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Basics

Definition

A vector is an ordered array of numbers.

Geometric Representation

The collection of all m-dimensional vectors is called Euclidean m-space and is
denoted by Em (also <m).
Vectors can be represented geometrically, where a vector can be thought of as either a
point or as an arrow directed from the origin to the point.
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Example

Euclidean 2-space, E2.

(
5
2

)
(
−4 6

)

(
−7
−1

)
(
0 −4

)
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Vector Addition

Vector Addition

Vectors of the same type (row or column) can be added if they have the same number
of entries.

Given two vectors a and b, we simply add one element in a with the corresponding
element in b that is in the same position.
In other words, given c = a + b where ci is the element in the i th position, we have
ci = ai + bi .

Vector addition satisfies both the commutative (a + b = b + a) and associative
(a + (b + c) = (a + b) + c = a + b + c) laws.
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Vector Addition Example

a =

4
0
7

 b =

5
9
1

 c =
(
6 8 0

)
d =


4

10
2
3



a + b =

4
0
7

+

5
9
1

 =

9
9
8


a + c is undefined (not the same type)
a + d is undefined (different number of elements)
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Scalar Multiplication

Multiplication of a Vector by a Scalar

We define a scalar as an element of E1, Euclidean 1-space.

For example, 3, 19, 37.5,
and 2

3 are scalars.
To multiply a vector by a scalar, we simply multiply each element in the vector by the
scalar.
For example, if we are given a scalar α, a row vector a, and a column vector b, we have

α · a = α · (a1, a2, . . . , an) = (α · a1, α · a2, . . . , α · an)

α · b = α


b1
b2
...

bm

 =


α · b1
α · b2

...
α · bm
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Vector Multiplication

We can multiply two vectors if both have the same number of entries, one of them is a
row vector, and the other is a column vector.

The result, often called the dot product, is a scalar. By convention, having a · b or ab
means a is the row vector and b is the column vector.
To multiply the vectors, we multiply the corresponding entries and add the results.
What this means that if we assume the vectors have m entries, we have

a · b = ab =
m∑

i=1

ai bi = α.

We should also note that vector multiplication satisfies the distributive law
a(b + c) = ab + ac.
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Vectors

Vector Multiplication Example

a =

3
0
7

 b =

−2
10
1

 c =
(
4 9 2

)

d =
(
5 1 4 2

)
e =

(
3 −2

)

ca =
(
4 9 2

)3
0
7

 = 12 + 0 + 14 = 26

cb =
(
4 9 2

)−2
10
1

 = −8 + 90 + 2 = 84
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Norms

Norm of a Vector

The Lp norm of a vector a ∈ En, denoted by ‖a‖p , is a measure of the size of a and is

given by ‖a‖p =

( n∑
i=1

|ai |p
)1/p

.

Some common norms are the L1 norm (Manhattan), L2 norm (Euclidean) ant the L∞
norm.

Example

a =

 3
2
−1

 ‖a‖2 = [32 + 22 + (−1)2]1/2 = (14)1/2

Note

The dot product of two vectors can also be defined by using the Euclidean norm, which
is given by a · b = ‖a‖2 · ‖b‖2 cos θ, where θ is the angle between the two vectors.
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Vectors

Special Vector Types

Unit Vector - Has a 1 in the j th position and 0’s elsewhere.

We normally denote this by
ej , where 1 appears in the j th position.
For example, if ej ∈ E3,

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1



Null or Zero Vector - Denoted by 0, is a vector having only 0’s.

Sum Vector - Denoted by 1, is a vector having only 1’s.
We call this the sum vector because the dot product of 1 and some vector a is a scalar
that is equal to the sum of the elements in a.
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Vectors

Linear Dependence and Independence

A set of vectors, a1, a2, . . . , am is linearly dependent if there exist some scalars, αi ,
that are not all zero such that

α1 · a1 + α2 · a2 + · · ·+ αm · am = 0 (1)

If the only set of scalars, αi , for which the above equation holds is
α1 = α2 = · · · = αm = 0, the vectors are linearly independent.
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Example

Example

Linearly Dependent:

a1 =

(
1
1

)
a2 =

(
2
3

)
a3 =

(
8

11

)

2a1 + 3a2 − 1a3 = 2
(

1
1

)
+ 3

(
2
3

)
− 1

(
8

11

)
=

(
0
0

)
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Vectors

Example

Linearly Independent:

a1 =

(
1
1

)
a2 =

(
2
0

)
Consider the equation

α1

(
1
1

)
+ α2

(
2
0

)
=

(
0
0

)

α1 + 2α2 = 0 (2)

α1 = 0 (3)

We can see that the only solution is α1 = α2 = 0. This means a1 and a2 are linearly
independent.
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Vectors

Spanning Sets and Bases

The vectors b1,b2, . . . ,bp ∈ En are said to form a spanning set if every vector in En

can be written as a linear combination of the bi .

In other words, if v ∈ En, then there exist scalars α1, α2, . . . , αp such that
v = α1 · b1 + α2 · b2 + · · ·+ αp · bp .
We say that the vectors b1,b2, . . . ,bn ∈ En form a basis for En, if they are linearly
independent and form a spanning set for En.

Note that a basis is a minimal spanning set. This is because adding a new vector
would make the set linearly dependent and removing one of the vectors would mean
the remaining ones no longer span En.
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1 Linear Algebra
Vectors
Matrices
The Solution of Simultaneous
Linear Equations

2 Convexity and Cones
Convexity
Cones

3 Probability and Expectation
Sample Space and Events

Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

4 Basic optimization theory
Fundamentals

5 Models of Optimization
Tools of Optimization
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Matrices

Definition

A matrix is a rectangular array of numbers.

We represent them by uppercase boldface type with m rows and n columns.
The order of a matrix is the number of rows and columns of the matrix, so the example
below would be an m x n matrix.

Example

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n
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Matrix Addition

Matrix Addition

If two matrices are of the same order, then we can add them together.

To add two matrices, we add the elements in each corresponding position.
For example, if C = A + B, then ci,j = ai,j + bi,j for every i and j .
Matrix addition satisfies both the commutative and associative laws.

Example

A =

(
7 1 −2
3 3 0

)
B =

(
2 −3 4
1 5 9

)
C =

2 1
7 3
9 2



A + B =

(
7 1 −2
3 3 0

)
+

(
2 −3 4
1 5 9

)
=

(
9 −2 2
4 8 9

)
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Scalar Multiplication

Multiplication by a Scalar

Like vectors, if we have a scalar α and a matrix A, the product α · A is obtained by
multiplying each elements ai,j by α.

α · A =


αa1,1 αa1,2 · · · αa1,n
αa2,1 αa2,2 · · · αa2,n

...
...

. . .
...

αam,1 αam,2 · · · αam,n



Example

β = 3 A =

 8 3
−1 2
7 1

 β · A = 3

 8 3
−1 2
7 1

 =

24 9
−3 6
21 3
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Matrix multiplicatoin

Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is
equal to the number of rows in B.

If A is an m x n matrix, and B is a p x q matrix, then AB = C is defined as an m x q
matrix if and only if n = p.

Each element in C is given by ci,j =
n∑

k=1

ai,k bk,j , where n is the number of columns of

A or rows of B, i = 1, . . . ,m where m is the number of rows of A, and j = 1, . . . , q
where q is the number of columns of B.

Matrix multiplication satisfies the associative and distributive laws, but it does not
satisfy the commutative law in general.
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Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is
equal to the number of rows in B.
If A is an m x n matrix, and B is a p x q matrix, then AB = C is defined as an m x q
matrix if and only if n = p.

Each element in C is given by ci,j =
n∑

k=1

ai,k bk,j , where n is the number of columns of

A or rows of B, i = 1, . . . ,m where m is the number of rows of A, and j = 1, . . . , q
where q is the number of columns of B.

Matrix multiplication satisfies the associative and distributive laws, but it does not
satisfy the commutative law in general.
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Example

A =

7 1
4 −3
2 0

 B =

(
2 1 7
0 −1 4

)

AB =

7 1
4 −3
2 0

(2 1 7
0 −1 4

)
=

14 6 53
8 7 16
4 2 14
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Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal
are zero.

A =

a1,1 0 0
0 a2,2 0
0 0 a3,3


Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We
denote this matrix as Im or I.

I3 =

1 0 0
0 1 0
0 0 1


Null or Zero Matrix - All elements are equal to zero and is denoted as 0. Note that this
does not have to be a square matrix.

0 =

(
0 0 0
0 0 0

)
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Special Matrices

Special Matrices (Contd.)

Matrix Transpose - The transpose of A, denoted as At , is a reordering of A by
interchanging the rows and columns.

For example, row 1 of A would be column 1 of At .

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 At =


a1,1 a2,1 · · · am,1
a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n


Symmetric Matrix - A matrix A where A = At .

A =

1 2 3
2 6 4
3 4 9



Positive Semidefinite - A symmetric matrix A is said to be positive semidefinite, if
xT · A · x ≥ 0 for all x and xT · A · x = 0, only if x = 0.
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Matrices

Special Matrices (Contd.)

Augmented Matrix - A matrix where the rows and columns of another matrix are
appended to the original matrix.

If A is augmented with B, we get (A,B) or (A|B).

A =

(
1 4
5 6

)
B =

(
3 2
1 9

)
(A|B) =

(
1 4 3 2
5 6 1 9

)
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Determinants

Determinants

Given a square matrix A, the determinant denoted by |A| is a number associated with
A.

Determinant of a 1 x 1 matrix: |a1,1| = a1,1

Determinant of a 2 x 2 matrix:
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1

Every element of a determinant, except for a 1 x 1 matrix, has an associated minor.
To get the minor, we remove the row and column corresponding to the element and find
the determinant of the new matrix.
We denote the minor of an element ai,j in matrix A as |Ai,j |.
The cofactor of an element is its minor with the sign (−1)i+j attached to it.
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Example

|A| =

∣∣∣∣∣∣
7 −1 0
3 2 1
8 1 −4

∣∣∣∣∣∣
The cofactor for a2,1 = 3 is

(−1)2+1|A2,1| = (−1)
∣∣∣∣ −1 0

1 −4

∣∣∣∣ = −4
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Value of a determinant

Value of Determinants

The value of a determinant of order n is found by adding the products of each element
by its respective cofactor.

For any row i , this would be

|A| =
n∑

j=1

ai,j (−1)i+j |Ai,j |

and for any column j , this would be

|A| =
n∑

i=1

ai,j (−1)i+j |Ai,j |
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Determinants

Value of Determinants Example

|A| =

∣∣∣∣∣∣
1 4 3
2 0 2
1 3 5

∣∣∣∣∣∣
Expanding |A| by column 3, we get

|A| = 3(−1)1+3
∣∣∣∣2 0
1 3

∣∣∣∣+ 2(−1)2+3
∣∣∣∣1 4
1 3

∣∣∣∣+ 5(−1)3+3
∣∣∣∣1 4
2 0

∣∣∣∣
= 3(6)− 2(−1) + 5(−8) = −20
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Matrices

Value of Determinants (Contd.)

The expansion of determinants can become complex for larger orders.

We can simplify
the process by utilizing five properties. Note that we can interchange the words ”row”
and ”column”.

1 If one complete row of a determinant is all zero, the value of the determinant is
zero.

2 If two rows have elements that are proportional to one another, the value of the
determinant is zero.

3 If two rows of a determinant are interchanged, the value of the new determinant is
equal to the negative of the value of the old determinant.

4 Elements of any row may be multiplied by a nonzero constant if the entire
determinant is multiplied by the reciprocal of the constant.

5 To the elements of any row, you may add a constant times the corresponding
element of any other row without changing the value of the determinant.
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Adjoint Matrix

Adjoint

If A is a square matrix, the adjoint of A, denoted as Aα, can be found using the
following procedure:

1 Replace each element ai,j of A by its cofactor.
2 Take the transpose of the matrix of cofactors found in step 1.
3 The resulting matrix is Aα, the adjoint of A.

Example

Let γi,j = (−1)i+j |Ai,j | be the cofactor for ai,j , then

Aα =


γ1,1 γ2,1 · · · γn,1
γ1,2 γ2,2 · · · γn,2

...
...

. . .
...

γ1,n γ2,n · · · γn,n
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Matrix Inverse

Inverse

The inverse of a square matrix A is denoted as A−1.
For a matrix to have an inverse, it must be nonsingular; i.e., its determinant cannot be
zero.
Given a nonsingular matrix A, we find the inverse by

A−1 =
1
|A|

Aα
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Example

Example

A =

(
2 1
6 5

)
|A| = 2(5)− 1(6) = 10− 6 = 4

Aα =

(
|5| −|1|
−|6| |2|

)
=

(
5 −1
−6 2

)

A−1 =
1
|A|

Aα =
1
4

(
5 −1
−6 2

)
=

( 5
4 − 1

4
− 3

2
1
2

)
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Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix.
The idea is to augment the matrix with the identity matrix and then perform elementary
row operations.

Elementary Row Operations

1 Interchange a row i with a row j .
2 Multiply a row i by a nonzero scalar α.
3 Replace a row i by a row i plus a multiple of some row j .
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Matrix Rank

Rank of a Matrix

The rank of an m x n matrix A, denoted as r(A), is the number of linearly independent
columns (or rows) of A.
By definition, r(A) ≤ min{m, n}.
If r(A) = min{m, n}, then A is said to be of full rank.
There are several ways to get the rank, but the method used here will use elementary
row operations to get (

Ik D
0 0

)
This shows that r(A) = k .
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Example

Example

A =

1 1 1 3 1
2 1 2 3 0
1 3 1 9 5



A =

 1 0 1 0 −1
0 1 0 3 2
0 0 0 0 0

 =

(
I2 D
0 0

)
This means that the rank of A is 2.
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Outline

1 Linear Algebra
Vectors
Matrices
The Solution of Simultaneous
Linear Equations

2 Convexity and Cones
Convexity
Cones

3 Probability and Expectation
Sample Space and Events

Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

4 Basic optimization theory
Fundamentals

5 Models of Optimization
Tools of Optimization

6 Financial Mathematics
Quantitative models
Problem Types

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

Simultaneous linear Equations

Equations

One of the best known uses for matrices and determinants is for solving simultaneous
linear equations.
Matrices and vectors give us a nice method for expressing the problem.

Example

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1
a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...
am,1x1 + am,2x2 + · · · + am,nxn = bm
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a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...
am,1x1 + am,2x2 + · · · + am,nxn = bm
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Example

Example

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n



b =


b1
b2
...

bm



x =


x1
x2
...

xm
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Solution Set

Solutions

The set of linear equations A · x = b has either no solution, a unique solution, or an
infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x1, x2, . . . , xn so that
b can be written as a linear combination of the columns of A.
Conditions where a solutions exists for A · x = b:

1 If r(A|b) = r(A) + 1, then no solution exists.
2 If r(A|b) = r(A), then there does exist a solution. This is because we can write b

as a linear combination of the columns of A. Furthermore, if r(A) = n, where n is
the number of variables, then there exists a unique solution for the system of
equations.
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Unique solution

A Unique Solution of Ax = b

There are several methods for solving for a unique solution, including Cramer’s rule
and Gaussian elimination.
We will first use Cramer’s rule; however, we should note that this is not an efficient
approach computationally. Let Aj be the matrix A where the j th column is replaced by
b.
Cramer’s rule states that the unique solution is given by xj =

|Aj |
|A| , for all j = 1, . . . , n.
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Cramer’s rule

Using Cramer’s Rule

2x1 + x2 + 2x3 = 6
2x1 + 3x2 + x3 = 9
x1 + x2 + x3 = 3

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



x1 =

∣∣∣∣∣∣∣∣
6 1 2
9 3 1
3 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 1 2
2 3 1
1 1 1

∣∣∣∣∣∣∣∣
= 6

1 = 6 x2 =

∣∣∣∣∣∣∣∣
2 6 2
2 9 1
1 3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 1 2
2 3 1
1 1 1

∣∣∣∣∣∣∣∣
= 0 x3 =

∣∣∣∣∣∣∣∣
2 1 6
2 3 9
1 1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 1 2
2 3 1
1 1 1

∣∣∣∣∣∣∣∣
= −3
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The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.

Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b,

which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b,

and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3



Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

The Inverse Method

Using Inverses

Another approach to finding a unique solution is by using the inverse.
Given A · x = b and A−1 · A = I, we can see that A−1 · A · x = A−1 · b, which means
that I · x = A−1 · b, and hence x = A−1 · b.

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



A−1 =

 2 1 −5
−1 0 2
−1 −1 4



x = A−1 · b =

 2 1 −5
−1 0 2
−1 −1 4

6
9
3

 =

 6
0
−3


Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Vectors
Matrices
The Solution of Simultaneous Linear Equations

Linear Equations

Infinite Number of Solutions

This case is one of most interest since this scenario is the most likely to happen in
linear programming.
This happens when r(A) = r(A|b) < n, where n is the number of variables.

Example

3x1 + x2 − x3 = 8
x1 + x2 + x3 = 4

We see that r(A) = r(A|b) = 2 < 3, where

A =

(
3 1 −1
1 1 1

)
b =

(
8
4

)
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Linear Equations

Infinite Number of Solutions (Contd.)

For this case, we can choose r equations, where r is the rank, and find r of the
variables in terms of the remaining n − r variables.

3x1 + x2 − x3 = 8
x1 + x2 + x3 = 4

Solving for x1 and x2 gets
x1 = 2 + x3
x2 = 2 − 2x3

x =

x1
x2
x3

 =

 2 + x3
2− 2x3

x3
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Definition (Convex Combination)

Given two points x and y in Em, and α ∈ [0, 1], the parametric point α · x + (1− α) · y
is said to be a convex combination of x and y.

Note

The set of all convex combinations of x and y is the line segment joining them.

Definition (Convex Set)

A set S is said to be convex, if:
(∀x)(∀y)(∀α ∈ [0, 1]) x, y ∈ S → α · x + (1− α) · y ∈ S.

Exercise

A set of the form A · x ≤ b, x ≥ 0 is said to be a polyhedral set. Argue that polyhedral
sets are convex.
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Definition (Convex function)

Given a convex set S, a function f : S → < is called convex, if ∀ x, y ∈ S, λ ∈ [0, 1],
we have,

f (λ · x + (1− λ) · y) ≤ λ · f (x) + (1− λ) · f (y).

If < holds as opposed to ≤, the function is said to be strictly convex.

Definition (Concave function)

A function f is concave if and only if −f is convex.

Definition

The epigraph of a function f : S → <, is defined as the set {(x, r) : x ∈ S, f (x) ≤ r}.

Theorem

f is a convex function if and if its epigraph is a convex set.
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Checking convexity

Theorem

If f is a twice-diferentiable, univariate function, then f is convex on set S, if and only if
f ′′(x) ≥ 0, for all x ∈ S. A multivariate function f is convex if and only if,52f (x) is
positive semidefinite. Recall that,

[52f (x)]i,j =
∂2f (x)
∂xi∂xj

, ∀i, j
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Convex optimization theorem

Theorem

Consider the following optimization problem:

minx f (x)

s.t . x ∈ S

If S is a convex set and f is a convex function of x on S, the all local optima are also
global optima.
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Cones

Definition

A cone is a set that is closed under positive scalar multiplication. It is called pointed, if
it does not include any lines.

Note

Are cones convex? We will be dealing with pointed, convex cones only.
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Examples

1 The positive orthant - {x ∈ <n : x ≥ 0}.
2 Polyhedral cones - {x ∈ <n : A · x ≥ 0}.
3 Lorentz cones - {x = [x1, . . . xn] ∈ <n+1 : xn ≥ ||(x1, x2 . . . xn−1)||2.
4 The cone of symmetric positive semidefinite matrices -
{X ∈ <n×n : X = XT, and X is positive semidefinite}.
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Definition (Dual Cone)

If C is a cone in vector space X , with an inner product “·”, then its dual cone is denoted
by:

C∗ = {x ∈ X : x · y ≥ 0, ∀y ∈ C}.

Definition (Polar Cone)

The polar cone of a cone C is the negative of its dual, i.e.,

CP = {x ∈ X : x · y ≤ 0, ∀y ∈ C}.

Exercise

Show that the cone <n
+ is its own dual cone.
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Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but
belongs to a non-empty, non-singleton set called the sample space (usually denoted
by S).

Example

(i) Suppose that the experiment consists of tossing a coin. Then, S = {H, T}.
(ii) Suppose that the experiment consists of tossing a die. Then,

S = {1, 2, 3, 4, 5, 6}.
(iii) Suppose that the experiment consists of tossing two coins. Then,

S = {HH, HT , TH, TT}.
(iv) Suppose that the experiment consists of measuring the life of a battery. Then,

S = [0,∞).

Definition

Any subset of the sample space S is called an event.
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Combining Events

Definition

Given two events E and F , the event E ∪ F (union) is defined as the event whose
outcomes are in E or F ; e.g., in the die tossing experiment, the union of the events
E = {2, 4} and F = {1} is {1, 2, 4}.

Definition

Given two events E and F , the event EF (intersection) is defined as the event whose
outcomes are in E and F ; e.g., in the die tossing experiment, the intersection of the
events E = {1, 2, 3} and F = {1} is {1}.
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Definition

Given two events E and F , the event EF (intersection) is defined as the event whose
outcomes are in E and F ;

e.g., in the die tossing experiment, the intersection of the
events E = {1, 2, 3} and F = {1} is {1}.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining Events

Definition

Given two events E and F , the event E ∪ F (union) is defined as the event whose
outcomes are in E or F ; e.g., in the die tossing experiment, the union of the events
E = {2, 4} and F = {1} is {1, 2, 4}.

Definition

Given two events E and F , the event EF (intersection) is defined as the event whose
outcomes are in E and F ; e.g., in the die tossing experiment, the intersection of the
events E = {1, 2, 3} and F = {1} is {1}.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ;

e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and

E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive.

In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0;

in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets.

This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Outline

1 Linear Algebra
Vectors
Matrices
The Solution of Simultaneous
Linear Equations

2 Convexity and Cones
Convexity
Cones

3 Probability and Expectation
Sample Space and Events

Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

4 Basic optimization theory
Fundamentals

5 Models of Optimization
Tools of Optimization

6 Financial Mathematics
Quantitative models
Problem Types

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Defining Probabilities on Events

Assigning probabilities

Let S denote a sample space. We assume that the number P(E) is assigned to each
event E in S, such that:

(i) 0 ≤ P(E) ≤ 1.

(ii) P(S) = 1.

(iii) If E1, E2, . . . , En are mutually exclusive events, then,

P(E1 ∪ E2 . . .En) =
n∑

i=1

P(Ei ).

P(E) is called the probability of event E . The 2-tuple (S,P) is called a probability
space. The above three conditions are called the axioms of probability theory.
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Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S.

Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S.

Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).

What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?

Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Outline

1 Linear Algebra
Vectors
Matrices
The Solution of Simultaneous
Linear Equations

2 Convexity and Cones
Convexity
Cones

3 Probability and Expectation
Sample Space and Events

Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

4 Basic optimization theory
Fundamentals

5 Models of Optimization
Tools of Optimization

6 Financial Mathematics
Quantitative models
Problem Types

Subramani Optimization Methods in Finance



Linear Algebra
Convexity and Cones

Probability and Expectation
Basic optimization theory

Models of Optimization
Financial Mathematics

Sample Space and Events
Defining Probabilities on Events
Conditional Probability
Random Variables
Concentration Inequalities

Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both
coins turn up heads? Now, assume that the first coin turns up heads. What is the
probability that both coins turn up heads?

Definition

Let E and F denote two events on a sample space S. The conditional probability of E ,
given that the event F has occurred is denoted by P(E | F ) and is equal to P(EF )

P(F )
,

assuming P(F ) > 0.

Example

In the previously discussed coin tossing example, let E denote the event that both
coins turn up heads and F denote the event that the first coin turns up heads.
Accordingly, we are interested in P(E | F ). Observe that P(F ) = 1

2 and P(EF ) = 1
4 .

Hence, P(E | F ) =
1
4
1
2
= 1

2 . Notice that P(E) = 1
4 6= P(E | F ).
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Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the
occurrence of one does not affect the occurrence of the other.
Mathematically,

P(E | F ) = P(E).

Alternatively,

P(EF ) = P(E) · P(F )

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first
die turns up 4. Let E1 denote the event that the sum of the faces of the two dice is 6.
Let E2 denote the event that the sum of the faces of the two dice is 7. Are E1 and F
independent? How about E2 and F?
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Bayes’ Formula

Derivation

Let E and F denote two arbitrary events on a sample space S. Clearly, E = EF ∪ EF c ,
where the events EF and EF c are mutually exclusive. Now, observe that,

P(E) = P(EF ) + P(EF c)

= P(E | F )P(F ) + P(E | F c)P(F c)

= P(E | F )P(F ) + P(E | F c)(1− P(F ))

Thus, the probability of an event E is the weighted average of the conditional
probability of E , given that event F has occurred and the conditional probability of E ,
given that event F has not occurred, each conditional probability being given as much
weight as the probability of the event that it is conditioned on, has of occurring.
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0

P{X = 2} =
1

36
...

P{X = 12} =
1

36
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The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success”
and the other a “failure”.

If we let the random variable X assume the value 1, if the experiment was a success
and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Assume that the probability that the experiment results in a success is p.

The probability mass function of X is given by:

p(1) = P{X = 1} = p

p(0) = P{X = 0} = 1− p.
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p.

If X is the random variable that counts the number of successes in the n trials, then X
is said to be a Binomial Random Variable.

The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1− p)n−i , i = 0, 1, 2, . . . n
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs.

If X is the random variable that counts the number of trials until the first success, then
X is said to be a geometric random variable.

The probability mass function of X is given by:

p(i) = P{X = i} = (1− p)i−1 · p, i = 1, 2, . . .
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Features of a random variable

Features

Associated with each random variable are the following parameters:
1 Probability mass function (pmt) (Already discussed).
2 Cumulative distribution function or distribution function.
3 Expectation.
4 Variance.
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Distribution Function

Definition (Distribution Function)

For a random variable X , the distribution function F (·) is defined for any real number b,
−∞ < b <∞, by

F (b) = P(X ≤ b).
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Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E [X ] is defined by:

E [X ] =
∑

x
x · p(x).

Note

E [X ] is the weighted average of the possible values that X can assume, each value
being weighted by the probability that X assumes that value.
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Variance and Covariance

Definition (Variance)

The variance of a random variable X i(denoted by Var(X) or σ2) is given by

E [(X − E [X ])2].

Definition (Covariance)

Given two (jointly distributed) random variables X and Y , the covariance between X
and Y is defined as:

Cov(X ,Y ) = E [(X − E(X)) · (Y − E(Y )).
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Parameters of the important Random Variables

Parameter table

Variable type Expectation Variance
Bernoulli p p · (1− p)
Binomial n · p n · p · (1− p)

Geometric 1
p

1−p
p2

Exercise

Find the parameters of the Poisson, Normal, Uniform and exponential random
variables.
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Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E [g(X)] =
∑

x : p(x)>0

g(x) · p(x)
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Joint Distributions

Joint distribution functions

For any two random variables X and Y , the joint cumulative distribution function is
defined as:

F (a, b) = P(X ≤ a,Y ≤ b), −∞ < a, b <∞

The distribution of X (or Y ) can be obtained from the joint distribution as follows:

FX (a) = P(X ≤ a)

= P(X ≤ a,Y ≤ ∞)

= F (a,∞).

Note

In case X and Y are discrete random variables, we can define the joint probability
mass function as:

p(x , y) = P(X = x , Y = y).
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Independent Random Variables

Definition

Two random variables X and Y are said to be independent, if

F (a, b) = FX (a) · FY (b), ∀a, b.

When X and Y are discrete, the above condition reduces to:

p(x , y) = px (x) · py (y)
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,

E [
n∑

i=1

ai · Xi ] =
n∑

i=1

ai · E [Xi ]

Note

Note that linearity of expectation holds even when the random variables are not
independent. For random variables X1 and X2, Var(X1 + X2) = Var(X1) + Var(X2),
only if X1 and X2 are independent. More generally,

Var(X1 + X2) = Var(X1) + Var(X2) + 2 · Cov(X1,X2).
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Concentration Inequalities

Tail bounds

Consider the following problem: A fair coin is tossed n times. What is the probability
that the number of heads is at least 3·n

4 ? In general, the tail of a random X is the part
of its pmf, that is away from its mean.

Inequality Known parameters Tail bound

Markov X ≥ 0,E [X ] P(X ≥ a · E [X ]) ≤ 1
a , a > 0

Chebyshev E [X ],Var(X) P(|X − E [X ]| ≥ a · E [X ]) ≤ Var(X)

(a·E [X ])2
, a > 0.

Chernoff X is binomial, E [X ] P((X − E [X ]) ≥ δ) ≤ e−
−2·δ2

n , δ > 0.

Exercise

Find the tail bounds for the coin tossing problem using all three techniques.
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Optimization Theory

Fundamentals

Given a function f : <n → < and a set S ⊆ <n, the problem of finding an x∗ ∈ <n that
solves

minx f (x)

s.t . x ∈ S

is called an optimization problem.

Features of an optimization problem

Decision variables.

Objective function.

Feasible region (Infeasibility, Unboundedness, Discrete).

Global minimizer (strict).

Local minimizer.
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Models

1 Linear programming (minx cT · x A · x = b, x ≥ 0).
2 Non-linear programming (minx f (x) gi (x) = 0, i ∈ E, hi (x) ≥ 0, i ∈ I).
3 Quadratic programming (minx

1
2 xT · Q · x + cT · x). Convexity, positive

semidefinite matrices.
4 Conic optimization (x ∈ C).
5 Integer programming (x ≥ 0, x integral). Binary programs.
6 Dynamic programming.
7 Optimization with data uncertainty.

1 Stochastic programming.
2 Robust optimization.
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Financial Mathematics

Principal issues

1 Modern finance has become extremely technical.
2 This field was originated by Markowitz (1950s) and Black, Schloes and Merton

(1960s).
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Portfolio Selection and asset allocation

Main Issues

1 Select some from a number of securities.
2 Goal is to maximize return and minimize variance.
3 Asset allocation.
4 Index fund.
5 Number of different models possible.
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Pricing and hedging of options

Main Issues

1 Call/Put options.
2 American/European style.
3 How should an option be priced? Pricing problem.
4 The replication approach.
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Risk Management

Main Issues

1 Inherence of risk.
2 Elimination versus management.
3 Quantitative measures and mathematical techniques.
4 Some famous failures.
5 Margin requirements.
6 Typical problem - Optimize a performance measure, subject to the usual operating

constraints, and the constraint that a particular risk measure does not exceed a
threshold.
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Asset/liability Management

Main Issues

1 Problems with the static approach.
2 Should not penalize for above mean returns.
3 Need for multi-period model.
4 Optimization under uncertainty.
5 Typical problem - What assets and in what quantities should the company hold in

each period to maximize its wealth at the end of period T ?
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