Mathematical Preliminaries

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

January 20, 2015

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- Convexity and Cones
 - Convexity
 - Cones

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations

- Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Bandom Variables
- Concentration Inequalities

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations

- Convexity and Cones
 - Convexity
 - Cones

Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Bandom Variables
- Concentration Inequalities

- Basic optimization theory
- Eundamentals

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations

- Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Bandom Variables
- Concentration Inequalities

- Basic optimization theory
- Eundamentals

- Models of Optimization
 - Tools of Optimization

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations

- Convexity
- Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Bandom Variables
- Concentration Inequalities

Eundamentals

- Models of Optimization
 - Tools of Optimization
- Financial Mathematics
 - Quantitative models
 - Problem Types

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Outline

Linear Algebra Vectors

- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimizatio
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Basics

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

<mark>/ectors</mark> Matrices The Solution of Simultaneous Linear Equations

Basics

Definition

Subramani Optimization Methods in Finance

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

<mark>/ectors</mark> Matrices Fhe Solution of Simultaneous Linear Equations

Basics

Definition

A vector is an ordered array of numbers.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

<mark>/ectors</mark> Matrices Fhe Solution of Simultaneous Linear Equations

Basics

Definition

A vector is an ordered array of numbers.

Geometric Representation

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Basics

Definition

A vector is an ordered array of numbers.

Geometric Representation

The collection of all *m*-dimensional vectors is called **Euclidean** *m*-space and is denoted by E^m

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Basics

Definition

A vector is an ordered array of numbers.

Geometric Representation

The collection of all *m*-dimensional vectors is called **Euclidean** *m*-space and is denoted by E^m (also \Re^m).

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Basics

Definition

A vector is an ordered array of numbers.

Geometric Representation

The collection of all *m*-dimensional vectors is called **Euclidean** *m*-space and is denoted by E^m (also \Re^m).

Vectors can be represented geometrically, where a vector can be thought of as either a point or as an arrow directed from the origin to the point.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Example

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

<mark>/ectors</mark> Matrices Fhe Solution of Simultaneous Linear Equations

Example

Example

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Addition

Vector Addition

Vectors of the same type (row or column) can be added if they have the same number of entries.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Addition

Vector Addition

Vectors of the same type (row or column) can be added if they have the same number of entries.

Given two vectors \mathbf{a} and \mathbf{b} , we simply add one element in \mathbf{a} with the corresponding element in \mathbf{b} that is in the same position.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Addition

Vector Addition

Vectors of the same type (row or column) can be added if they have the same number of entries.

Given two vectors \mathbf{a} and \mathbf{b} , we simply add one element in \mathbf{a} with the corresponding element in \mathbf{b} that is in the same position.

In other words, given $\mathbf{c} = \mathbf{a} + \mathbf{b}$ where c_i is the element in the *i*th position, we have $c_i = a_i + b_i$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Addition

Vector Addition

Vectors of the same type (row or column) can be added if they have the same number of entries.

Given two vectors **a** and **b**, we simply add one element in **a** with the corresponding element in **b** that is in the same position.

In other words, given $\mathbf{c} = \mathbf{a} + \mathbf{b}$ where c_i is the element in the *i*th position, we have $c_i = a_i + b_i$.

Vector addition satisfies both the commutative $(\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a})$ and associative $(\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + \mathbf{b} + \mathbf{c})$ laws.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

<mark>Vectors</mark> Matrices The Solution of Simultaneous Linear Equations

Vector Addition Example

$$\mathbf{a} = \begin{pmatrix} 4\\0\\7 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 5\\9\\1 \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} 6 & 8 & 0 \end{pmatrix} \quad \mathbf{d} = \begin{pmatrix} 4\\10\\2\\3 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Addition Example

$$\mathbf{a} = \begin{pmatrix} 4\\0\\7 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 5\\9\\1 \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} 6 & 8 & 0 \end{pmatrix} \quad \mathbf{d} = \begin{pmatrix} 4\\10\\2\\3 \end{pmatrix}$$
$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 4\\0\\7 \end{pmatrix} + \begin{pmatrix} 5\\9\\1 \end{pmatrix} = \begin{pmatrix} 9\\9\\8 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a **scalar** as an element of E^1 , Euclidean 1-space.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a **scalar** as an element of E^1 , Euclidean 1-space. For example, 3, 19, 37.5, and $\frac{2}{3}$ are scalars.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a scalar as an element of E^1 , Euclidean 1-space. For example, 3, 19, 37.5, and $\frac{2}{3}$ are scalars.

To multiply a vector by a scalar, we simply multiply each element in the vector by the scalar.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a scalar as an element of E^1 , Euclidean 1-space. For example, 3, 19, 37.5, and $\frac{2}{3}$ are scalars.

To multiply a vector by a scalar, we simply multiply each element in the vector by the scalar.

For example, if we are given a scalar α , a row vector **a**, and a column vector **b**, we have

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a scalar as an element of E^1 , Euclidean 1-space. For example, 3, 19, 37.5, and $\frac{2}{3}$ are scalars.

To multiply a vector by a scalar, we simply multiply each element in the vector by the scalar.

For example, if we are given a scalar α , a row vector **a**, and a column vector **b**, we have

$$\alpha \cdot \mathbf{a} = \alpha \cdot (a_1, a_2, \dots, a_n) = (\alpha \cdot a_1, \alpha \cdot a_2, \dots, \alpha \cdot a_n)$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a **scalar** as an element of E^1 , Euclidean 1-space. For example, 3, 19, 37.5, and $\frac{2}{3}$ are scalars.

To multiply a vector by a scalar, we simply multiply each element in the vector by the scalar.

For example, if we are given a scalar α , a row vector **a**, and a column vector **b**, we have

$$\alpha \cdot \mathbf{a} = \alpha \cdot (a_1, a_2, \dots, a_n) = (\alpha \cdot a_1, \alpha \cdot a_2, \dots, \alpha \cdot a_n)$$
$$\alpha \cdot \mathbf{b} = \alpha \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} \alpha \cdot b_1 \\ \alpha \cdot b_2 \\ \vdots \\ \alpha \cdot b_m \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Multiplication

Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a row vector, and the other is a column vector.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Multiplication

Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a row vector, and the other is a column vector. The result, often called the **dot product**, is a scalar.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Multiplication

Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a row vector, and the other is a column vector.

The result, often called the **dot product**, is a scalar. By convention, having $\mathbf{a} \cdot \mathbf{b}$ or \mathbf{ab} means \mathbf{a} is the row vector and \mathbf{b} is the column vector.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Multiplication

Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a row vector, and the other is a column vector.

The result, often called the **dot product**, is a scalar. By convention, having $\mathbf{a} \cdot \mathbf{b}$ or \mathbf{ab} means \mathbf{a} is the row vector and \mathbf{b} is the column vector.

To multiply the vectors, we multiply the corresponding entries and add the results.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Multiplication

Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a row vector, and the other is a column vector.

The result, often called the **dot product**, is a scalar. By convention, having $\mathbf{a} \cdot \mathbf{b}$ or \mathbf{ab} means \mathbf{a} is the row vector and \mathbf{b} is the column vector.

To multiply the vectors, we multiply the corresponding entries and add the results. What this means that if we assume the vectors have m entries, we have

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}\mathbf{b} = \sum_{i=1}^{m} a_i b_i = \alpha.$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vector Multiplication

Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a row vector, and the other is a column vector.

The result, often called the **dot product**, is a scalar. By convention, having $\mathbf{a} \cdot \mathbf{b}$ or \mathbf{ab} means \mathbf{a} is the row vector and \mathbf{b} is the column vector.

To multiply the vectors, we multiply the corresponding entries and add the results. What this means that if we assume the vectors have m entries, we have

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}\mathbf{b} = \sum_{i=1}^{m} a_i b_i = \alpha.$$

We should also note that vector multiplication satisfies the distributive law $\mathbf{a}(\mathbf{b}+\mathbf{c})=\mathbf{a}\mathbf{b}+\mathbf{a}\mathbf{c}.$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

V<mark>ectors</mark> Matrices The Solution of Simultaneous Linear Equations

Vectors

Vector Multiplication Example

$$\mathbf{a} = \begin{pmatrix} 3\\0\\7 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} -2\\10\\1 \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} 4 & 9 & 2 \end{pmatrix}$$

$$d = (5 \ 1 \ 4 \ 2) \ e = (3 \ -2)$$
Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

V<mark>ectors</mark> Matrices The Solution of Simultaneous Linear Equations

Vectors

Vector Multiplication Example

$$\mathbf{a} = \begin{pmatrix} 3\\0\\7 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} -2\\10\\1 \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} 4 & 9 & 2 \end{pmatrix}$$

$$d = (5 \ 1 \ 4 \ 2) \ e = (3 \ -2)$$

$$\mathbf{ca} = \begin{pmatrix} 4 & 9 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 7 \end{pmatrix} = 12 + 0 + 14 = 26$$
$$\mathbf{cb} = \begin{pmatrix} 4 & 9 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ 10 \\ 1 \end{pmatrix} = -8 + 90 + 2 = 84$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$. Some common norms are the L_1 norm

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_{\rho}$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_{\rho} = \left(\sum_{i=1}^n |a_i|^{\rho}\right)^{1/\rho}$. Some common norms are the L_1 norm (Manhattan),

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$. Some common norms are the L_1 norm (Manhattan), L_2 norm

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$. Some common norms are the L_1 norm (Manhattan), L_2 norm (Euclidean)

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$. Some common norms are the L_1 norm (Manhattan), L_2 norm (Euclidean) and the L_∞ norm.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$.

Some common norms are the L_1 norm (Manhattan), L_2 norm (Euclidean) ant the L_∞ norm.

Example

$$\mathbf{a} = \begin{pmatrix} 3\\ 2\\ -1 \end{pmatrix} \quad \|\mathbf{a}\|_2 = [3^2 + 2^2 + (-1)^2]^{1/2} = (14)^{1/2}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Norms

Norm of a Vector

The **L**_p norm of a vector $\mathbf{a} \in E^n$, denoted by $\|\mathbf{a}\|_p$, is a measure of the size of \mathbf{a} and is given by $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}$.

Some common norms are the L_1 norm (Manhattan), L_2 norm (Euclidean) ant the L_∞ norm.

Example

$$\mathbf{a} = \begin{pmatrix} 3\\ 2\\ -1 \end{pmatrix}$$
 $\|\mathbf{a}\|_2 = [3^2 + 2^2 + (-1)^2]^{1/2} = (14)^{1/2}$

Note

The dot product of two vectors can also be defined by using the Euclidean norm, which is given by $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\|_2 \cdot \|\mathbf{b}\|_2 \cos \theta$, where θ is the angle between the two vectors.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

<mark>/ectors</mark> Matrices Fhe Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the j^{th} position and 0's elsewhere.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the j^{th} position and 0's elsewhere. We normally denote this by \mathbf{e}_{j} , where 1 appears in the j^{th} position.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the *j*th position and 0's elsewhere. We normally denote this by \mathbf{e}_{j} , where 1 appears in the *j*th position. For example, if $\mathbf{e}_{i} \in E^{3}$,

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $\mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the *j*th position and 0's elsewhere. We normally denote this by \mathbf{e}_{j} , where 1 appears in the *j*th position. For example, if $\mathbf{e}_{i} \in E^{3}$,

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $\mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Null or Zero Vector - Denoted by 0, is a vector having only 0's.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the *j*th position and 0's elsewhere. We normally denote this by \mathbf{e}_j , where 1 appears in the *j*th position. For example, if $\mathbf{e}_i \in E^3$,

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Null or Zero Vector - Denoted by 0, is a vector having only 0's.

Sum Vector - Denoted by 1, is a vector having only 1's.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the *j*th position and 0's elsewhere. We normally denote this by \mathbf{e}_{j} , where 1 appears in the *j*th position. For example, if $\mathbf{e}_{i} \in E^{3}$,

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Null or Zero Vector - Denoted by 0, is a vector having only 0's.

Sum Vector - Denoted by 1, is a vector having only 1's.

We call this the sum vector because the dot product of **1** and some vector **a** is a scalar that is equal to the sum of the elements in **a**.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Special Vector Types

Unit Vector - Has a 1 in the *j*th position and 0's elsewhere. We normally denote this by \mathbf{e}_{j} , where 1 appears in the *j*th position. For example, if $\mathbf{e}_{i} \in E^{3}$,

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Null or Zero Vector - Denoted by 0, is a vector having only 0's.

Sum Vector - Denoted by 1, is a vector having only 1's.

We call this the sum vector because the dot product of **1** and some vector **a** is a scalar that is equal to the sum of the elements in **a**.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Linear Dependence and Independence

A set of vectors, $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ is **linearly dependent** if there exist some scalars, α_i , that are not all zero such that

$$\alpha_1 \cdot \mathbf{a}_1 + \alpha_2 \cdot \mathbf{a}_2 + \dots + \alpha_m \cdot \mathbf{a}_m = \mathbf{0} \tag{1}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Linear Dependence and Independence

A set of vectors, $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ is **linearly dependent** if there exist some scalars, α_i , that are not all zero such that

$$\alpha_1 \cdot \mathbf{a}_1 + \alpha_2 \cdot \mathbf{a}_2 + \dots + \alpha_m \cdot \mathbf{a}_m = \mathbf{0} \tag{1}$$

If the only set of scalars, α_i , for which the above equation holds is $\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$, the vectors are **linearly independent**.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Example

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Example

Example

Linearly Dependent:

$$\mathbf{a}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathbf{a}_{2} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \quad \mathbf{a}_{3} = \begin{pmatrix} 8 \\ 11 \end{pmatrix}$$
$$2\mathbf{a}_{1} + 3\mathbf{a}_{2} - 1\mathbf{a}_{3} = 2\begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3\begin{pmatrix} 2 \\ 3 \end{pmatrix} - 1\begin{pmatrix} 8 \\ 11 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Example

Linearly Independent:

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathbf{a}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Consider the equation

$$\alpha_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\alpha_1 + 2\alpha_2 = 0 \tag{2}$$
$$\alpha_1 = 0 \tag{3}$$

We can see that the only solution is $\alpha_1 = \alpha_2 = 0$. This means \mathbf{a}_1 and \mathbf{a}_2 are linearly independent.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Spanning Sets and Bases

The vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p \in E^n$ are said to form a **spanning set** if every vector in E^n can be written as a linear combination of the \mathbf{b}_i .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Spanning Sets and Bases

The vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p \in E^n$ are said to form a **spanning set** if every vector in E^n can be written as a linear combination of the \mathbf{b}_i . In other words, if $\mathbf{v} \in E^n$, then there exist scalars $\alpha_1, \alpha_2, \dots, \alpha_p$ such that $\mathbf{v} = \alpha_1 \cdot \mathbf{b}_1 + \alpha_2 \cdot \mathbf{b}_2 + \dots + \alpha_p \cdot \mathbf{b}_p$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Spanning Sets and Bases

The vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p \in E^n$ are said to form a **spanning set** if every vector in E^n can be written as a linear combination of the \mathbf{b}_j . In other words, if $\mathbf{v} \in E^n$, then there exist scalars $\alpha_1, \alpha_2, \dots, \alpha_p$ such that $\mathbf{v} = \alpha_1 \cdot \mathbf{b}_1 + \alpha_2 \cdot \mathbf{b}_2 + \dots + \alpha_p \cdot \mathbf{b}_p$. We say that the vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in E^n$ form a **basis** for E^n , if they are linearly independent and form a spanning set for E^n .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Spanning Sets and Bases

The vectors $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p \in E^n$ are said to form a **spanning set** if every vector in E^n can be written as a linear combination of the \mathbf{b}_i . In other words, if $\mathbf{v} \in E^n$, then there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_p$ such that $\mathbf{v} = \alpha_1 \cdot \mathbf{b}_1 + \alpha_2 \cdot \mathbf{b}_2 + \cdots + \alpha_p \cdot \mathbf{b}_p$. We say that the vectors $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n \in E^n$ form a **basis** for E^n , if they are linearly independent and form a spanning set for E^n .

Note that a basis is a minimal spanning set.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Vectors

Spanning Sets and Bases

The vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p \in E^n$ are said to form a **spanning set** if every vector in E^n can be written as a linear combination of the \mathbf{b}_i . In other words, if $\mathbf{v} \in E^n$, then there exist scalars $\alpha_1, \alpha_2, \dots, \alpha_p$ such that $\mathbf{v} = \alpha_1 \cdot \mathbf{b}_1 + \alpha_2 \cdot \mathbf{b}_2 + \dots + \alpha_p \cdot \mathbf{b}_p$. We say that the vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in E^n$ form a **basis** for E^n , if they are linearly independent and form a spanning set for E^n .

Note that a basis is a minimal spanning set. This is because adding a new vector would make the set linearly dependent and removing one of the vectors would mean the remaining ones no longer span E^n .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Outline

Linear Algebra

Vectors

Matrices

- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
 - Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimizatio
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors <mark>Aatrices</mark> The Solution of Simultaneous Linear Equations

Matrices

Definition

A matrix is a rectangular array of numbers.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors <mark>Matrices</mark> Fhe Solution of Simultaneous Linear Equations

Matrices

Definition

A **matrix** is a rectangular array of numbers. We represent them by uppercase boldface type with *m* rows and *n* columns.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Definition

A **matrix** is a rectangular array of numbers. We represent them by uppercase boldface type with *m* rows and *n* columns. The **order** of a matrix is the number of rows and columns of the matrix, so the example below would be an $m \times n$ matrix.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Definition

A **matrix** is a rectangular array of numbers. We represent them by uppercase boldface type with *m* rows and *n* columns. The **order** of a matrix is the number of rows and columns of the matrix, so the example below would be an $m \ge n$ matrix.

Example

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Matrix Addition

Matrix Addition

If two matrices are of the same order, then we can add them together.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Addition

Matrix Addition

If two matrices are of the same order, then we can add them together. To add two matrices, we add the elements in each corresponding position.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Addition

Matrix Addition

If two matrices are of the same order, then we can add them together. To add two matrices, we add the elements in each corresponding position. For example, if $\mathbf{C} = \mathbf{A} + \mathbf{B}$, then $c_{i,i} = a_{i,i} + b_{i,i}$ for every *i* and *j*.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Addition

Matrix Addition

If two matrices are of the same order, then we can add them together. To add two matrices, we add the elements in each corresponding position. For example, if $\mathbf{C} = \mathbf{A} + \mathbf{B}$, then $c_{i,j} = a_{i,j} + b_{i,j}$ for every *i* and *j*. Matrix addition satisfies both the commutative and associative laws.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Addition

Matrix Addition

If two matrices are of the same order, then we can add them together. To add two matrices, we add the elements in each corresponding position. For example, if $\mathbf{C} = \mathbf{A} + \mathbf{B}$, then $c_{i,j} = a_{i,j} + b_{i,j}$ for every *i* and *j*. Matrix addition satisfies both the commutative and associative laws.

Example

$$\mathbf{A} = \begin{pmatrix} 7 & 1 & -2 \\ 3 & 3 & 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 2 & -3 & 4 \\ 1 & 5 & 9 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 2 & 1 \\ 7 & 3 \\ 9 & 2 \end{pmatrix}$$
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 7 & 1 & -2 \\ 3 & 3 & 0 \end{pmatrix} + \begin{pmatrix} 2 & -3 & 4 \\ 1 & 5 & 9 \end{pmatrix} = \begin{pmatrix} 9 & -2 & 2 \\ 4 & 8 & 9 \end{pmatrix}$$
Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication by a Scalar

Like vectors, if we have a scalar α and a matrix **A**, the product $\alpha \cdot \mathbf{A}$ is obtained by multiplying each elements $a_{i,i}$ by α .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication by a Scalar

Like vectors, if we have a scalar α and a matrix **A**, the product $\alpha \cdot \mathbf{A}$ is obtained by multiplying each elements $a_{i,i}$ by α .

$$\alpha \cdot \mathbf{A} = \begin{pmatrix} \alpha \mathbf{a}_{1,1} & \alpha \mathbf{a}_{1,2} & \cdots & \alpha \mathbf{a}_{1,n} \\ \alpha \mathbf{a}_{2,1} & \alpha \mathbf{a}_{2,2} & \cdots & \alpha \mathbf{a}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha \mathbf{a}_{m,1} & \alpha \mathbf{a}_{m,2} & \cdots & \alpha \mathbf{a}_{m,n} \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Scalar Multiplication

Multiplication by a Scalar

Like vectors, if we have a scalar α and a matrix **A**, the product $\alpha \cdot \mathbf{A}$ is obtained by multiplying each elements $a_{i,i}$ by α .

$$\alpha \cdot \mathbf{A} = \begin{pmatrix} \alpha \mathbf{a}_{1,1} & \alpha \mathbf{a}_{1,2} & \cdots & \alpha \mathbf{a}_{1,n} \\ \alpha \mathbf{a}_{2,1} & \alpha \mathbf{a}_{2,2} & \cdots & \alpha \mathbf{a}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha \mathbf{a}_{m,1} & \alpha \mathbf{a}_{m,2} & \cdots & \alpha \mathbf{a}_{m,n} \end{pmatrix}$$

Example

$$\beta = 3 \quad \mathbf{A} = \begin{pmatrix} 8 & 3 \\ -1 & 2 \\ 7 & 1 \end{pmatrix} \quad \beta \cdot \mathbf{A} = 3 \begin{pmatrix} 8 & 3 \\ -1 & 2 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} 24 & 9 \\ -3 & 6 \\ 21 & 3 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix multiplicatoin

Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is equal to the number of rows in B.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix multiplicatoin

Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is equal to the number of rows in B.

If **A** is an $m \ge n$ matrix, and **B** is a $p \ge q$ matrix, then **AB** = **C** is defined as an $m \ge q$ matrix if and only if n = p.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix multiplicatoin

Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is equal to the number of rows in B.

If **A** is an $m \ge n$ matrix, and **B** is a $p \ge q$ matrix, then **AB** = **C** is defined as an $m \ge q$ matrix if and only if n = p.

Each element in **C** is given by $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$, where *n* is the number of columns of **A** or rows of **B**, i = 1, ..., m where *m* is the number of rows of **A**, and j = 1, ..., q

A or rows of **B**, i = 1, ..., m where *m* is the number of rows of **A**, and j = 1, ..., m where *q* is the number of columns of **B**.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix multiplicatoin

Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is equal to the number of rows in B.

If **A** is an $m \ge n$ matrix, and **B** is a $p \ge q$ matrix, then **AB** = **C** is defined as an $m \ge q$ matrix if and only if n = p.

Each element in **C** is given by $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$, where *n* is the number of columns of **A** or rows of **B**, i = 1, ..., m where *m* is the number of rows of **A**, and j = 1, ..., q where *q* is the number of columns of **B**.

Matrix multiplication satisfies the associative and distributive laws, but it does **not** satisfy the commutative law in general.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Example

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

*l*ectors <mark>Matrices</mark> Fhe Solution of Simultaneous Linear Equations

Example

Example

$$\mathbf{A} = \begin{pmatrix} 7 & 1 \\ 4 & -3 \\ 2 & 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 2 & 1 & 7 \\ 0 & -1 & 4 \end{pmatrix}$$
$$\mathbf{AB} = \begin{pmatrix} 7 & 1 \\ 4 & -3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 7 \\ 0 & -1 & 4 \end{pmatrix} = \begin{pmatrix} 14 & 6 & 53 \\ 8 & 7 & 16 \\ 4 & 2 & 14 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A} = egin{pmatrix} a_{1,1} & 0 & 0 \ 0 & a_{2,2} & 0 \ 0 & 0 & a_{3,3} \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A} = egin{pmatrix} a_{1,1} & 0 & 0 \ 0 & a_{2,2} & 0 \ 0 & 0 & a_{3,3} \end{pmatrix}$$

Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A} = egin{pmatrix} a_{1,1} & 0 & 0 \ 0 & a_{2,2} & 0 \ 0 & 0 & a_{3,3} \end{pmatrix}$$

Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We denote this matrix as I_m or I.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A}=egin{pmatrix} a_{1,1}&0&0\0&a_{2,2}&0\0&0&a_{3,3} \end{pmatrix}$$

Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We denote this matrix as I_m or I.

$$\mathsf{I}_3 = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A}=egin{pmatrix} a_{1,1}&0&0\0&a_{2,2}&0\0&0&a_{3,3} \end{pmatrix}$$

Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We denote this matrix as I_m or I.

$$\mathbf{u}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Null or Zero Matrix - All elements are equal to zero and is denoted as 0.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A}=egin{pmatrix} a_{1,1}&0&0\0&a_{2,2}&0\0&0&a_{3,3} \end{pmatrix}$$

Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We denote this matrix as I_m or I.

	/1	0	0/
3 =	0	1	0
	0/	0	1/

Null or Zero Matrix - All elements are equal to zero and is denoted as 0. Note that this does not have to be a square matrix.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal are zero.

$$\mathbf{A}=egin{pmatrix} a_{1,1}&0&0\0&a_{2,2}&0\0&0&a_{3,3} \end{pmatrix}$$

Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We denote this matrix as I_m or I.

	/1	0	0/
3 =	0	1	0
	0/	0	1/

Null or Zero Matrix - All elements are equal to zero and is denoted as 0. Note that this does not have to be a square matrix.

$$\mathbf{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices (Contd.)

Matrix Transpose - The transpose of **A**, denoted as \mathbf{A}^t , is a reordering of **A** by interchanging the rows and columns.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices (Contd.)

Matrix Transpose - The transpose of **A**, denoted as \mathbf{A}^t , is a reordering of **A** by interchanging the rows and columns. For example, row 1 of **A** would be column 1 of \mathbf{A}^t .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices (Contd.)

Matrix Transpose - The transpose of **A**, denoted as \mathbf{A}^t , is a reordering of **A** by interchanging the rows and columns. For example, row 1 of **A** would be column 1 of \mathbf{A}^t .

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \quad \mathbf{A}^{t} = \begin{pmatrix} a_{1,1} & a_{2,1} & \cdots & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{m,n} \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices (Contd.)

Matrix Transpose - The transpose of **A**, denoted as \mathbf{A}^t , is a reordering of **A** by interchanging the rows and columns. For example, row 1 of **A** would be column 1 of \mathbf{A}^t .

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \quad \mathbf{A}^{t} = \begin{pmatrix} a_{1,1} & a_{2,1} & \cdots & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{m,n} \end{pmatrix}$$

Symmetric Matrix - A matrix A where $A = A^t$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Special Matrices

Special Matrices (Contd.)

Matrix Transpose - The transpose of **A**, denoted as \mathbf{A}^t , is a reordering of **A** by interchanging the rows and columns. For example, row 1 of **A** would be column 1 of \mathbf{A}^t .

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \quad \mathbf{A}^{t} = \begin{pmatrix} a_{1,1} & a_{2,1} & \cdots & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{m,n} \end{pmatrix}$$

Symmetric Matrix - A matrix A where $A = A^{t}$.

$$\mathbf{A} = egin{pmatrix} 1 & 2 & 3 \ 2 & 6 & 4 \ 3 & 4 & 9 \end{pmatrix}$$

Positive Semidefinite - A symmetric matrix **A** is said to be positive semidefinite, if $\mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{x} \ge 0$ for all \mathbf{x} and $\mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{x} = 0$, only if $\mathbf{x} = \mathbf{0}$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Special Matrices (Contd.)

Augmented Matrix - A matrix where the rows and columns of another matrix are appended to the original matrix.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Special Matrices (Contd.)

Augmented Matrix - A matrix where the rows and columns of another matrix are appended to the original matrix. If A is augmented with B, we get (A, B) or (A|B).

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Special Matrices (Contd.)

Augmented Matrix - A matrix where the rows and columns of another matrix are appended to the original matrix. If A is augmented with B, we get (A, B) or (A|B).

$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 5 & 6 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 3 & 2 \\ 1 & 9 \end{pmatrix} \quad (\mathbf{A}|\mathbf{B}) = \begin{pmatrix} 1 & 4 & | & 3 & 2 \\ 5 & 6 & | & 1 & 9 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix $\boldsymbol{A},$ the **determinant** denoted by $|\boldsymbol{A}|$ is a number associated with $\boldsymbol{A}.$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix ${\bf A},$ the ${\bf determinant}$ denoted by $|{\bf A}|$ is a number associated with ${\bf A}.$

Determinant of a 1 x 1 matrix: $|a_{1,1}| = a_{1,1}$

a1,1

 $a_{2,1}$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix ${\bf A},$ the determinant denoted by $|{\bf A}|$ is a number associated with ${\bf A}.$

Determinant of a 1 x 1 matrix: $|a_{1,1}| = a_{1,1}$

Determinant of a 2 x 2 matrix:

$$\begin{vmatrix} a_{1,2} \\ a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix ${\bf A},$ the determinant denoted by $|{\bf A}|$ is a number associated with ${\bf A}.$

Determinant of a 1 x 1 matrix: $|a_{1,1}| = a_{1,1}$

Determinant of a 2 x 2 matrix: $\begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$

Every element of a determinant, except for a 1 x 1 matrix, has an associated minor.

 $a_{1,1}$

 a_{21}

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix ${\bf A},$ the determinant denoted by $|{\bf A}|$ is a number associated with ${\bf A}.$

Determinant of a 1 x 1 matrix: $|a_{1,1}| = a_{1,1}$

Determinant of a 2 x 2 matrix:

$$\begin{vmatrix} a_{1,2} \\ a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Every element of a determinant, except for a 1×1 matrix, has an associated **minor**. To get the minor, we remove the row and column corresponding to the element and find the determinant of the new matrix.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix ${\bf A},$ the determinant denoted by $|{\bf A}|$ is a number associated with ${\bf A}.$

Determinant of a 1 x 1 matrix: $|a_{1,1}| = a_{1,1}$

Determinant of a 2 x 2 matrix: $\begin{vmatrix} a_{1,1} \\ a_{2,1} \end{vmatrix}$

$$\begin{vmatrix} a_{1,2} \\ a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Every element of a determinant, except for a 1×1 matrix, has an associated **minor**. To get the minor, we remove the row and column corresponding to the element and find the determinant of the new matrix.

We denote the minor of an element $a_{i,j}$ in matrix **A** as $|\mathbf{A}_{i,j}|$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization **Financial Mathematics**

Vectors The Solution of Simultaneous Linear Equations

Determinants

Determinants

Given a square matrix \mathbf{A} , the **determinant** denoted by $|\mathbf{A}|$ is a number associated with Α.

Determinant of a 1 x 1 matrix: $|a_{1,1}| = a_{1,1}$

 $a_{1,1}$ Determinant of a 2 x 2 matrix:

$$\begin{vmatrix} a_{1,2} \\ a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Every element of a determinant, except for a 1 x 1 matrix, has an associated **minor**. To get the minor, we remove the row and column corresponding to the element and find the determinant of the new matrix.

We denote the minor of an element $a_{i,j}$ in matrix **A** as $|\mathbf{A}_{i,j}|$.

The **cofactor** of an element is its minor with the sign $(-1)^{i+j}$ attached to it.

 a_{21}

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

$$|\mathbf{A}| = \begin{vmatrix} 7 & -1 & 0 \\ 3 & 2 & 1 \\ 8 & 1 & -4 \end{vmatrix}$$

The cofactor for $a_{2,1} = 3$ is

$$(-1)^{2+1}|\mathbf{A}_{2,1}| = (-1) \begin{vmatrix} -1 & 0 \\ 1 & -4 \end{vmatrix} = -4$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Value of a determinant

Value of Determinants

The value of a determinant of order n is found by adding the products of each element by its respective cofactor.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Value of a determinant

Value of Determinants

The value of a determinant of order n is found by adding the products of each element by its respective cofactor. For any row i, this would be

$$|\mathbf{A}| = \sum_{j=1}^n a_{i,j} (-1)^{i+j} |\mathbf{A}_{i,j}|$$

and for any column *j*, this would be

$$|\mathbf{A}| = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} |\mathbf{A}_{i,j}|$$
Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Determinants

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Determinants

/ectors <mark>Matrices</mark> Fhe Solution of Simultaneous Linear Equations

Value of Determinants Example

$$|\mathbf{A}| = \begin{vmatrix} 1 & 4 & 3 \\ 2 & 0 & 2 \\ 1 & 3 & 5 \end{vmatrix}$$

Subramani Optimization Methods in Finance

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors <mark>Matrices</mark> Fhe Solution of Simultaneous Linear Equations

Determinants

Value of Determinants Example

$$|\mathbf{A}| = \begin{vmatrix} 1 & 4 & 3\\ 2 & 0 & 2\\ 1 & 3 & 5 \end{vmatrix}$$

Expanding |A| by column 3, we get

$$\begin{array}{ll} \textbf{A} & = 3(-1)^{1+3} \begin{vmatrix} 2 & 0 \\ 1 & 3 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} + 5(-1)^{3+3} \begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix} \\ & = 3(6) - 2(-1) + 5(-8) = -20 \end{array}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

*l*ectors <mark>Matrices</mark> Fhe Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

The expansion of determinants can become complex for larger orders.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

The expansion of determinants can become complex for larger orders. We can simplify the process by utilizing five properties.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

The expansion of determinants can become complex for larger orders. We can simplify the process by utilizing five properties. Note that we can interchange the words "row" and "column".

 If one complete row of a determinant is all zero, the value of the determinant is zero.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

- If one complete row of a determinant is all zero, the value of the determinant is zero.
- If two rows have elements that are proportional to one another, the value of the determinant is zero.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

- If one complete row of a determinant is all zero, the value of the determinant is zero.
- If two rows have elements that are proportional to one another, the value of the determinant is zero.
- If two rows of a determinant are interchanged, the value of the new determinant is equal to the negative of the value of the old determinant.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

- If one complete row of a determinant is all zero, the value of the determinant is zero.
- If two rows have elements that are proportional to one another, the value of the determinant is zero.
- If two rows of a determinant are interchanged, the value of the new determinant is equal to the negative of the value of the old determinant.
- Elements of any row may be multiplied by a nonzero constant if the entire determinant is multiplied by the reciprocal of the constant.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Value of Determinants (Contd.)

- If one complete row of a determinant is all zero, the value of the determinant is zero.
- If two rows have elements that are proportional to one another, the value of the determinant is zero.
- If two rows of a determinant are interchanged, the value of the new determinant is equal to the negative of the value of the old determinant.
- Elements of any row may be multiplied by a nonzero constant if the entire determinant is multiplied by the reciprocal of the constant.
- To the elements of any row, you may add a constant times the corresponding element of any other row without changing the value of the determinant.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Adjoint Matrix

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Adjoint Matrix

Adjoint

If **A** is a square matrix, the **adjoint** of **A**, denoted as \mathbf{A}^{α} , can be found using the following procedure:

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Adjoint Matrix

Adjoint

If **A** is a square matrix, the **adjoint** of **A**, denoted as \mathbf{A}^{α} , can be found using the following procedure:

• Replace each element $a_{i,j}$ of **A** by its cofactor.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Adjoint Matrix

Adjoint

If **A** is a square matrix, the **adjoint** of **A**, denoted as \mathbf{A}^{α} , can be found using the following procedure:

- Replace each element $a_{i,j}$ of **A** by its cofactor.
- 2 Take the transpose of the matrix of cofactors found in step 1.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Adjoint Matrix

Adjoint

If **A** is a square matrix, the **adjoint** of **A**, denoted as \mathbf{A}^{α} , can be found using the following procedure:

- Replace each element $a_{i,j}$ of **A** by its cofactor.
- 2 Take the transpose of the matrix of cofactors found in step 1.
- **③** The resulting matrix is \mathbf{A}^{α} , the adjoint of \mathbf{A} .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Adjoint Matrix

Adjoint

If **A** is a square matrix, the **adjoint** of **A**, denoted as \mathbf{A}^{α} , can be found using the following procedure:

- Replace each element $a_{i,j}$ of **A** by its cofactor.
- 2 Take the transpose of the matrix of cofactors found in step 1.
- **(**) The resulting matrix is \mathbf{A}^{α} , the adjoint of \mathbf{A} .

Example

Let $\gamma_{i,j} = (-1)^{i+j} |\mathbf{A}_{i,j}|$ be the cofactor for $a_{i,j}$, then

$$\mathbf{A}^{\alpha} = \begin{pmatrix} \gamma_{1,1} & \gamma_{2,1} & \cdots & \gamma_{n,1} \\ \gamma_{1,2} & \gamma_{2,2} & \cdots & \gamma_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{1,n} & \gamma_{2,n} & \cdots & \gamma_{n,n} \end{pmatrix}$$

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Matrix Inverse

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Matrix Inverse

Inverse

The **inverse** of a square matrix **A** is denoted as A^{-1} .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Inverse

Inverse

The **inverse** of a square matrix **A** is denoted as \mathbf{A}^{-1} . For a matrix to have an inverse, it must be nonsingular; i.e., its determinant cannot be zero.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Inverse

Inverse

The inverse of a square matrix A is denoted as A^{-1} .

For a matrix to have an inverse, it must be nonsingular; i.e., its determinant cannot be zero.

Given a nonsingular matrix A, we find the inverse by

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^c$$

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 6 & 5 \end{pmatrix}$$
 $|\mathbf{A}| = 2(5) - 1(6) = 10 - 6 = 4$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 6 & 5 \end{pmatrix} \quad |\mathbf{A}| = 2(5) - 1(6) = 10 - 6 = 4$$
$$\mathbf{A}^{\alpha} = \begin{pmatrix} |5| & -|1| \\ -|6| & |2| \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ -6 & 2 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 6 & 5 \end{pmatrix} \quad |\mathbf{A}| = 2(5) - 1(6) = 10 - 6 = 4$$
$$\mathbf{A}^{\alpha} = \begin{pmatrix} |5| & -|1| \\ -|6| & |2| \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ -6 & 2 \end{pmatrix}$$
$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^{\alpha} = \frac{1}{4} \begin{pmatrix} 5 & -1 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} \frac{5}{4} & -\frac{1}{4} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 6 & 5 \end{pmatrix} \quad |\mathbf{A}| = 2(5) - 1(6) = 10 - 6 = 4$$
$$\mathbf{A}^{\alpha} = \begin{pmatrix} |5| & -|1| \\ -|6| & |2| \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ -6 & 2 \end{pmatrix}$$
$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^{\alpha} = \frac{1}{4} \begin{pmatrix} 5 & -1 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} \frac{5}{4} & -\frac{1}{4} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$$

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Matrices

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

*l*ectors <mark>Matrices</mark> Fhe Solution of Simultaneous Linear Equations

Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix. The idea is to augment the matrix with the identity matrix and then perform elementary row operations.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix. The idea is to augment the matrix with the identity matrix and then perform elementary row operations.

Elementary Row Operations

Interchange a row *i* with a row *j*.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix. The idea is to augment the matrix with the identity matrix and then perform elementary row operations.

Elementary Row Operations

- Interchange a row *i* with a row *j*.
- 2 Multiply a row *i* by a nonzero scalar α .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix. The idea is to augment the matrix with the identity matrix and then perform elementary row operations.

Elementary Row Operations

- Interchange a row *i* with a row *j*.
- 2 Multiply a row *i* by a nonzero scalar α .
- Seplace a row *i* by a row *i* plus a multiple of some row *j*.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Matrix Rank

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Rank

Rank of a Matrix

The **rank** of an $m \ge n$ matrix **A**, denoted as $r(\mathbf{A})$, is the number of linearly independent columns (or rows) of **A**.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Rank

Rank of a Matrix

The **rank** of an $m \ge n$ matrix **A**, denoted as $r(\mathbf{A})$, is the number of linearly independent columns (or rows) of **A**. By definition, $r(\mathbf{A}) \le \min\{m, n\}$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Rank

Rank of a Matrix

The **rank** of an $m \ge n$ matrix **A**, denoted as $r(\mathbf{A})$, is the number of linearly independent columns (or rows) of **A**. By definition, $r(\mathbf{A}) \le \min\{m, n\}$. If $r(\mathbf{A}) = \min\{m, n\}$, then **A** is said to be of **full rank**.
Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Rank

Rank of a Matrix

The **rank** of an $m \ge n$ matrix **A**, denoted as $r(\mathbf{A})$, is the number of linearly independent columns (or rows) of **A**.

By definition, $r(\mathbf{A}) \leq \min\{m, n\}$.

If $r(\mathbf{A}) = \min\{m, n\}$, then **A** is said to be of **full rank**.

There are several ways to get the rank, but the method used here will use elementary row operations to get

$$\left(\begin{array}{c|c} \mathbf{I}_k & \mathbf{D} \\ \hline \mathbf{0} & \mathbf{0} \end{array}\right)$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Matrix Rank

Rank of a Matrix

The **rank** of an $m \ge n$ matrix **A**, denoted as $r(\mathbf{A})$, is the number of linearly independent columns (or rows) of **A**.

By definition, $r(\mathbf{A}) \leq \min\{m, n\}$.

If $r(\mathbf{A}) = \min\{m, n\}$, then **A** is said to be of **full rank**.

There are several ways to get the rank, but the method used here will use elementary row operations to get

$$\left(\begin{array}{c|c} \mathbf{I}_k & \mathbf{D} \\ \hline \mathbf{0} & \mathbf{0} \end{array}\right)$$

This shows that $r(\mathbf{A}) = k$.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 3 & 1 \\ 2 & 1 & 2 & 3 & 0 \\ 1 & 3 & 1 & 9 & 5 \end{pmatrix}$$

Subramani Optimization Methods in Finance

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 3 & 1 \\ 2 & 1 & 2 & 3 & 0 \\ 1 & 3 & 1 & 9 & 5 \end{pmatrix}$$
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 3 & 2 \\ \hline 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{I}_2 & \mathbf{D} \\ \hline \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors <mark>Matrices</mark> The Solution of Simultaneous Linear Equations

Example

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 3 & 1 \\ 2 & 1 & 2 & 3 & 0 \\ 1 & 3 & 1 & 9 & 5 \end{pmatrix}$$
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & | & 1 & 0 & -1 \\ 0 & 1 & 0 & 3 & 2 \\ \hline 0 & 0 & | & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{I}_2 & | & \mathbf{D} \\ \hline \mathbf{0} & | & \mathbf{0} \end{pmatrix}$$

This means that the rank of **A** is 2.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors /latrices The Solution of Simultaneous Linear Equations

Simultaneous linear Equations

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Simultaneous linear Equations

Equations

One of the best known uses for matrices and determinants is for solving simultaneous linear equations.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Simultaneous linear Equations

Equations

One of the best known uses for matrices and determinants is for solving simultaneous linear equations.

Matrices and vectors give us a nice method for expressing the problem.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Simultaneous linear Equations

Equations

One of the best known uses for matrices and determinants is for solving simultaneous linear equations.

Matrices and vectors give us a nice method for expressing the problem.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Simultaneous linear Equations

Equations

One of the best known uses for matrices and determinants is for solving simultaneous linear equations.

Matrices and vectors give us a nice method for expressing the problem.

Example									
	$a_{1,1}x_1$	+	a _{1,2} x ₂	+	•••	+	a _{1,n} x _n	=	<i>b</i> ₁
	a2,1×1	Ŧ	a _{2,2} x ₂	Ŧ	•••	Ŧ	a _{2,n} ×n	_	
	<i>a</i> _{m,1} x ₁	+	<i>a</i> _{m,2} <i>x</i> ₂	+		+	a _{m,n} x _n	=	bm

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors Matrices The Solution of Simultaneous Linear Equations

Example

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$
$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ has either no solution, a unique solution, or an infinite number of solutions.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\bm{A}\cdot\bm{x}=\bm{b}$ has either no solution, a unique solution, or an infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x_1, x_2, \ldots, x_n so that **b** can be written as a linear combination of the columns of **A**.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\bm{A}\cdot\bm{x}=\bm{b}$ has either no solution, a unique solution, or an infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x_1, x_2, \ldots, x_n so that **b** can be written as a linear combination of the columns of **A**.

Conditions where a solutions exists for $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$:

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\bm{A}\cdot\bm{x}=\bm{b}$ has either no solution, a unique solution, or an infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x_1, x_2, \ldots, x_n so that **b** can be written as a linear combination of the columns of **A**.

Conditions where a solutions exists for $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$:

• If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A}) + 1$, then no solution exists.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\bm{A}\cdot\bm{x}=\bm{b}$ has either no solution, a unique solution, or an infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x_1, x_2, \ldots, x_n so that **b** can be written as a linear combination of the columns of **A**.

Conditions where a solutions exists for $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$:

• If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A}) + 1$, then no solution exists.

2 If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A})$, then there does exist a solution.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ has either no solution, a unique solution, or an infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x_1, x_2, \ldots, x_n so that **b** can be written as a linear combination of the columns of **A**.

Conditions where a solutions exists for $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$:

• If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A}) + 1$, then no solution exists.

3 If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A})$, then there does exist a solution. This is because we can write **b** as a linear combination of the columns of **A**.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Solution Set

Solutions

The set of linear equations $\bm{A}\cdot\bm{x}=\bm{b}$ has either no solution, a unique solution, or an infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x_1, x_2, \ldots, x_n so that **b** can be written as a linear combination of the columns of **A**.

Conditions where a solutions exists for $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$:

• If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A}) + 1$, then no solution exists.

2 If $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A})$, then there does exist a solution. This is because we can write **b** as a linear combination of the columns of **A**. Furthermore, if $r(\mathbf{A}) = n$, where *n* is the number of variables, then there exists a unique solution for the system of equations.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors Matrices The Solution of Simultaneous Linear Equations

Unique solution

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Unique solution

A Unique Solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

There are several methods for solving for a unique solution, including Cramer's rule and Gaussian elimination.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Unique solution

A Unique Solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

There are several methods for solving for a unique solution, including Cramer's rule and Gaussian elimination.

We will first use Cramer's rule; however, we should note that this is not an efficient approach computationally.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Unique solution

A Unique Solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

There are several methods for solving for a unique solution, including Cramer's rule and Gaussian elimination.

We will first use Cramer's rule; however, we should note that this is not an efficient approach computationally. Let \mathbf{A}_j be the matrix \mathbf{A} where the *j*th column is replaced by \mathbf{b} .

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Unique solution

A Unique Solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

There are several methods for solving for a unique solution, including Cramer's rule and Gaussian elimination.

We will first use Cramer's rule; however, we should note that this is not an efficient approach computationally. Let \mathbf{A}_j be the matrix \mathbf{A} where the *j*th column is replaced by \mathbf{b} .

Cramer's rule states that the unique solution is given by $x_j = \frac{|\mathbf{A}_j|}{|\mathbf{A}|}$, for all j = 1, ..., n.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Cramer's rule

Vectors Matrices The Solution of Simultaneous Linear Equations

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors /latrices The Solution of Simultaneous Linear Equations

Cramer's rule

Using Cramer's Rule

$$2x_1 + x_2 + 2x_3 = 62x_1 + 3x_2 + x_3 = 9x_1 + x_2 + x_3 = 3$$
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2\\ 2 & 3 & 1\\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 6\\ 9\\ 3 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

/ectors Matrices The Solution of Simultaneous Linear Equations

Cramer's rule

Using Cramer's Rule

	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\mathbf{A} =$	$ = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 6 \\ 9 \\ 3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} $	
$x_1 = \frac{\begin{vmatrix} 6 & 1 & 2 \\ 9 & 3 & 1 \\ 3 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 9$	$f = \frac{6}{1} = 6 x_2 = \frac{\begin{vmatrix} 2 & 6 & 2 \\ 2 & 9 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0 x_3 = \frac{\begin{vmatrix} 2 & 1 & 6 \\ 2 & 3 & 9 \\ 1 & 1 & 3 \\ 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0$	= -3

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse. Given $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, we can see that $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$,

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse. Given $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, we can see that $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, which means that $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$,

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse. Given $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, we can see that $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, which means that $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, and hence $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse. Given $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, we can see that $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, which means that $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, and hence $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$.

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 6 \\ 9 \\ 3 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse. Given $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, we can see that $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, which means that $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, and hence $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$.

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 6 \\ 9 \\ 3 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$\mathbf{A}^{-1} = \begin{pmatrix} 2 & 1 & -5 \\ -1 & 0 & 2 \\ -1 & -1 & 4 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse. Given $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, we can see that $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, which means that $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$, and hence $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$.

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 6 \\ 9 \\ 3 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$\mathbf{A}^{-1} = \begin{pmatrix} 2 & 1 & -5 \\ -1 & 0 & 2 \\ -1 & -1 & 4 \end{pmatrix}$$
$$\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b} = \begin{pmatrix} 2 & 1 & -5 \\ -1 & 0 & 2 \\ -1 & -1 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ -3 \end{pmatrix}$$
Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions

This case is one of most interest since this scenario is the most likely to happen in linear programming.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions

This case is one of most interest since this scenario is the most likely to happen in linear programming.

This happens when $r(\mathbf{A}) = r(\mathbf{A}|\mathbf{b}) < n$, where *n* is the number of variables.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions

This case is one of most interest since this scenario is the most likely to happen in linear programming.

This happens when $r(\mathbf{A}) = r(\mathbf{A}|\mathbf{b}) < n$, where *n* is the number of variables.

Example

$$3x_1 + x_2 - x_3 = 8$$

 $x_1 + x_2 + x_3 = 4$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions

This case is one of most interest since this scenario is the most likely to happen in linear programming. This happens when $r(\mathbf{A}) = r(\mathbf{A}|\mathbf{b}) < \mathbf{a}$ where \mathbf{a} is the number of variables

This happens when $r(\mathbf{A}) = r(\mathbf{A}|\mathbf{b}) < n$, where *n* is the number of variables.

Example

$$3x_1 + x_2 - x_3 = 8$$

 $x_1 + x_2 + x_3 = 4$

We see that $r(\mathbf{A}) = r(\mathbf{A}|\mathbf{b}) = 2 < 3$, where

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions (Contd.)

For this case, we can choose *r* equations, where *r* is the rank, and find *r* of the variables in terms of the remaining n - r variables.

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions (Contd.)

For this case, we can choose *r* equations, where *r* is the rank, and find *r* of the variables in terms of the remaining n - r variables.

$$3x_1 + x_2 - x_3 = 8$$

 $x_1 + x_2 + x_3 = 4$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions (Contd.)

For this case, we can choose *r* equations, where *r* is the rank, and find *r* of the variables in terms of the remaining n - r variables.

Solving for x_1 and x_2 gets

$$x_1 = 2 + x_3$$

 $x_2 = 2 - 2x_3$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions (Contd.)

For this case, we can choose *r* equations, where *r* is the rank, and find *r* of the variables in terms of the remaining n - r variables.

Solving for x_1 and x_2 gets

$$\begin{array}{rcl} x_1 &=& 2 &+& x_3 \\ x_2 &=& 2 &-& 2x_3 \\ \mathbf{x} &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2+x_3 \\ 2-2x_3 \\ x_3 \end{pmatrix}$$

Convexity and Cones Probability and Expectation Basic optimization theory Models of Optimization Financial Mathematics

Vectors Matrices The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions (Contd.)

For this case, we can choose *r* equations, where *r* is the rank, and find *r* of the variables in terms of the remaining n - r variables.

Solving for x_1 and x_2 gets

$$\begin{array}{rcl} x_1 &=& 2 &+& x_3 \\ x_2 &=& 2 &-& 2x_3 \\ \mathbf{x} &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2+x_3 \\ 2-2x_3 \\ x_3 \end{pmatrix}$$

Convexity Cones

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- Convexity and Cones
 - Convexity
 - Cones
 - Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Sets

Convexity Cones

Sets

Definition (Convex Combination)

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Note

The set of all convex combinations of **x** and **y** is the line segment joining them.

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Note

The set of all convex combinations of **x** and **y** is the line segment joining them.

Definition (Convex Set)

A set S is said to be convex, if:

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Note

The set of all convex combinations of **x** and **y** is the line segment joining them.

Definition (Convex Set)

A set S is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1])$

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Note

The set of all convex combinations of **x** and **y** is the line segment joining them.

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Note

The set of all convex combinations of **x** and **y** is the line segment joining them.

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Exercise

A set of the form $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$ is said to be a polyhedral set.

Convexity Cones

Sets

Definition (Convex Combination)

Given two points **x** and **y** in E^m , and $\alpha \in [0, 1]$, the parametric point $\alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$ is said to be a convex combination of **x** and **y**.

Note

The set of all convex combinations of **x** and **y** is the line segment joining them.

Definition (Convex Set)

A set *S* is said to be convex, if: $(\forall \mathbf{x})(\forall \mathbf{y})(\forall \alpha \in [0, 1]) \mathbf{x}, \mathbf{y} \in S \rightarrow \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y} \in S.$

Exercise

A set of the form $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$ is said to be a polyhedral set. Argue that polyhedral sets are convex.

Convexity Cones

Functions

Functions

Definition (Convex function)

Subramani Optimization Methods in Finance

Convexity Cones

Functions

Definition (Convex function)

Given a convex set *S*, a function $f : S \rightarrow \Re$ is called convex,

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

Convexity Cones

Functions

Definition (Convex function)

Given a convex set *S*, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

Convexity Cones

Functions

Definition (Convex function)

Given a convex set *S*, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

A function *f* is concave if and only if -f is convex.

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

A function *f* is concave if and only if -f is convex.

Definition

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

A function *f* is concave if and only if -f is convex.

Definition

The epigraph of a function $f: S \rightarrow \Re$, is defined as the set

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

A function *f* is concave if and only if -f is convex.

Definition

The epigraph of a function $f : S \to \Re$, is defined as the set $\{(\mathbf{x}, r) : \mathbf{x} \in S, f(\mathbf{x}) \le r\}$.

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

A function *f* is concave if and only if -f is convex.

Definition

The epigraph of a function $f : S \to \Re$, is defined as the set $\{(\mathbf{x}, r) : \mathbf{x} \in S, f(\mathbf{x}) \le r\}$.

Theorem

Convexity Cones

Functions

Definition (Convex function)

Given a convex set S, a function $f : S \to \Re$ is called convex, if $\forall \mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$, we have,

$$f(\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}) \leq \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y}).$$

If < holds as opposed to \leq , the function is said to be strictly convex.

Definition (Concave function)

A function *f* is concave if and only if -f is convex.

Definition

The epigraph of a function $f : S \to \Re$, is defined as the set $\{(\mathbf{x}, r) : \mathbf{x} \in S, f(\mathbf{x}) \le r\}$.

Theorem

f is a convex function if and if its epigraph is a convex set.

Convexity Cones

Checking convexity

Subramani Optimization Methods in Finance

Convexity Cones

Checking convexity

Theorem

If f is a twice-diferentiable, univariate function, then f is convex on set S, if and only if $f''(\mathbf{x}) \ge 0$, for all $\mathbf{x} \in \mathbf{S}$.

Convexity Cones

Checking convexity

Theorem

If f is a twice-diferentiable, univariate function, then f is convex on set S, if and only if $f''(\mathbf{x}) \geq 0$, for all $\mathbf{x} \in \mathbf{S}$. A multivariate function f is convex if and only if,
Convexity Cones

Checking convexity

Theorem

If *f* is a twice-diferentiable, univariate function, then *f* is convex on set *S*, if and only if $f''(\mathbf{x}) \ge 0$, for all $\mathbf{x} \in \mathbf{S}$. A multivariate function *f* is convex if and only if, $\bigtriangledown^2 f(\mathbf{x})$ is positive semidefinite.

Convexity Cones

Checking convexity

Theorem

If f is a twice-diferentiable, univariate function, then f is convex on set S, if and only if $f''(\mathbf{x}) \ge 0$, for all $\mathbf{x} \in \mathbf{S}$. A multivariate function f is convex if and only if, $\bigtriangledown^2 f(\mathbf{x})$ is positive semidefinite. Recall that,

$$[\bigtriangledown^2 f(\mathbf{x})]_{i,j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}, \ \forall i,j$$

Convexity Cones

Convex optimization theorem

Convexity Cones

Convex optimization theorem

Theorem

Convexity Cones

Convex optimization theorem

Theorem

Consider the following optimization problem:

 $\min_{\mathbf{x}} f(\mathbf{x}) \\ s.t. \quad \mathbf{x} \in \mathbf{S}$

Convexity Cones

Convex optimization theorem

Theorem

Consider the following optimization problem:

 $\min_{\mathbf{x}} f(\mathbf{x}) \\ s.t. \quad \mathbf{x} \in \mathbf{S}$

If S is a convex set and f is a convex function of \mathbf{x} on S, the all local optima are also global optima.

Convexity Cones

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2

Convexity and Cones

- Convexity
- Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Convexity Cones

Cones

Convexity Cones

Cones

Definition

Convexity Cones

Cones

Definition

A cone is a set that is closed under positive scalar multiplication.

Convexity Cones

Cones

Definition

A cone is a set that is closed under positive scalar multiplication. It is called *pointed*, if it does not include any lines.

Convexity Cones

Cones

Definition

A cone is a set that is closed under positive scalar multiplication. It is called *pointed*, if it does not include any lines.

Note

Are cones convex?

Convexity Cones

Cones

Definition

A cone is a set that is closed under positive scalar multiplication. It is called *pointed*, if it does not include any lines.

Note

Are cones convex? We will be dealing with pointed, convex cones only.

Convexity Cones

Cone Examples

Convexity Cones

Cone Examples

Examples

Convexity Cones

Cone Examples

Examples

• The positive orthant - $\{\mathbf{x} \in \Re^n : \mathbf{x} \ge \mathbf{0}\}.$

Convexity Cones

Cone Examples

- The positive orthant $\{\mathbf{x} \in \Re^n : \mathbf{x} \ge \mathbf{0}\}$.
- **2** Polyhedral cones $\{\mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \ge \mathbf{0}\}.$

Convexity Cones

Cone Examples

- The positive orthant $\{\mathbf{x} \in \Re^n : \mathbf{x} \ge \mathbf{0}\}.$
- **2** Polyhedral cones $\{\mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \ge \mathbf{0}\}.$
- **3** Lorentz cones { $\mathbf{x} = [x_1, \dots, x_n] \in \Re^{n+1} : x_n \ge ||(x_1, x_2 \dots x_{n-1})||_2$.

Convexity Cones

Cone Examples

- The positive orthant $\{\mathbf{x} \in \Re^n : \mathbf{x} \ge \mathbf{0}\}$.
- **2** Polyhedral cones $\{\mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \ge \mathbf{0}\}.$
- **3** Lorentz cones { $\mathbf{x} = [x_1, \dots, x_n] \in \Re^{n+1} : x_n \ge ||(x_1, x_2, \dots, x_{n-1})||_2$.
- The cone of symmetric positive semidefinite matrices $\{\mathbf{X} \in \Re^{n \times n} : \mathbf{X} = \mathbf{X}^{\mathsf{T}}, \text{ and } \mathbf{X} \text{ is positive semidefinite}\}.$

Convexity Cones

Cone Properties

Convexity Cones

Cone Properties

Definition (Dual Cone)

If C is a cone in vector space X, with an inner product " \cdot ", then its *dual cone* is denoted by:

Convexity Cones

Cone Properties

Definition (Dual Cone)

If *C* is a cone in vector space *X*, with an inner product ".", then its *dual cone* is denoted by:

 $C^* = \{ \mathbf{x} \in X : \mathbf{x} \cdot \mathbf{y} \ge 0, \ \forall \mathbf{y} \in C \}.$

Convexity Cones

Cone Properties

Definition (Dual Cone)

If C is a cone in vector space X, with an inner product " \cdot ", then its *dual cone* is denoted by:

$$C^* = \{ \mathbf{x} \in X : \mathbf{x} \cdot \mathbf{y} \ge \mathbf{0}, \, \forall \mathbf{y} \in C \}.$$

Definition (Polar Cone)

The polar cone of a cone C is the negative of its dual, i.e.,

Convexity Cones

Cone Properties

Definition (Dual Cone)

If C is a cone in vector space X, with an inner product " \cdot ", then its *dual cone* is denoted by:

$$C^* = \{ \mathbf{x} \in X : \mathbf{x} \cdot \mathbf{y} \ge 0, \, \forall \mathbf{y} \in C \}.$$

Definition (Polar Cone)

The polar cone of a cone C is the negative of its dual, i.e.,

$$C^{P} = \{ \mathbf{x} \in X : \mathbf{x} \cdot \mathbf{y} \leq \mathbf{0}, \, \forall \mathbf{y} \in C \}.$$

Convexity Cones

Cone Properties

Definition (Dual Cone)

If *C* is a cone in vector space *X*, with an inner product ".", then its *dual cone* is denoted by:

$$C^* = \{ \mathbf{x} \in X : \mathbf{x} \cdot \mathbf{y} \ge 0, \ \forall \mathbf{y} \in C \}.$$

Definition (Polar Cone)

The polar cone of a cone C is the negative of its dual, i.e.,

$$C^{\mathcal{P}} = \{ \mathbf{x} \in X : \mathbf{x} \cdot \mathbf{y} \leq \mathbf{0}, \, \forall \mathbf{y} \in C \}.$$

Exercise

Show that the cone \Re^n_+ is its own dual cone.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory <u>Mo</u>dels of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Outline

🚺 Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

. Financial Mathematics Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Example

(i) Suppose that the experiment consists of tossing a coin.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Example

(i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die. Then, $S = \{1, 2, 3, 4, 5, 6\}.$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die. Then, $S = \{1, 2, 3, 4, 5, 6\}.$
- (iii) Suppose that the experiment consists of tossing two coins.
Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Example

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die. Then, $S = \{1, 2, 3, 4, 5, 6\}.$
- (iii) Suppose that the experiment consists of tossing two coins. Then, $S = \{HH, HT, TH, TT\}.$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Example

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die. Then, $S = \{1, 2, 3, 4, 5, 6\}.$
- (iii) Suppose that the experiment consists of tossing two coins. Then, $S = \{HH, HT, TH, TT\}.$
- (iv) Suppose that the experiment consists of measuring the life of a battery.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Example

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die. Then, $S = \{1, 2, 3, 4, 5, 6\}.$
- (iii) Suppose that the experiment consists of tossing two coins. Then, $S = \{HH, HT, TH, TT\}.$
- (iv) Suppose that the experiment consists of measuring the life of a battery. Then, $\mathcal{S}=[0,\infty).$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but belongs to a non-empty, non-singleton set called the sample space (usually denoted by S).

Example

- (i) Suppose that the experiment consists of tossing a coin. Then, $S = \{H, T\}$.
- (ii) Suppose that the experiment consists of tossing a die. Then, $S = \{1, 2, 3, 4, 5, 6\}.$
- (iii) Suppose that the experiment consists of tossing two coins. Then, $S = \{HH, HT, TH, TT\}.$
- (iv) Suppose that the experiment consists of measuring the life of a battery. Then, $\mathcal{S}=[0,\infty).$

Definition

Any subset of the sample space S is called an event.

Financial Mathematics

Defining Probabilities on E Conditional Probability Random Variables Concentration Inequalities

Combining Events

Subramani Optimization Methods in Finance

. Financial Mathematics Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union)

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union) is defined as the event whose outcomes are in *E* or *F*;

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union) is defined as the event whose outcomes are in *E* or *F*; e.g., in the die tossing experiment, the union of the events $E = \{2, 4\}$ and $F = \{1\}$ is $\{1, 2, 4\}$.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union) is defined as the event whose outcomes are in *E* or *F*; e.g., in the die tossing experiment, the union of the events $E = \{2, 4\}$ and $F = \{1\}$ is $\{1, 2, 4\}$.

Definition

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union) is defined as the event whose outcomes are in *E* or *F*; e.g., in the die tossing experiment, the union of the events $E = \{2, 4\}$ and $F = \{1\}$ is $\{1, 2, 4\}$.

Definition

Given two events E and F, the event EF

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union) is defined as the event whose outcomes are in *E* or *F*; e.g., in the die tossing experiment, the union of the events $E = \{2, 4\}$ and $F = \{1\}$ is $\{1, 2, 4\}$.

Definition

Given two events E and F, the event EF (intersection) is defined as the event whose outcomes are in E and F;

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining Events

Definition

Given two events *E* and *F*, the event $E \cup F$ (union) is defined as the event whose outcomes are in *E* or *F*; e.g., in the die tossing experiment, the union of the events $E = \{2, 4\}$ and $F = \{1\}$ is $\{1, 2, 4\}$.

Definition

Given two events *E* and *F*, the event *EF* (intersection) is defined as the event whose outcomes are in *E* and *F*; e.g., in the die tossing experiment, the intersection of the events $E = \{1, 2, 3\}$ and $F = \{1\}$ is $\{1\}$.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory

bability and Expectation asic optimization theory Models of Optimization Financial Mathematics

Combining events (contd.)

Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*;

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

If events *E* and *F* have no outcomes in common, then $EF = \emptyset$ and

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

If events *E* and *F* have no outcomes in common, then $EF = \emptyset$ and *E* and *F* are said to be *mutually exclusive*.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

If events *E* and *F* have no outcomes in common, then $EF = \emptyset$ and *E* and *F* are said to be *mutually exclusive*. In this case, P(EF) = 0;

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

If events *E* and *F* have no outcomes in common, then $EF = \emptyset$ and *E* and *F* are said to be *mutually exclusive*. In this case, P(EF) = 0; in the single coin tossing experiment the events $\{H\}$ and $\{T\}$ are mutually exclusive.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

If events *E* and *F* have no outcomes in common, then $EF = \emptyset$ and *E* and *F* are said to be *mutually exclusive*. In this case, P(EF) = 0; in the single coin tossing experiment the events $\{H\}$ and $\{T\}$ are mutually exclusive.

Note

Never forget that events are sets.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Combining events (contd.)

Definition

Given an event *E*, the event E^c (complement) denotes the event whose outcomes are in *S*, but not in *E*; e.g., in the die tossing experiment, the complement of the event $E = \{1, 2, 3\}$ is $\{4, 5, 6\}$.

Definition

If events *E* and *F* have no outcomes in common, then $EF = \emptyset$ and *E* and *F* are said to be *mutually exclusive*. In this case, P(EF) = 0; in the single coin tossing experiment the events $\{H\}$ and $\{T\}$ are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to reason about them.

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory <u>Mo</u>dels of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones

Probability and Expectation

Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- 4 Basic optimization theory
 - Fundamentals
- Models of Optimizatio
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let S denote a sample space.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

(i)
$$0 \le P(E) \le 1$$
.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

(i)
$$0 \le P(E) \le 1$$
.

(ii)
$$P(S) = 1$$
.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

(i) $0 \le P(E) \le 1$.

(ii)
$$P(S) = 1$$
.

(iii) If E_1, E_2, \ldots, E_n are mutually exclusive events, then,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

- (i) $0 \le P(E) \le 1$.
- (ii) P(S) = 1.

(iii) If E_1, E_2, \ldots, E_n are mutually exclusive events, then,

$$P(E_1 \cup E_2 \dots E_n) = \sum_{i=1}^n P(E_i).$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

- (i) $0 \le P(E) \le 1$.
- (ii) P(S) = 1.

(iii) If E_1, E_2, \ldots, E_n are mutually exclusive events, then,

$$P(E_1 \cup E_2 \dots E_n) = \sum_{i=1}^n P(E_i).$$

P(E) is called the probability of event E.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

- (i) $0 \le P(E) \le 1$.
- (ii) P(S) = 1.

(iii) If E_1, E_2, \ldots, E_n are mutually exclusive events, then,

$$P(E_1 \cup E_2 \dots E_n) = \sum_{i=1}^n P(E_i).$$

P(E) is called the probability of event *E*. The 2-tuple (*S*, *P*) is called a probability space.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let *S* denote a sample space. We assume that the number P(E) is assigned to each event *E* in *S*, such that:

- (i) $0 \le P(E) \le 1$.
- (ii) P(S) = 1.

(iii) If E_1, E_2, \ldots, E_n are mutually exclusive events, then,

$$P(E_1 \cup E_2 \dots E_n) = \sum_{i=1}^n P(E_i).$$

P(E) is called the probability of event *E*. The 2-tuple (*S*, *P*) is called a probability space. The above three conditions are called the axioms of probability theory.
Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory

Models of Optimization Financial Mathematics

Two Identities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory

Models of Optimization Financial Mathematics

Two Identities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Note

Two Identities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Note

(i) Let E be an arbitrary event on the sample space S.

Two Identities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Note

(i) Let *E* be an arbitrary event on the sample space *S*. Then, $P(E) + P(E^c) = 1$.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Two Identities

- (i) Let *E* be an arbitrary event on the sample space *S*. Then, $P(E) + P(E^c) = 1$.
- (ii) Let E and F denote two arbitrary events on the sample space S.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Two Identities

- (i) Let *E* be an arbitrary event on the sample space *S*. Then, $P(E) + P(E^c) = 1$.
- (ii) Let E and F denote two arbitrary events on the sample space S. Then, P(E ∪ F) = P(E) + P(F) - P(EF).

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Two Identities

- (i) Let *E* be an arbitrary event on the sample space *S*. Then, $P(E) + P(E^c) = 1$.
- (ii) Let E and F denote two arbitrary events on the sample space S. Then, P(E ∪ F) = P(E) + P(F) - P(EF). What is P(E ∪ F), when E and F are mutually exclusive?

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Two Identities

- (i) Let *E* be an arbitrary event on the sample space *S*. Then, $P(E) + P(E^c) = 1$.
- (ii) Let E and F denote two arbitrary events on the sample space S. Then, P(E ∪ F) = P(E) + P(F) - P(EF). What is P(E ∪ F), when E and F are mutually exclusive? Let G be another event on S. What is P(E ∪ F ∪ G)?

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory <u>Mo</u>dels of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones

Probability and Expectation

Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory

bability and Expectation asic optimization theory Models of Optimization Financial Mathematics Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads?

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F)

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Example

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Example

In the previously discussed coin tossing example, let E denote the event that both coins turn up heads and F denote the event that the first coin turns up heads.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Example

In the previously discussed coin tossing example, let *E* denote the event that both coins turn up heads and *F* denote the event that the first coin turns up heads. Accordingly, we are interested in P(E | F).

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Example

In the previously discussed coin tossing example, let *E* denote the event that both coins turn up heads and *F* denote the event that the first coin turns up heads. Accordingly, we are interested in P(E | F). Observe that $P(F) = \frac{1}{2}$ and $P(EF) = \frac{1}{4}$.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Example

In the previously discussed coin tossing example, let *E* denote the event that both coins turn up heads and *F* denote the event that the first coin turns up heads. Accordingly, we are interested in P(E | F). Observe that $P(F) = \frac{1}{2}$ and $P(EF) = \frac{1}{4}$.

Hence,
$$P(E | F) = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both coins turn up heads? Now, assume that the first coin turns up heads. What is the probability that both coins turn up heads?

Definition

Let *E* and *F* denote two events on a sample space *S*. The conditional probability of *E*, given that the event *F* has occurred is denoted by P(E | F) and is equal to $\frac{P(EF)}{P(F)}$, assuming P(F) > 0.

Example

In the previously discussed coin tossing example, let *E* denote the event that both coins turn up heads and *F* denote the event that the first coin turns up heads. Accordingly, we are interested in P(E | F). Observe that $P(F) = \frac{1}{2}$ and $P(EF) = \frac{1}{4}$. Hence, $P(E | F) = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$. Notice that $P(E) = \frac{1}{4} \neq P(E | F)$.

. Financial Mathematics Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Independent Events

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

 $P(E \mid F) = P(E).$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Consider the experiment of tossing two fair dice.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first die turns up 4.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first die turns up 4. Let E_1 denote the event that the sum of the faces of the two dice is 6.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first die turns up 4. Let E_1 denote the event that the sum of the faces of the two dice is 6. Let E_2 denote the event that the sum of the faces of the two dice is 7.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first die turns up 4. Let E_1 denote the event that the sum of the faces of the two dice is 6. Let E_2 denote the event that the sum of the faces of the two dice is 7. Are E_1 and F independent?
Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the occurrence of one does not affect the occurrence of the other. Mathematically,

$$P(E \mid F) = P(E).$$

Alternatively,

 $P(EF) = P(E) \cdot P(F)$

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first die turns up 4. Let E_1 denote the event that the sum of the faces of the two dice is 6. Let E_2 denote the event that the sum of the faces of the two dice is 7. Are E_1 and F independent? How about E_2 and F?

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory

asic optimization theory Models of Optimization Financial Mathematics Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

. Financial Mathematics Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Let E and F denote two arbitrary events on a sample space S.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Let *E* and *F* denote two arbitrary events on a sample space *S*. Clearly, $E = EF \cup EF^c$, where the events *EF* and *EF^c* are mutually exclusive. Now, observe that,

P(E) =

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

$$P(E) = P(EF) + P(EF^c)$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

$$P(E) = P(EF) + P(EF^{c})$$

= $P(E | F)P(F) + P(E | F^{c})P(F^{c})$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

$$P(E) = P(EF) + P(EF^{c}) = P(E | F)P(F) + P(E | F^{c})P(F^{c}) = P(E | F)P(F) + P(E | F^{c})(1 - P(F))$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Let *E* and *F* denote two arbitrary events on a sample space *S*. Clearly, $E = EF \cup EF^c$, where the events *EF* and *EF^c* are mutually exclusive. Now, observe that,

$$P(E) = P(EF) + P(EF^{c}) = P(E | F)P(F) + P(E | F^{c})P(F^{c}) = P(E | F)P(F) + P(E | F^{c})(1 - P(F))$$

Thus, the probability of an event E

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Let *E* and *F* denote two arbitrary events on a sample space *S*. Clearly, $E = EF \cup EF^c$, where the events *EF* and *EF*^{*c*} are mutually exclusive. Now, observe that,

$$P(E) = P(EF) + P(EF^{c}) = P(E | F)P(F) + P(E | F^{c})P(F^{c}) = P(E | F)P(F) + P(E | F^{c})(1 - P(F))$$

Thus, the probability of an event *E* is the weighted average of the conditional probability of *E*, given that event *F* has occurred and the conditional probability of *E*, given that event *F* has not occurred,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Bayes' Formula

Derivation

Let *E* and *F* denote two arbitrary events on a sample space *S*. Clearly, $E = EF \cup EF^c$, where the events *EF* and *EF*^c are mutually exclusive. Now, observe that,

$$P(E) = P(EF) + P(EF^{c}) = P(E | F)P(F) + P(E | F^{c})P(F^{c}) = P(E | F)P(F) + P(E | F^{c})(1 - P(F))$$

Thus, the probability of an event *E* is the weighted average of the conditional probability of *E*, given that event *F* has occurred and the conditional probability of *E*, given that event *F* has not occurred, each conditional probability being given as much weight as the probability of the event that it is conditioned on, has of occurring.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Outline

🚺 Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones

Probability and Expectation

Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Random Variables

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g.,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is $(1, 6), (6, 1), \text{ or } \ldots$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is $(1, 6), (6, 1), \text{ or } \ldots$

Example

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is $(1, 6), (6, 1), \text{ or } \ldots$

Example

Let X denote the random variable that is defined as the sum of two fair dice.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X=1\} =$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X=1\} = 0$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X = 1\} = 0$$

$$P\{X = 2\} = \frac{1}{36}$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X = 1\} = 0$$

$$P\{X = 2\} = \frac{1}{36}$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X = 1\} = 0$$

$$P\{X = 2\} = \frac{1}{36}$$

$$\vdots$$

$$P\{X = 12\} = \frac{1}{36}$$

Linear Algebra Convexity and Cones robability and Expectation Basic optimization theory <u>Mod</u>els of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Subramani Optimization Methods in Finance

Linear Algebra Convexity and Cones robability and Expectation Basic optimization theory <u>Mod</u>els of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes;

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Assume that the probability that the experiment results in a success is *p*.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Assume that the probability that the experiment results in a success is *p*.

The probability mass function of *X* is given by:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Assume that the probability that the experiment results in a success is *p*.

The probability mass function of X is given by:

$$p(1) = P\{X = 1\} = p$$
Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Assume that the probability that the experiment results in a success is *p*.

The probability mass function of *X* is given by:

$$p(1) = P\{X = 1\} = p$$

$$p(0) = P\{X = 0\} = 1 - p$$

Linear Algebra Convexity and Cones robability and Expectation Basic optimization theory <u>Mod</u>els of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Linear Algebra Convexity and Cones robability and Expectation Basic optimization theory <u>Mod</u>els of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Motivation

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p.

If *X* is the random variable that counts the number of successes in the *n* trials, then *X* is said to be a Binomial Random Variable.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p.

If *X* is the random variable that counts the number of successes in the *n* trials, then *X* is said to be a Binomial Random Variable.

The probability mass function of X is given by:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p.

If *X* is the random variable that counts the number of successes in the *n* trials, then *X* is said to be a Binomial Random Variable.

The probability mass function of X is given by:

 $p(i) = P\{X = i\} =$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p.

If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable.

The probability mass function of *X* is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^{i} \cdot (1 - p)^{n-i}, i = 0, 1, 2, \dots n$$

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Motivation

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability *p* of success are performed until a success occurs.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs.

If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs.

If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable.

The probability mass function of *X* is given by:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs.

If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable.

The probability mass function of *X* is given by:

 $p(i) = P\{X = i\} =$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs.

If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable.

The probability mass function of *X* is given by:

$$p(i) = P\{X = i\} = (1 - p)^{i-1} \cdot p, i = 1, 2, \dots$$

Linear Algebra Convexity and Cones robability and Expectation Basic optimization theory <u>Mod</u>els of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Event: Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Linear Algebra Convexity and Cones robability and Expectation Basic optimization theory <u>Mod</u>els of Optimization

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Associated with each random variable are the following parameters:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Associated with each random variable are the following parameters:

Probability mass function (pmt)

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Associated with each random variable are the following parameters:

• Probability mass function (pmt) (Already discussed).

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Associated with each random variable are the following parameters:

• Probability mass function (pmt) (Already discussed).

2 Cumulative distribution function or distribution function.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Associated with each random variable are the following parameters:

- Probability mass function (pmt) (Already discussed).
- **2** Cumulative distribution function or distribution function.
- Expectation.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Features of a random variable

Features

Associated with each random variable are the following parameters:

- Probability mass function (pmt) (Already discussed).
- **2** Cumulative distribution function or distribution function.
- Expectation.
- Variance.

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Distribution Function

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Distribution Function

Definition (Distribution Function)

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Distribution Function

Definition (Distribution Function)

For a random variable X, the distribution function $F(\cdot)$ is defined for any real number b, $-\infty < b < \infty$, by

 $F(b) = P(X \leq b).$

Linear Algebra Convexity and Cones Probability and Expectation Basic optimization theory

bability and Expectation asic optimization theory Models of Optimization Financial Mathematics

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Definition (Expectation)

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x).

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x).$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x).$$

Note

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x).$$

Note

E[X] is the weighted average of the possible values that X can assume,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x).$$

Note

E[X] is the weighted average of the possible values that X can assume, each value being weighted by the probability that X assumes that value.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Variance and Covariance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Variance and Covariance

Definition (Variance)

The variance of a random variable X i(denoted by Var(X) or σ^2) is given by

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Variance and Covariance

Definition (Variance)

The variance of a random variable X i(denoted by Var(X) or σ^2) is given by

 $E[(X-E[X])^2].$
Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Variance and Covariance

Definition (Variance)

The variance of a random variable X idenoted by Var(X) or σ^2 is given by

 $E[(X-E[X])^2].$

Definition (Covariance)

Given two (jointly distributed) random variables X and Y, the covariance between X and Y is defined as:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Variance and Covariance

Definition (Variance)

The variance of a random variable X idenoted by Var(X) or σ^2 is given by

 $E[(X-E[X])^2].$

Definition (Covariance)

Given two (jointly distributed) random variables X and Y, the covariance between X and Y is defined as:

 $Cov(X, Y) = E[(X - E(X)) \cdot (Y - E(Y)).$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Parameters of the important Random Variables

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Parameters of the important Random Variables

Parameter table

Variable type	Expectation	Variance
Bernoulli	р	$p \cdot (1-p)$
Binomial	n · p	$n \cdot p \cdot (1-p)$
Geometric	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Parameters of the important Random Variables

Parameter table

Variable type	Expectation	Variance
Bernoulli	р	$p \cdot (1-p)$
Binomial	n · p	$n \cdot p \cdot (1-p)$
Geometric	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Exercise

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Parameters of the important Random Variables

Parameter table

Variable type	Expectation	Variance
Bernoulli	р	$p \cdot (1-p)$
Binomial	n · p	$n \cdot p \cdot (1-p)$
Geometric	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Exercise

Find the parameters of the Poisson, Normal, Uniform and exponential random variables.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Theorem

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(),

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E[g(X)] =

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x: \ p(x) > 0} g(x) \cdot p(x)$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x: \ p(x) > 0} g(x) \cdot p(x)$$

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

Defining Probabilities on Events Conditional Probability

Concentration Inequalities

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

$$F(a,b) = P(X \le a, Y \le b), \ -\infty < a, b < \infty$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

$$F(a,b) = P(X \le a, Y \le b), \ -\infty < a, b < \infty$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

$$F(a,b) = P(X \le a, Y \le b), -\infty < a, b < \infty$$

The distribution of X (or Y) can be obtained from the joint distribution as follows:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

$$F(a,b) = P(X \le a, Y \le b), -\infty < a, b < \infty$$

The distribution of X (or Y) can be obtained from the joint distribution as follows:

$$F_X(a) = P(X \le a)$$

= $P(X \le a, Y \le \infty)$
= $F(a, \infty).$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

$$F(a,b) = P(X \le a, Y \le b), -\infty < a, b < \infty$$

The distribution of X (or Y) can be obtained from the joint distribution as follows:

$$F_X(a) = P(X \le a)$$

= $P(X \le a, Y \le \infty)$
= $F(a, \infty).$

Note

In case X and Y are discrete random variables, we can define the joint probability mass function as:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Joint Distributions

Joint distribution functions

For any two random variables X and Y, the joint cumulative distribution function is defined as:

$$F(a,b) = P(X \le a, Y \le b), -\infty < a, b < \infty$$

The distribution of X (or Y) can be obtained from the joint distribution as follows:

$$F_X(a) = P(X \le a)$$

= $P(X \le a, Y \le \infty)$
= $F(a, \infty).$

Note

In case X and Y are discrete random variables, we can define the joint probability mass function as:

$$p(x, y) = P(X = x, Y = y).$$

Financial Mathematics

Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Independent Random Variables

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Random Variables

Definition

Two random variables X and Y are said to be independent, if

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Random Variables

Definition

Two random variables X and Y are said to be independent, if

 $F(a,b) = F_X(a) \cdot F_Y(b), \ \forall a, b.$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Random Variables

Definition

Two random variables X and Y are said to be independent, if

 $F(a,b) = F_X(a) \cdot F_Y(b), \ \forall a, b.$

When X and Y are discrete, the above condition reduces to:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Independent Random Variables

Definition

Two random variables X and Y are said to be independent, if

$$F(a,b) = F_X(a) \cdot F_Y(b), \ \forall a, b.$$

When X and Y are discrete, the above condition reduces to:

$$p(x,y)=p_x(x)\cdot p_y(y)$$

. Financial Mathematics Sample Space and Events Defining Probabilities on Event Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^n a_i \cdot X_i] =$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Note

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Note

Note that linearity of expectation holds even when the random variables are **not** independent.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Note

Note that linearity of expectation holds even when the random variables are **not** independent. For random variables X_1 and X_2 , $Var(X_1 + X_2) = Var(X_1) + Var(X_2)$, only if X_1 and X_2 are independent.
Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Note

Note that linearity of expectation holds even when the random variables are **not** independent. For random variables X_1 and X_2 , $Var(X_1 + X_2) = Var(X_1) + Var(X_2)$, only if X_1 and X_2 are independent. More generally,

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Note

Note that linearity of expectation holds even when the random variables are **not** independent. For random variables X_1 and X_2 , $Var(X_1 + X_2) = Var(X_1) + Var(X_2)$, only if X_1 and X_2 are independent. More generally,

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2 \cdot Cov(X_1, X_2).$$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Outline

🚺 Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones

Probability and Expectation

Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- Models of Optimization
 - Tools of Optimization
 - Financial Mathematics
 - Quantitative models
 - Problem Types

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Tail bounds

Subramani Optimization Methods in Finance

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Tail bounds

Consider the following problem:

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Tail bounds

Consider the following problem: A fair coin is tossed *n* times. What is the probability that the number of heads is at least $\frac{3 \cdot n}{4}$?

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Tail bounds

Consider the following problem: A fair coin is tossed *n* times. What is the probability that the number of heads is at least $\frac{3 \cdot n}{4}$? In general, the tail of a random *X* is the part of its pmf, that is away from its mean.

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Tail bounds

Consider the following problem: A fair coin is tossed *n* times. What is the probability that the number of heads is at least $\frac{3 \cdot n}{4}$? In general, the tail of a random *X* is the part of its pmf, that is away from its mean.

Inequality	Known parameters	Tail bound
Markov	$X \ge 0, E[X]$	$P(X \ge a \cdot E[X]) \le rac{1}{a}, \ a > 0$
Chebyshev	<i>E</i> [<i>X</i>], <i>Var</i> (<i>X</i>)	$P(X - E[X] \ge a \cdot E[X]) \le \frac{Var(X)}{(a \cdot E[X])^2}, a > 0.$
Chernoff	X is binomial, $E[X]$	$P((X - E[X]) \ge \delta) \le e^{-\frac{-2\cdot\delta^2}{n}}, \delta > 0.$

Sample Space and Events Defining Probabilities on Events Conditional Probability Random Variables Concentration Inequalities

Concentration Inequalities

Tail bounds

Consider the following problem: A fair coin is tossed *n* times. What is the probability that the number of heads is at least $\frac{3 \cdot n}{4}$? In general, the tail of a random *X* is the part of its pmf, that is away from its mean.

Inequality	Known parameters	Tail bound
Markov	$X \ge 0, E[X]$	$P(X \ge a \cdot E[X]) \le \frac{1}{a}, \ a > 0$
Chebyshev	<i>E</i> [<i>X</i>], <i>Var</i> (<i>X</i>)	$P(X - E[X] \ge a \cdot E[X]) \le \frac{\operatorname{Var}(X)}{(a \cdot E[X])^2}, a > 0.$
Chernoff	X is binomial, $E[X]$	$P((X - E[X]) \ge \delta) \le e^{-\frac{-2 \cdot \delta^2}{n}}, \delta > 0.$

Exercise

Find the tail bounds for the coin tossing problem using all three techniques.

Fundamentals

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
 - Models of Optimizati
 - Tools of Optimization
- Financial Mathematics
 - Quantitative models
 - Problem Types

Fundamentals

Optimization Theory

Fundamentals

Optimization Theory

Fundamentals

Subramani Optimization Methods in Finance

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_x f(x)$ s.t. $x \in S$

is called an optimization problem.

Features of an optimization problem

Decision variables.

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_x f(x)$ s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.
- Feasible region

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.
- Feasible region (Infeasibility,

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.
- Feasible region (Infeasibility, Unboundedness,

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.
- Feasible region (Infeasibility, Unboundedness, Discrete).

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.
- Feasible region (Infeasibility, Unboundedness, Discrete).
- Global minimizer (strict).

Fundamentals

Optimization Theory

Fundamentals

Given a function $f : \Re^n \to \Re$ and a set $S \subseteq \Re^n$, the problem of finding an $x^* \in \Re^n$ that solves

 $\min_{x} f(x)$
s.t. $x \in S$

is called an optimization problem.

- Decision variables.
- Objective function.
- Feasible region (Infeasibility, Unboundedness, Discrete).
- Global minimizer (strict).
- Local minimizer.

fools of Optimization

Outline

Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- 5 N
- Models of Optimization
 - Tools of Optimization
 - Financial Mathema
 - Quantitative models
 - Problem Types

Models of Optimization

Fools of Optimization

Models of Optimization

ools of Optimization

Models

Subramani Optimization Methods in Finance

Fools of Optimization

Models of Optimization

Models

• Linear programming $(\min_{\mathbf{x}} \mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}).$

Tools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming (min_x f(x) $g_i(x) = 0, i \in \mathcal{E}, h_i(x) \ge 0, i \in \mathcal{I}$).

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(\mathbf{x}) \ g_i(\mathbf{x}) = 0, i \in \mathcal{E}, h_i(\mathbf{x}) \ge 0, i \in \mathcal{I}).$
- **Q**uadratic programming $(\min_{\mathbf{x}} \frac{1}{2}\mathbf{x}^{\mathsf{T}} \cdot \mathbf{Q} \cdot \mathbf{x} + \mathbf{c}^{\mathsf{T}} \cdot \mathbf{x})$. Convexity, positive semidefinite matrices.

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(x) \ g_i(x) = 0, i \in \mathcal{E}, h_i(x) \ge 0, i \in \mathcal{I}).$
- **9** Quadratic programming $(\min_{\mathbf{x}} \frac{1}{2}\mathbf{x}^{\mathsf{T}} \cdot \mathbf{Q} \cdot \mathbf{x} + \mathbf{c}^{\mathsf{T}} \cdot \mathbf{x})$. Convexity, positive semidefinite matrices.
- Conic optimization ($\mathbf{x} \in C$).

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(\mathbf{x}) \ g_i(\mathbf{x}) = 0, i \in \mathcal{E}, h_i(\mathbf{x}) \ge 0, i \in \mathcal{I}).$
- Quadratic programming (min_x ¹/₂x^T · Q · x + c^T · x). Convexity, positive semidefinite matrices.
- Conic optimization ($\mathbf{x} \in C$).
- **(**) Integer programming ($\mathbf{x} \ge \mathbf{0}, \mathbf{x}$ integral). Binary programs.

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(\mathbf{x}) \ g_i(\mathbf{x}) = 0, i \in \mathcal{E}, h_i(\mathbf{x}) \ge 0, i \in \mathcal{I}).$
- Quadratic programming (min_x ¹/₂x^T · Q · x + c^T · x). Convexity, positive semidefinite matrices.
- Conic optimization ($\mathbf{x} \in C$).
- **(**) Integer programming ($\mathbf{x} \ge \mathbf{0}, \mathbf{x}$ integral). Binary programs.
- Dynamic programming.

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(x) \ g_i(x) = 0, i \in \mathcal{E}, h_i(x) \ge 0, i \in \mathcal{I}).$
- **O** Quadratic programming (min_x $\frac{1}{2}$ **x**^T · **Q** · **x** + **c**^T · **x**). Convexity, positive semidefinite matrices.
- Conic optimization ($\mathbf{x} \in C$).
- **(**) Integer programming ($\mathbf{x} \ge \mathbf{0}, \mathbf{x}$ integral). Binary programs.
- Dynamic programming.
- Optimization with data uncertainty.

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(x) \ g_i(x) = 0, i \in \mathcal{E}, h_i(x) \ge 0, i \in \mathcal{I}).$
- **O** Quadratic programming (min_x $\frac{1}{2}$ **x**^T · **Q** · **x** + **c**^T · **x**). Convexity, positive semidefinite matrices.
- Conic optimization ($\mathbf{x} \in C$).
- **(**) Integer programming ($\mathbf{x} \ge \mathbf{0}, \mathbf{x}$ integral). Binary programs.
- Dynamic programming.
- Optimization with data uncertainty.
 - Stochastic programming.

Fools of Optimization

Models of Optimization

- Linear programming (min_x $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x} \ \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$).
- 3 Non-linear programming $(\min_{\mathbf{x}} f(x) \ g_i(x) = 0, i \in \mathcal{E}, h_i(x) \ge 0, i \in \mathcal{I}).$
- Quadratic programming (min_x ¹/₂x^T · Q · x + c^T · x). Convexity, positive semidefinite matrices.
- Conic optimization ($\mathbf{x} \in C$).
- **(**) Integer programming ($\mathbf{x} \ge \mathbf{0}, \mathbf{x}$ integral). Binary programs.
- Oynamic programming.
- Optimization with data uncertainty.
 - Stochastic programming.
 - Robust optimization.

Outline

- Vectors
- Matrices
- The Solution of Simultaneous
- - Convexity
 - Cones
- - Sample Space and Events

- Defining Probabilities on Events

- Concentration Inequalities
- - Eundamentals
- - Tools of Optimization
- - **Financial Mathematics**
 - Quantitative models
 - Problem Types
Quantitative models Problem Types

Financial Mathematics

Quantitative models Problem Types

Financial Mathematics

Principal issues

Quantitative models Problem Types

Financial Mathematics

Principal issues

Modern finance has become extremely technical.

Quantitative models Problem Types

Financial Mathematics

Principal issues

- Modern finance has become extremely technical.
- O This field was originated by Markowitz (1950s) and Black, Schloes and Merton (1960s).

Quantitative models Problem Types

Outline

🚺 Linear Algebra

- Vectors
- Matrices
- The Solution of Simultaneous Linear Equations
- 2 Convexity and Cones
 - Convexity
 - Cones
- Probability and Expectation
 - Sample Space and Events

- Defining Probabilities on Events
- Conditional Probability
- Random Variables
- Concentration Inequalities
- Basic optimization theory
 - Fundamentals
- 5 Models of Optimization
 - Tools of Optimization
- 6
- **Financial Mathematics**
 - Quantitative models
 - Problem Types

Quantitative models Problem Types

Portfolio Selection and asset allocation

Quantitative models Problem Types

Portfolio Selection and asset allocation

Main Issues

Quantitative models Problem Types

Portfolio Selection and asset allocation

Main Issues

Select some from a number of securities.

Quantitative models Problem Types

Portfolio Selection and asset allocation

Main Issues

Select some from a number of securities.

② Goal is to maximize return and minimize variance.

Quantitative models Problem Types

Portfolio Selection and asset allocation

- Select some from a number of securities.
- ② Goal is to maximize return and minimize variance.
- Asset allocation.

Quantitative models Problem Types

Portfolio Selection and asset allocation

- Select some from a number of securities.
- ② Goal is to maximize return and minimize variance.
- Asset allocation.
- Index fund.

Quantitative models Problem Types

Portfolio Selection and asset allocation

- Select some from a number of securities.
- ② Goal is to maximize return and minimize variance.
- Asset allocation.
- Index fund.
- Number of different models possible.

Quantitative models Problem Types

Pricing and hedging of options

Quantitative models Problem Types

Pricing and hedging of options

Main Issues

Quantitative models Problem Types

Pricing and hedging of options

Main Issues

Quantitative models Problem Types

Pricing and hedging of options

- Call/Put options.
- 2 American/European style.

Quantitative models Problem Types

Pricing and hedging of options

- Call/Put options.
- 2 American/European style.
- Output the second se

Quantitative models Problem Types

Pricing and hedging of options

- Call/Put options.
- 2 American/European style.
- How should an option be priced? Pricing problem.

Quantitative models Problem Types

Pricing and hedging of options

- Call/Put options.
- 2 American/European style.
- O How should an option be priced? Pricing problem.
- The replication approach.

Quantitative models Problem Types

Risk Management

Quantitative models Problem Types

Risk Management

Main Issues

Quantitative models Problem Types

Risk Management

Main Issues

Inherence of risk.

Quantitative models Problem Types

Risk Management

- Inherence of risk.
- 2 Elimination versus management.

Quantitative models Problem Types

Risk Management

Main Issues

Inherence of risk.

2 Elimination versus management.

Quantitative measures and mathematical techniques.

Quantitative models Problem Types

Risk Management

- Inherence of risk.
- 2 Elimination versus management.
- Quantitative measures and mathematical techniques.
- Some famous failures.

Quantitative models Problem Types

Risk Management

- Inherence of risk.
- 2 Elimination versus management.
- **③** Quantitative measures and mathematical techniques.
- Some famous failures.
- Margin requirements.

Quantitative models Problem Types

Risk Management

- Inherence of risk.
- 2 Elimination versus management.
- Quantitative measures and mathematical techniques.
- Some famous failures.
- Margin requirements.
- **o** Typical problem Optimize a performance measure,

Quantitative models Problem Types

Risk Management

- Inherence of risk.
- 2 Elimination versus management.
- Quantitative measures and mathematical techniques.
- Some famous failures.
- Margin requirements.
- Typical problem Optimize a performance measure, subject to the usual operating constraints,

Quantitative models Problem Types

Risk Management

- Inherence of risk.
- 2 Elimination versus management.
- **③** Quantitative measures and mathematical techniques.
- Some famous failures.
- Margin requirements.
- Typical problem Optimize a performance measure, subject to the usual operating constraints, and the constraint that a particular risk measure does not exceed a threshold.

Quantitative models Problem Types

Asset/liability Management

Quantitative models Problem Types

Asset/liability Management

Main Issues

Quantitative models Problem Types

Asset/liability Management

Main Issues

Problems with the static approach.

Quantitative models Problem Types

Asset/liability Management

- Problems with the static approach.
- 2 Should not penalize for above mean returns.

Quantitative models Problem Types

Asset/liability Management

- Problems with the static approach.
- O Should not penalize for above mean returns.
- Need for multi-period model.

Quantitative models Problem Types

Asset/liability Management

- Problems with the static approach.
- O Should not penalize for above mean returns.
- Need for multi-period model.
- Optimization under uncertainty.

Quantitative models Problem Types

Asset/liability Management

- Problems with the static approach.
- O Should not penalize for above mean returns.
- Need for multi-period model.
- Optimization under uncertainty.
- Typical problem What assets and in what quantities should the company hold in each period to maximize its wealth at the end of period *T*?