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Volatility in Finance

Volatility

Volatility is a term used to describe how much the security prices, market indices,
interest rates, etc., move up and down around their mean.

Volatility is measured by the standard deviation of the random variable that represents
the financial quantity we are interested in.

Most investors prefer low volatility to high volatility and therefore expect to be rewarded
with higher long-term returns for holding higher volatility securities.
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Volatility in Finance

Volatility estimations

Many financial computations require volatility estimates.

Most volatility estimation techniques can be classified as either a historical or an
implied method.

One may use historical time series to infer patterns and estimate the volatility using a
statistical technique.

An alternative would be to consider the known prices of related securities such as
options that may reveal the market sentiment on the volatility of the security in question.

GARCH models exemplify the first approach, while the implied volatilities calculated
from the Black, Scholes and Merton (BSM) formulas are the best known examples of
the second approach.
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ARCH and GARCH models

The basics

Let Y be a stochastic process indexed by natural numbers.

Its value at time t , Yt is an n-dimensional vector of random variables.

The behavior of these random variables is modeled as

Yt =
mX

i=1

Φi · Yt−i + εt .

Here m is a positive integer representing the number of periods we look back in our
model and εt satisfies:

E[εt |ε1, ..., εt−1] = 0.
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The model for the univariate case

We set:
ht = E[ε2t |ε1, ..., εt−1].

Then we model the conditional time dependence as follows:

ht = c +

qX
i=1

αi · ε2t−i +

pX
j=1

βj · ht−j .

This model is called GARCH(p,q).

ARCH model corresponds to choosing p = 0.
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The optimization problem in the univariate case

After choosing p and q, the objective is to determine the optimal parameters Φi , αi , βj .

Usually, this is achieved via maximum likelihood estimation.

If we assume that Yt has a normal distribution conditional on the historical
observations, the log-likelihood function can be written as follows:

−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht
.
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The optimization problem in the univariate case

max(−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht

)

Yt =
mX

i=1

Φi · Yt−i + εt

E[εt |ε1, ..., εt−1] = 0

ht = E[ε2t |ε1, ..., εt−1] ≥ 0, for all t

Munasinghe Optimization Methods in Finance



Volatility estimation and ARCH and GARCH models
Line Search, Newton’s and Steepest Descent Methods

Golden Section Search and Conjugate Gradient Methods

ARCH and GARCH models

The optimization problem in the univariate case

max(−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht

)

Yt =
mX

i=1

Φi · Yt−i + εt

E[εt |ε1, ..., εt−1] = 0

ht = E[ε2t |ε1, ..., εt−1] ≥ 0, for all t

Munasinghe Optimization Methods in Finance



Volatility estimation and ARCH and GARCH models
Line Search, Newton’s and Steepest Descent Methods

Golden Section Search and Conjugate Gradient Methods

ARCH and GARCH models

The optimization problem in the univariate case

max(−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht

)

Yt =
mX

i=1

Φi · Yt−i + εt

E[εt |ε1, ..., εt−1] = 0

ht = E[ε2t |ε1, ..., εt−1] ≥ 0, for all t

Munasinghe Optimization Methods in Finance



Volatility estimation and ARCH and GARCH models
Line Search, Newton’s and Steepest Descent Methods

Golden Section Search and Conjugate Gradient Methods

ARCH and GARCH models

The optimization problem in the univariate case

max(−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht

)

Yt =
mX

i=1

Φi · Yt−i + εt

E[εt |ε1, ..., εt−1] = 0

ht = E[ε2t |ε1, ..., εt−1] ≥ 0, for all t

Munasinghe Optimization Methods in Finance



Volatility estimation and ARCH and GARCH models
Line Search, Newton’s and Steepest Descent Methods

Golden Section Search and Conjugate Gradient Methods

ARCH and GARCH models

The optimization problem in the univariate case

max(−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht

)

Yt =
mX

i=1

Φi · Yt−i + εt

E[εt |ε1, ..., εt−1] = 0

ht = E[ε2t |ε1, ..., εt−1] ≥ 0, for all t

Munasinghe Optimization Methods in Finance



Volatility estimation and ARCH and GARCH models
Line Search, Newton’s and Steepest Descent Methods

Golden Section Search and Conjugate Gradient Methods

ARCH and GARCH models

The optimization problem in the univariate case

max(−
T
2
· ln(2 · π)−

1
2
·

TX
i=1

ln ht −
1
2
·

TX
i=1

ε2t
ht

)

Yt =
mX

i=1

Φi · Yt−i + εt

E[εt |ε1, ..., εt−1] = 0

ht = E[ε2t |ε1, ..., εt−1] ≥ 0, for all t

Munasinghe Optimization Methods in Finance



Volatility estimation and ARCH and GARCH models
Line Search, Newton’s and Steepest Descent Methods

Golden Section Search and Conjugate Gradient Methods

ARCH and GARCH models

Stationarity properties

An important issue in GARCH parameter estimations is the stationarity properties
of the resulting model.

It is unclear whether one can assume that the model parameters for financial time
series are stationary over the time.

However, the forecasting and estimation is easier on stationary models.

Theorem

If αi ’s, βj ’s and the scalar c are strictly positive and

qX
i=1

αi +

pX
j=1

βj < 1,

then the univariate GARCH model is stationary.
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However, the forecasting and estimation is easier on stationary models.

Theorem

If αi ’s, βj ’s and the scalar c are strictly positive and

qX
i=1

αi +

pX
j=1

βj < 1,

then the univariate GARCH model is stationary.
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Black-Scholes-Merton (BSM) equations

BSM for European pricing option

dSt

St
= µ · dt + σ · dWt ,

where

St - the underlying security price at time t ,

µ- drift,

σ- the constant volatility,

Wt - a random variable.
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Black-Scholes-Merton (BSM) equations

The solutions

C(K ,T ) = S0 · Φ(d1)− K · e−r·T · Φ(d2),

P(K ,T ) = K · e−r·T · Φ(−d2)− S0 · Φ(−d1),

where

d1 =
log(S0/K ) + (r + σ2/2) · T )

σ ·
√

T
,

d2 = d1 − σ ·
√

T ,

Φ()-cumulative distribution function for the standard normal distribution,

r -continuously compounded risk-free interest rate (a constant available in US
markets),

σ- the constant volatility.
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Black-Scholes-Merton (BSM) equations

Implied volatility

In order to determine the price, we just need the value or a close approximation to σ.

Conversely, given the market price for a particular European call or put, one can
determine the volatility (implied by the price), called implied volatility, by solving these
equations with the unknown σ.
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Linear Vs Non Linear

Definition of Linear and Non Linear

f (x) = x1 + 2 · x2 − (3.4) · x3 is linear in x = [x1, x2, x3]T

f (x) = x1 · x2 + 2 · x2 − (3.4) · x3 is Non Linear in x

f (x) = cos(x1) + 2 · x2 − (3.4) · x3 is Non Linear in x
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Existence and Uniqueness of the an Optimum Solution

Existence and uniqueness of the solution

Usually can not guarantee that we have found the Global Optima.

There can be multiple solutions that exist.

For unconstrained problems, at the minimum,5f (x∗) = 0

Calculas : at minimum, the Second Derivative is greater than zero

Vector Case : at minimum, Hessian is positive definite.

Remark

Necessary and Sufficient conditions for a minimum for an unconstrained problem :
Gradient must equal to zero,5f (x∗) = 0. Hessian must be positive definite.
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Line Search Methods

The Formulation of the Line Search Method

Consider an unconstrained optimization problem,

min f (x)
x ∈ R

Assume the function f (x) is smooth and continuous.

The objective is to find a minimum of f (x).
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Optimization Algorithm

Initial point

Optimization Algorithm starts by an initial point x0, and performs series of iterations.

Optimal Point

Goal is to find the ”optimal point” x∗

Iteration equation / Iteration Scheme

xk+1 = xk + αk · dk
dk = ”search direction”.
αk = ”step-length”

step-length,αk determines how far to go on the ”search direction”, dk
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xk+1 = xk + αk · dk
dk = ”search direction”.

αk = ”step-length”
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Constraints

Definition

The function value of the new point, f (xk+1) should be less than or equal to the
previous point function value, f (xk ).

Constraint

f (xk+1) ≤ f (xk )
f (xk + αk · dk ) ≤ f (xk )

Remark

Optimization Algorithm starts with an initial point, x0.

Find the decent ”search direction”,dk .

Determine the ”step-size”, αk .

Check the iteration criteria.

Check the stopping conditions.

Output the Optimal point, x∗
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Newton’s Method

Definition

Newton’s method

(also known as the Newton-Raphson method)

Uses to finding successively better approximations to the roots (or zeroes) of a
real-valued function defined on the interval [a, b]

f (x) = 0

Where f (x) is continuous and differentiable.

Definition

Given a function f (x) is defined over the x ∈ R, and its first derivative is f ′(x),
Calculation begins with a first guessing of the initial point x0 for a root of the function
f (x). A new, considerably a better approximation point, x1
which obtained by,

x1 = x0 +
f (x0)
f ′(x0)
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Newton’s Method

Iterative Scheme

As the iterative process repeats,

current approximation xn is used to derive the formula
for a new, better approximation, xn+1

xn+1 = xn + f (xn)
f ′(xn)
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Newton’s Method

Tangent Line

Suppose we have some current approximation xn.

Then we can derive the formula for
a better approximation, xn+1. The equation of the tangent line to the curve y = f (x) at
the point x = xn is,

y = f ′(xn)(xn+1 − xn) + f (xn)

Definition

The x-intercept of this line (the value of x such that y = 0) is then used as the next
approximation to the root, xn+1. In other words, setting y = 0 and x = xn+1 gives

0 = f ′(xn)(xn+1 − xn) + f (xn)
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Steepest Descent Method

Steepest Descent Algorithm for Unconstrained Optimization

Consider an unconstrained optimization problem,

min f (x)
x ∈ Rn

Assume the function f (x) is smooth and continuous and differentiable.
If, x = x̄ is a given point, f (x) can be approximated by its linear expansion

f (x̄ + d) ≈ f (x̄) +5f (x̄)T d

if ‖d‖ is small, notice that the approximation above is good.

We choose the value of d so that the inner product,5f (x̄)T d is small as possible.
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Steepest Descent Method

Gradient vector

Let’s normalize d so that, ‖d‖ = 1.

Then among all directions, d with norm ‖d‖ = 1,
the direction,

d̃ = −5f (x̄)
‖5f (x̄‖

makes the smallest inner product with the gradient,5f (x̄).
This fact follows from the following inequalities:

5f (x̄)T d ≥ −‖5 f (x̄)‖‖d‖ = 5f (x̄)T (−5f (x̄)
‖5f (x̄‖ ) = −5 f (d̃).

Direction of the Steepest Descent

Due to the above reason, Steepest Descent Direction :

d̄ = −5 f (x̄)

This is called the ”direction of the steepest descent” at point x̄ .
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Steepest Descent Algorithm

Steps of the SD Algorithm

Steps are

Step 1. Initialize x0 and machine accuracy ε , set k = 0

Step 2. dk = −5 f (xk ). If dk = 0, then stop.

Step 3. Solve minαf (xk + αk · dk ) for the stepsize αk

Step 4. Set xk+1 ← xk + αk · dk , k ← k + 1

Note from Step 3, the fact that dk = −5 f (xk ) is a descent direction,
which follows the condition of

f (xk + αk · dk ) ≤ f (xk ) .
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Example of Steepest Descent Method

Using SD Method to minimize f(x)

Find the the first iteration value of x∗ using the Steepest Descent Method :

min f (x) = 0.5x2
1 + 2.5x2

2

Gradient is given by : 5f (xk ) =

»
x1

5x2

–

Taking x0 =

»
5
1

–
, we have5f (x0) =

»
5
5

–
Performing line search along negative gradient direction,

minα0 f (x0 − α0 5 f (xo))

Exact minimum along line is given by α0 = 1/3 ,
so next approximation is

x1 =

»
3.333
−0.667

–
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Golden Section Search Method

Definition

Suppose f (x) is unimodal on [a, b] ,

let x1 and x2 be two points within [a, b] ,

where x1 < x2

Evaluating and comparing the values of f (x1) and f (x2), we can discard either,
(x2, b] or [a, x1), with minimum known to lie in remaining subintervals.

In order to repeat the process, we need to compute only one new function evaluation.

To reduce length of an interval by a fixed fraction at each iteration, each new pair of
points must have the same relationship with respect to new interval that previous pair
had with respect to that previous interval.
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Golden Section Search Algorithm

Consider τ = (
√

5− 1)/2

x1 = a + (1− τ)(b − a)
f1 = f (x1)
x2 = a + τ(b − a) ;
f2 = f (x2)
While
((b − a) > tol) Do
if (f1 > f2) then
a = x1
x1 = x2
f1 = f2
x2 = a + τ(b − a)
f2 = f (x2)
Else
b = x2
x2 = x1
x1 = a + (1− τ)(b − a)
f1 = f (x1)
End
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Definition

Another method that does not require explicit second derivatives, and does not
even store approximation to the Hessian matrix is,

Conjugate Gradient (CG)
method.

CG generates sequence of conjugate search directions, implicitly accumulating
information about Hessian matrix.

For quadratic objective function, CG is theoretically exact after at most n
iterations,where n is the dimension of the problem.

CG is effective for general unconstrained minimization.
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