cdot \mathbf{a}_j) \cdot x_j$$

Using the non-basic variables

Variable change

Let *J* denote the index set of the nonbasic variables. The canonical form of *z* and $\mathbf{x}_{\mathbf{B}}$ can be written as:

$$z = \mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{c}_{\mathbf{B}} \cdot \mathbf{B}^{-1} \cdot \mathbf{a}_j - c_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \cdot \mathbf{b} - \sum_{j \in J} (\mathbf{B}^{-1} \cdot \mathbf{a}_j) \cdot x_j$$

Main idea

The *key idea* of the simplex method is to move from an extreme point to an improving adjacent extreme point by interchanging a column in **B** and a column in **N**.

Checking for optimality

Checking for optimality

Optimality check

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z.

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z. $(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j)$ is sometimes referred to as *reduced cost* and is denoted by $(z_j - c_j)$.

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z. ($\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j$) is sometimes referred to as *reduced cost* and is denoted by $(z_j - c_j)$. A basic feasible solution is optimal to (LP) if.

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z. ($\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j$) is sometimes referred to as *reduced cost* and is denoted by $(z_j - c_j)$. A basic feasible solution is optimal to (LP) if,

$$rac{\partial z}{\partial x_j} = -(z_j - c_j) = -(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \leq 0, ext{ for all } j \in J$$

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z. $(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j)$ is sometimes referred to as *reduced cost* and is denoted by $(z_j - c_j)$. A basic feasible solution is optimal to (LP) if.

$$rac{\partial z}{\partial x_j} = -(z_j - c_j) = -(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \leq 0, ext{ for all } j \in J$$

or, equivalently, if $z_j - c_j = (\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \ge 0$, for all $j \in J$.

Checking for optimality

Optimality check

Based on the derived expression for *z*, the *rate of change* of *z* with respect to the nonbasic variable x_i is:

$$rac{\partial z}{\partial x_j} = -(\mathbf{c}_{\mathbf{B}}\cdot\mathbf{B}^{-1}\cdot\mathbf{a}_j-c_j)$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z. $(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j)$ is sometimes referred to as *reduced cost* and is denoted by $(z_j - c_j)$. A basic feasible solution is optimal to (LP) if.

$$rac{\partial z}{\partial x_{j}}=-(z_{j}-c_{j})=-(\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{a}_{j}-c_{j})\leq0,$$
 for all $j\in J$

or, equivalently, if $z_j - c_j = (\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \ge 0$, for all $j \in J$.

What is $(z_i - c_i)$ for a basic variable?

Determining the entering and departing variables

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_i}$ is the largest.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic. x_k is called the *departing variable*.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic. x_k is called the *departing variable*.

Departing Variable

The departing variable x_k must satisfy two requirements:

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic. x_k is called the *departing variable*.

Departing Variable

The departing variable x_k must satisfy two requirements:

The columns of B, after a_k is removed and a_j is added, can form a basis, i.e. they are linearly independent.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic. x_k is called the *departing variable*.

Departing Variable

The departing variable x_k must satisfy two requirements:

- The columns of B, after a_k is removed and a_j is added, can form a basis, i.e. they are linearly independent.
- In order to make x_k non-negative when x_j is increased, x_j needs to satisfy the most restrictive upper bound.

Determining the entering and departing variables

Entering Variable

Pick the non-basic variable for which $\frac{\partial z}{\partial x_j}$ is the largest. This is known as the steepest ascent rule.

The Simplex algorithm will work even if a non-maximum non-basic variable is picked as the entering variable.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic. x_k is called the *departing variable*.

Departing Variable

The departing variable x_k must satisfy two requirements:

- The columns of **B**, after \mathbf{a}_k is removed and \mathbf{a}_j is added, can form a basis, i.e. they are linearly independent.
- In order to make x_k non-negative when x_j is increased, x_j needs to satisfy the most restrictive upper bound.

 x_k is determined by a blocking constraint.

Forming a new basis

Foundations of the Simplex Method Forming a new basis

Theorem

Linear Programming Optimization Methods in Finance

Forming a new basis

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Forming a new basis

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Theorem

Forming a new basis

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$ be represented by $\mathbf{a} = \sum_{j=1}^m \lambda_j b_j$.

Forming a new basis

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$ be represented by $\mathbf{a} = \sum_{j=1}^m \lambda_j b_j$. Without loss of generality, suppose $\lambda_m \neq 0$.

Forming a new basis

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Theorem

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$ be represented by $\mathbf{a} = \sum_{j=1}^m \lambda_j \mathbf{b}_j$. Without loss of generality, suppose $\lambda_m \neq 0$. Then, \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_{m-1} , \mathbf{a} form a basis for E^m .

Example

Example

Example

Linear Programming Optimization Methods in Finance

Example

Example

Linear Programming Optimization Methods in Finance

Example

Example

maximize $z = 2 \cdot x_1 + 3 \cdot x_2$

Example

Example

 $\begin{array}{l} \text{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \text{subject to} \end{array}$

Example

Example

Example

Example

Note

Solve the above problem graphically.

Standardization

Standardization

Standardizing the constraints

Linear Programming Optimization Methods in Finance

Standardization

Standardizing the constraints

Linear Programming Optimization Methods in Finance

Standardization

Standardizing the constraints

maximize $z = 2 \cdot x_1 + 3 \cdot x_2$

Standardization

Standardizing the constraints

maximize $z = 2 \cdot x_1 + 3 \cdot x_2$ subject to

Standardization

Standardizing the constraints

 $\begin{array}{rl} \mbox{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \mbox{subject to} \\ x_1 - 2 \cdot x_2 + x_3 &= & 4 \\ 2 \cdot x_1 + x_2 + x_4 &= & 18 \\ x_2 + x_5 &= & 10 \\ x_1, \, x_2, \, x_3, \, x_4, \, x_5 &\geq & 0 \end{array}$

Standardization

Standardizing the constraints

 $\begin{array}{rl} \mbox{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \mbox{subject to} \\ x_1 - 2 \cdot x_2 + x_3 &= & 4 \\ 2 \cdot x_1 + x_2 + x_4 &= & 18 \\ x_2 + x_5 &= & 10 \\ x_1, \, x_2, \, x_3, \, x_4, \, x_5 &\geq & 0 \end{array}$

Standardization

Standardizing the constraints

 $\begin{array}{rl} \text{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \text{subject to} \\ x_1 - 2 \cdot x_2 + x_3 &= & 4 \\ 2 \cdot x_1 + x_2 + x_4 &= & 18 \\ x_2 + x_5 &= & 10 \\ x_1, x_2, x_3, x_4, x_5 &\geq & 0 \end{array}$

Summary

Standardization

Standardizing the constraints

 $\begin{array}{ll} \text{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \text{subject to} \\ x_1 - 2 \cdot x_2 + x_3 &= 4 \\ 2 \cdot x_1 + x_2 + x_4 &= 18 \\ x_2 + x_5 &= 10 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{array}$

Summary

This problem can be summarized as follows:

Standardization

Standardizing the constraints

 $\begin{array}{ll} \text{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \text{subject to} \\ x_1 - 2 \cdot x_2 + x_3 &= 4 \\ 2 \cdot x_1 + x_2 + x_4 &= 18 \\ x_2 + x_5 &= 10 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{array}$

Summary

This problem can be summarized as follows:

Standardization

Standardizing the constraints

 $\begin{array}{ll} \text{maximize } z = 2 \cdot x_1 + 3 \cdot x_2 \\ \text{subject to} \\ x_1 - 2 \cdot x_2 + x_3 &= 4 \\ 2 \cdot x_1 + x_2 + x_4 &= 18 \\ x_2 + x_5 &= 10 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{array}$

Summary

This problem can be summarized as follows:

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 4 \\ 18 \\ 10 \end{pmatrix}$$
$$\mathbf{c} = (2 & 3 & 0 & 0)$$

Ploughing through

Ploughing through

Locate the initial basis

Linear Programming Optimization Methods in Finance

Ploughing through

Locate the initial basis

An obvious choice is **I**. **B** = (**a**₃, **a**₄, **a**₅) = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = **I**

$$\mathbf{X}_{\mathbf{B}} = \begin{pmatrix} x_{B,1} \\ x_{B,2} \\ x_{B,3} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

Ploughing through

Locate the initial basis

An obvious choice is **I**. **B** = (**a**₃, **a**₄, **a**₅) = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = **I**

$$\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} x_{B,1} \\ x_{B,2} \\ x_{B,3} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

Is this basis feasible?

Moving from one basis to the next

Moving from one basis to the next

Basic variables in terms of non-basic variables

Expressing z and $\mathbf{x}_{\mathbf{B}}$ in terms of $\mathbf{x}_{\mathbf{N}}$, we get:

Moving from one basis to the next

Basic variables in terms of non-basic variables

Expressing z and $\mathbf{x}_{\mathbf{B}}$ in terms of $\mathbf{x}_{\mathbf{N}}$, we get:

 $\begin{array}{rcl} z & = & 2 \cdot x_1 + 3 \cdot x_2 \\ x_3 & = & 4 - x_1 + x_2 \\ x_4 & = & 18 - 2 \cdot x_1 - x_2 \\ x_5 & = & 10 - x_2 \end{array}$

Moving from one basis to the next

Basic variables in terms of non-basic variables

Expressing z and $\mathbf{x}_{\mathbf{B}}$ in terms of $\mathbf{x}_{\mathbf{N}}$, we get:

 $\begin{array}{rcl} z & = & 2 \cdot x_1 + 3 \cdot x_2 \\ x_3 & = & 4 - x_1 + x_2 \\ x_4 & = & 18 - 2 \cdot x_1 - x_2 \\ x_5 & = & 10 - x_2 \end{array}$

Starting solution is obtained by setting the nonbasic variables equal to zero

Moving from one basis to the next

Basic variables in terms of non-basic variables

Expressing z and $\mathbf{x}_{\mathbf{B}}$ in terms of $\mathbf{x}_{\mathbf{N}}$, we get:

 $\begin{array}{rcl} z & = & 2 \cdot x_1 + 3 \cdot x_2 \\ x_3 & = & 4 - x_1 + x_2 \\ x_4 & = & 18 - 2 \cdot x_1 - x_2 \\ x_5 & = & 10 - x_2 \end{array}$

Starting solution is obtained by setting the nonbasic variables equal to zero

$$z = 0$$

$$\mathbf{x}_{B} = \begin{pmatrix} x_{B,1} \\ x_{B,2} \\ x_{B,3} \end{pmatrix} = \begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \\ 10 \end{pmatrix}$$

$$\mathbf{x}_{N} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Moving from one basis to the next

Basic variables in terms of non-basic variables

Expressing z and $\mathbf{x}_{\mathbf{B}}$ in terms of $\mathbf{x}_{\mathbf{N}}$, we get:

 $\begin{array}{rcl} z & = & 2 \cdot x_1 + 3 \cdot x_2 \\ x_3 & = & 4 - x_1 + x_2 \\ x_4 & = & 18 - 2 \cdot x_1 - x_2 \\ x_5 & = & 10 - x_2 \end{array}$

Starting solution is obtained by setting the nonbasic variables equal to zero

$$z = 0$$

$$\mathbf{x}_{B} = \begin{pmatrix} x_{B,1} \\ x_{B,2} \\ x_{B,3} \end{pmatrix} = \begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \\ 10 \end{pmatrix}$$

$$\mathbf{x}_{N} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Is the current basic solution optimal?

Choosing the departing variables

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2.$

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2. \ \partial z/\partial x_2 = 3$

Choosing the departing variables

Choosing the entering variable

 $\partial z / \partial x_1 = 2$. $\partial z / \partial x_2 = 3$ (maximal).

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative.

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative.

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 .

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 . x_5 is the *departing variable* and the corresponding constant is called the blocking constraint.

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 . x_5 is the *departing variable* and the corresponding constant is called the blocking constraint.

Pivot

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 . x_5 is the *departing variable* and the corresponding constant is called the blocking constraint.

Pivot

The new canonically representation of *z* and \mathbf{x}_B is are formed using $x_2 = 10 - x_5$ to eliminate x_2 ;

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 . x_5 is the *departing variable* and the corresponding constant is called the blocking constraint.

Pivot

The new canonically representation of *z* and \mathbf{x}_B is are formed using $x_2 = 10 - x_5$ to eliminate x_2 ; i.e., to represent the basic variables x_2 , x_3 and x_4 by the non-basic variables x_1 and x_5 .

Choosing the departing variables

Choosing the entering variable

 $\partial z/\partial x_1 = 2$. $\partial z/\partial x_2 = 3$ (maximal). We choose x_2 as the entering variable.

How to pick the departing variable

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 . x_5 is the *departing variable* and the corresponding constant is called the blocking constraint.

Pivot

The new canonically representation of *z* and \mathbf{x}_B is are formed using $x_2 = 10 - x_5$ to eliminate x_2 ; i.e., to represent the basic variables x_2 , x_3 and x_4 by the non-basic variables x_1 and x_5 .

$$z = 2 \cdot x_1 + 3 \cdot (10 - x_5) = 30 + 2 \cdot x_1 - 3 \cdot x_5$$

$$x_3 = 4 - x_1 + 2 \cdot (10 - x_5) = 24 - x_1 - 2 \cdot x_5$$

$$x_4 = 18 - 2 \cdot x_1 - (10 - x_5) = 8 - 2 \cdot x_1 + x_5$$

$$x_2 = 10 - x_5$$

New basis

Summary

The current solution and basis matrix can be summarized as follows:

New basis

Summary

The current solution and basis matrix can be summarized as follows:

$$\begin{aligned} z &= 30 \\ \mathbf{x}_{\mathbf{B}} &= \begin{pmatrix} x_{B,1} \\ x_{B_2} \\ x_{B_3} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 10 \end{pmatrix} \\ \mathbf{x}_{\mathbf{N}} &= \begin{pmatrix} x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \mathbf{B} &= (\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_2) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

New basis

Summary

The current solution and basis matrix can be summarized as follows:

$$z = 30$$

$$\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} x_{B,1} \\ x_{B_2} \\ x_{B_3} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 10 \end{pmatrix}$$

$$\mathbf{x}_{\mathbf{N}} = \begin{pmatrix} x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbf{B} = (\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_2) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Is the current solution optimal?

New basis

Summary

The current solution and basis matrix can be summarized as follows:

$$z = 30$$

$$\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} x_{B,1} \\ x_{B_2} \\ x_{B_3} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 10 \end{pmatrix}$$

$$\mathbf{x}_{\mathbf{N}} = \begin{pmatrix} x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbf{B} = (\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_2) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Is the current solution optimal? Clearly not, since $\partial z / \partial x_1 = 2 \ge 0$. This also means that x_1 is the entering variable.

Final move

Final move

Departing variable

 $\begin{array}{rcl} z = & 30 + 2 \cdot x_1 - 3 \cdot x_5 \\ x_3 = & 24 - x_1 - 2 \cdot x_5 \\ x_4 = & 8 - 2 \cdot x_1 + x_5 \\ x_2 = & 10 - x_5 \end{array}$ Clearly, $x_4 = 8 - 2 \cdot x_1 + x_5$ is the blocking constraint. Thus x_1 can be raised up to 4. x_4 is now the departing variable.

Replacing x_1 with $4 - \frac{1}{2} \cdot x_4 + \frac{1}{2} \cdot x_5$, we get, $z = 30 + 2 \cdot (4 - \frac{1}{2} \cdot x_4 - \frac{1}{2} \cdot x_5) - 3 \cdot x_5 = 38 - x_4 - 2 \cdot x_5$ $x_3 = 24 - (4 + \frac{1}{2} \cdot x_5 - \frac{1}{2} \cdot x_4) - 2 \cdot x_5 = 20 + \frac{1}{2} \cdot x_4 - \frac{5}{2} \cdot x_5$ $x_1 = 4 - \frac{1}{2}x_4 + \frac{1}{2}x_5$ $x_2 = 10 - x_5$

Final move

Departing variable

 $\begin{array}{rcl} z = & 30 + 2 \cdot x_1 - 3 \cdot x_5 \\ x_3 = & 24 - x_1 - 2 \cdot x_5 \\ x_4 = & 8 - 2 \cdot x_1 + x_5 \\ x_2 = & 10 - x_5 \end{array}$ Clearly, $x_4 = 8 - 2 \cdot x_1 + x_5$ is the blocking constraint. Thus x_1 can be raised up to 4. x_4 is now the departing variable.

Replacing x_1 with $4 - \frac{1}{2} \cdot x_4 + \frac{1}{2} \cdot x_5$, we get, $z = 30 + 2 \cdot (4 - \frac{1}{2} \cdot x_4 - \frac{1}{2} \cdot x_5) - 3 \cdot x_5 = 38 - x_4 - 2 \cdot x_5$ $x_3 = 24 - (4 + \frac{1}{2} \cdot x_5 - \frac{1}{2} \cdot x_4) - 2 \cdot x_5 = 20 + \frac{1}{2} \cdot x_4 - \frac{5}{2} \cdot x_5$ $x_1 = 4 - \frac{1}{2}x_4 + \frac{1}{2}x_5$ $x_2 = 10 - x_5$

Is the new solution optimal?

Important observations

Motivating Examples Fundamental Steps Forms of a linear program

Important observations

Note

Linear Programming Optimization Methods in Finance

Important observations

Note

• There is finite progress being made at each pivot.

Important observations

Note

• There is finite progress being made at each pivot. If the optimum is finite, the algorithm will converge

Important observations

Note

• There is finite progress being made at each pivot. If the optimum is finite, the algorithm will converge (barring cycling).

Important observations

Note

- There is finite progress being made at each pivot. If the optimum is finite, the algorithm will converge (barring cycling).
- 2 How do we check for unboundedness?

Important observations

Note

- There is finite progress being made at each pivot. If the optimum is finite, the algorithm will converge (barring cycling).
- 2 How do we check for unboundedness?
- Output the initial big of the initial big?

Motivating Examples Fundamental Steps Forms of a linear program

The product mix problem

Motivating Examples Fundamental Steps Forms of a linear program

The product mix problem

Example

Linear Programming Optimization Methods in Finance

The product mix problem

Example

Motivating Examples Fundamental Steps Forms of a linear program

The product mix problem

Example

We have two gadgets to produce: α and β .

① The return for a unit of α is \$20.

The product mix problem

Example

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.

The product mix problem

Example

- **①** The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.

The product mix problem

Example

- **①** The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.

The product mix problem

Example

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of α .

The product mix problem

Example

- The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of α .
- We have a total of 240 hours available for assembly and 140 hours for testing.

The product mix problem

Example

We have two gadgets to produce: α and β .

- **①** The return for a unit of α is \$20.
- 2 Each unit of α requires 4 hours of assembly and 1 hour of testing.
- **3** The return for a unit of β is \$30.
- Each unit of β requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of α .
- We have a total of 240 hours available for assembly and 140 hours for testing.

How many units of α and β should be produced to maximize our return?

Modeling the product mix problem

Modeling the product mix problem

Decision Variables

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2$.

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$

Constraints

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$

Constraints

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$

$$4 \cdot x_1 + 3 \cdot x_2 \quad \leq \quad 240$$

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$

Modeling the product mix problem

Decision Variables

Let x_1 denote the number of units of α and x_2 denote the number of units of β to be manufactured.

Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$

Portfolio optimization

Portfolio optimization

Example

Linear Programming Optimization Methods in Finance

Portfolio optimization

Example

Portfolio optimization

Example

We want to invest \$50,000 among three strategies: savings certificates, municipal bonds, and stocks.

• The annual return on each investment is 7%, 9%, and 14% respectively.

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.

Portfolio optimization

Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.
- The savings certificate investment should be between \$5,000 and \$15,000.

Portfolio optimization

Example

We want to invest \$50,000 among three strategies: savings certificates, municipal bonds, and stocks.

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.
- The savings certificate investment should be between \$5,000 and \$15,000.

How should we invest the money in order to maximize our return?

Modeling the portfolio optimization problem

Modeling the portfolio optimization problem

Decision Variables

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

Constraints

 $x_2 \ge 10,000$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

$$x_2 \ge 10,000$$

 $x_3 \le x_1 + x_2$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

$$egin{array}{rcl} x_2 &\geq & 10,000 \ x_3 &\leq & x_1+x_2 \ x_1 &\geq & 5000 \ x_1 &\leq & 15,000 \end{array}$$

Modeling the portfolio optimization problem

Decision Variables

Let x_1 , x_2 and x_3 denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

Objective Function

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$

<i>x</i> ₂	\geq	10,000
<i>X</i> 3	\leq	$x_1 + x_2$
<i>x</i> ₁	\geq	5000
<i>x</i> ₁	\leq	15,000
$x_1 + x_2 + x_3$	\leq	50,000
x_1, x_2, x_3	\geq	0

Farmland Use

Farmland Use

Example

Linear Programming Optimization Methods in Finance

Farmland Use

Example

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn,

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn, 35 bushels of wheat,

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

• An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans,

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.

Farmland Use

Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.
- The selling price per bushel of corn is \$0.36; of wheat, \$0.90; of soybeans, \$0.82; of oats, \$0.98.

Farmland Use

Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.
- The selling price per bushel of corn is \$0.36; of wheat, \$0.90; of soybeans, \$0.82; of oats, \$0.98.

How many acres of each product should be grown to maximize our profit?

Foundations of the Simplex Method Modeling the Farmland Use problem

Modeling the Farmland Use problem

Decision Variables

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

$$x_1 + x_2 + x_3 + x_4 \leq 500$$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

$$x_1 + x_2 + x_3 + x_4 \leq 500$$

 $x_3 \leq 120$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

Modeling the Farmland Use problem

Decision Variables

Let x_1 , x_2 , x_3 and x_4 denote the acreage of corn, what, soybeans and oats respectively.

Objective Function

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$

Transportation

Transportation

Example

Transportation

Example

Transportation

Example

We have three warehouses and four clients.

Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.

Transportation

Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.

Transportation

Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

Transportation

Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

	Client			
Warehouse	1	2	3	4
1	7	3	8	4
2	8	5	6	3
3	4	6	9	6

Transportation

Example

We have three warehouses and four clients.

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

	Client			
Warehouse	1	2	3	4
1	7	3	8	4
2	8	5	6	3
3	4	6	9	6

 Items should be shipped from warehouses to clients, so all client demands are met.

Transportation

Example

We have three warehouses and four clients.

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

	Client			
Warehouse	1	2	3	4
1	7	3	8	4
2	8	5	6	3
3	4	6	9	6

 Items should be shipped from warehouses to clients, so all client demands are met.

How can we perform the shipping while minimizing our shipping cost?

Modeling the Transportation problem

Modeling the Transportation problem

Decision Variables

Linear Programming Optimization Methods in Finance

Modeling the Transportation problem

Decision Variables

Let $x_{i,j}$ denote the number of units to be shipped from warehouse *i* to client *j*, where $i \in \{1, 2, 3\}$ and $j \in \{1, 2, 3, 4\}$.

Modeling the Transportation problem

Decision Variables

Let $x_{i,j}$ denote the number of units to be shipped from warehouse *i* to client *j*, where $i \in \{1, 2, 3\}$ and $j \in \{1, 2, 3, 4\}$.

Objective Function

Modeling the Transportation problem

Decision Variables

Let $x_{i,j}$ denote the number of units to be shipped from warehouse *i* to client *j*, where $i \in \{1, 2, 3\}$ and $j \in \{1, 2, 3, 4\}$.

Objective Function

min
$$7 \cdot x_{1,1} + 3 \cdot x_{1,2} + 8 \cdot x_{1,3} + 4 \cdot x_{1,4}$$

 $9 \cdot x_{2,1} + 5 \cdot x_{2,2} + 6 \cdot x_{2,3} + 3 \cdot x_{2,4}$
 $4 \cdot x_{3,1} + 6 \cdot x_{3,2} + 9 \cdot x_{3,3} + 6 \cdot x_{3,4}$

Modeling (contd.)

Modeling (contd.)

Modeling (contd.)

Constraints

Modeling (contd.)

Constraints

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$

Modeling (contd.)

Constraints

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$

 $\sum_{j=1}^{4} x_{2,j} \leq 9000$

Modeling (contd.)

Constraints

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

Modeling (contd.)

Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

The demand constraints:

$$\sum_{i=1}^{3} x_{i,1} = 3900$$
$$\sum_{i=1}^{3} x_{i,2} = 5200$$
$$\sum_{i=1}^{3} x_{i,3} = 2700$$
$$\sum_{i=1}^{3} x_{i,4} = 6400$$

Modeling (contd.)

Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

The demand constraints:

$$\sum_{i=1}^{3} x_{i,1} = 3900$$
$$\sum_{i=1}^{3} x_{i,2} = 5200$$
$$\sum_{i=1}^{3} x_{i,3} = 2700$$
$$\sum_{i=1}^{3} x_{i,4} = 6400$$

Non-negativity constraints: $x_{ij} \ge 0, i = 1, 2, 3, j = 1, 2, 3, 4.$

Uncovered topics

Uncovered topics

Self-study

Linear Programming Optimization Methods in Finance

Uncovered topics

Self-study

The Simplex tableau method.

Uncovered topics

- The Simplex tableau method.
- Observe and cycling.

Uncovered topics

- The Simplex tableau method.
- Observe and cycling.
- O The revised simplex method.

Uncovered topics

- The Simplex tableau method.
- Observe and cycling.
- O The revised simplex method.
- O The bounded variables simplex method.

Uncovered topics

- The Simplex tableau method.
- Observe and cycling.
- O The revised simplex method.
- O The bounded variables simplex method.
- Decomposition.

Uncovered topics

- The Simplex tableau method.
- Observe and cycling.
- O The revised simplex method.
- O The bounded variables simplex method.
- Decomposition.
- Sensitivity analysis.

Motivating Examples Fundamental Steps Forms of a linear program

Foundations of the Simplex Method

Motivating Examples Fundamental Steps Forms of a linear program

Alternatives to the Simplex Method

Issues and Alternatives

Linear Programming Optimization Methods in Finance

Alternatives to the Simplex Method

Issues and Alternatives

Computational Complexity.

Alternatives to the Simplex Method

- Computational Complexity.
- 2 The Klee Minty observation.

Alternatives to the Simplex Method

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.

Alternatives to the Simplex Method

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.
- O The Fourier-Motzkin approach.

Alternatives to the Simplex Method

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.
- The Fourier-Motzkin approach.
- The ellipsoid algorithm.

Motivating Examples Fundamental Steps Forms of a linear program

Alternatives to the Simplex Method

- Computational Complexity.
- 2 The Klee Minty observation.
- OBorgwardt's analysis.
- The Fourier-Motzkin approach.
- The ellipsoid algorithm.
- Karmarkar's algorithm.