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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio Optimization

Problem formulation

Suppose we have a sum of money M to split among three managed investment funds,
which claim to offer percentage rates of return r1, r2 and r3.

If we invest amounts y1, y2 and y3, we can expect our overall return to be

R =
r1 · y1 + r2 · y2 + r3 · y3

M
%.

Assume that the management charge associated with the i-th fund is calculated as
ci · yi .

Then the total cost of investment is

C = c1 · y1 + c2 · y2 + c3 · y3.

Now, assume that we are aiming for a return Rρ%, and that we want to pay the least
charges to achieve this.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio Optimization

Problem modeling

The amounts y1, y2 and y3 need to be chosen so that the following conditions are
satisfied:

min c1 · y1 + c2 · y2+c3 · y3

r1 · y1 + r2 · y2 + r3 · y3 = M · Rρ,

y1 + y2 + y3 = M

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

Remark

The last inequalities are included because investments must obviously be positive.

If we tried to solve the problem without them, an optimization algorithm would attempt
to reduce costs by making one or more of the yi large and negative.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio Optimization

Problem formulation

Now, assume that an attempt to make a negative investment would be penalized by a
very high management charge.

Assume that the charge is given by the function K ·Ψ(x), where

Ψ(x) =

{
x2, if x < 0
0, otherwise.

and K is a large positive constant.

Then the problem becomes:

min c1 · y1 + c2 · y2 + c3 · y3+K ·
3∑

i=1

Ψ(yi )

r1 · y1 + r2 · y2 + r3 · y3 = M · Rρ,

y1 + y2 + y3 = M
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio return and risk

Main concepts

Suppose we have a history of percentage returns, over m time periods, for each of a
group of n assets (such as shares, bonds etc.).

We can use this information as a guide to future investments.

As an example, consider the following data for three assets over six months.

Monthly rates of return on three assets

Assets/Months January February March April May June
Assets 1 1.2 1.3 1.4 1.5 1.1 1.2
Assets 2 1.3 1.0 0.8 0.9 1.4 1.3
Assets 3 0.9 1.1 1.0 1.1 1.1 1.3
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio return and risk

Main concepts

In general, we can calculate the mean return r̄i for each asset as

r̄i =

∑m
j=1 rij

m
,

where rij denotes the return on asset i in period j .

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio return and risk

Main concepts

In general, we can calculate the mean return r̄i for each asset as

r̄i =

∑m
j=1 rij

m
,

where rij denotes the return on asset i in period j .

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio return and risk

Main concepts

In general, we can calculate the mean return r̄i for each asset as

r̄i =

∑m
j=1 rij

m
,

where rij denotes the return on asset i in period j .

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio return and risk

Main concepts

In general, we can calculate the mean return r̄i for each asset as

r̄i =

∑m
j=1 rij

m
,

where rij denotes the return on asset i in period j .

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Portfolio return and risk

Portfolio and expected Portfolio return

If we spread an investment across the n assets and if yi denotes the fraction invested
in asset i then the values of the yi define a portfolio.

Since all investment must be split between the n assets, the invested fractions must
satisfy

S =
n∑

i=1

yi = 1

The expected portfolio return is given by

R =
n∑

i=1

r̄i · yi .
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R =
n∑

i=1

r̄i · yi .
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Portfolio risk

The risk associated with a particular portfolio is determined from variances and
covariances that can be calculated from the history of returns rij .

The variance of asset i is

σ2
i =

∑m
j=1(rij − r̄i )

2

m
,

while the covariance of assets i and k is

σik =

∑m
j=1(rij − r̄i ) · (rkj − r̄k )

m
.
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Portfolio variance

The variance of the portfolio defined by the investment fractions y1, ...,yn is

V =
n∑

i=1

σ2
i · y

2
i + 2 ·

n∑
i=1

n∑
j=i+1

σij · yi · yj ,

which can be used as a measure of portfolio risk.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method
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Portfolio return and risk: simple notation

Matrix-vector notation

The return and risk functions can be written more conveniently using matrix-vector
notation.

The expression for expected return can be written as:

R = r̄ · y,

and
V = yT · Q · y,

where r̄ denotes the vector of mean returns r̄i , and Q = ‖σij‖.

The constraint on partitions can be written as

S = e · y,

where e = (1, 1, ..., 1).
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Constrained Optimization
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The basic minimum risk problem

Problem formulation

A major concern in portfolio selection is the minimization of risk.

In its simplest form, this means finding invested fractions y1, ..., yn, to solve the problem

min yT · Q · y
e · y = 1,
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Optimizing return and risk

Problem formulation

The solution to the basic problem can sometimes be useful.

But in practice we will normally be interested in both risk and return rather than risk on
its own.

In a rather general way, we can say that an optimal portfolio is one which gives ”biggest
return at lowest risk”.

One way of trying to determine such a portfolio is to consider a composite function
such as

F = −R + ρ · V = −r̄ · y + ρ · yT · Q · y.

The first term is the negative of the expected return and the second term is a multiple
of the risk.

If we choose invested fractions yi to minimize F , we can expect to obtain a large value
for return coupled with a small value for risk.

The positive constant ρ controls the balance between return and risk.
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Mathematical formulation

min−r̄ · y+ρ · yT · Q · y
e · y = 1,
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Minimum risk for specified return

Problem formulation

The previous problem allows us to balance risk and return according to the choice of
the parameter ρ.

Another approach could be to fix a target value for return, say Rρ%, and to consider
the problem

min yT · Q · y
r̄ · y = Rρ,

e · y = 1.
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Maximum return problem

Problem formulation

Suppose we want to fix an acceptable level of risk (as Va, say) and then to maximize
the expected return.

This can be posed as the constrained minimization problem

max r̄·y

yT · Q · y = Va,

e · y = 1.
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Optimization Theory

Fundamentals

Given a function f : Rn → R and a set S ⊆ Rn, the problem of finding an x∗ ∈ Rn that
solves

minx f (x)

x ∈ S

is called an optimization problem.

Features of an optimization problem

Decision variables.

Objective function.

Feasible region (Infeasibility, Unboundedness, Discrete).

Global minimizer (strict).

Local minimizer.
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Non-linear programs

Such optimization problems usually are called non-linear programming problems or
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A non-linear program in which the set E ∪ I is empty, is called an unconstrained
program.

Otherwise, it is constrained.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-linear programs arise

Probabilistic elements

Nonlinearities may arise when some of the coefficients in the model are random
variables.

For example, consider a linear program, where the right-hand sides are random.

We consider the case when we have two constraints.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Probabilistic elements in linear programming

Problem Formulation

max c1 · x1 + ...+ cn·xn

a11 · x1 + ...+ a1n · xn ≤ b1

a21 · x1 + ...+ a2n · xn ≤ b2

where the coefficients b1 and b2 are independently distributed and Gi (y) represents
the probability that the random variable bi is at least as large as y .
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Probabilistic elements in linear programming

Problem Formulation

Assume that we would like to choose the variables x1, ..., xn, so that the joint probability
of both of the constraints being satisfied is at least β.

The last constraint mathematically can be written as follows:

Pr [a11 · x1 + ...+ a1n · xn ≤ b1]× Pr [a21 · x1 + ...+ a2n · xn ≤ b2] ≥ β.

Then this condition can be written as the following set of constraints:

−y1 + a11 · x1 + ...+ a1n · xn = 0

− y2 + a21 · x1 + ...+ a2n · xn = 0

G1(y1)× G2(y2) ≥ β.
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Motivating Examples
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The generalized reduced gradient method
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Constrained Optimization

Problem Formulation

minf (x)

gi (x) = 0, i ∈ E
gi (x) ≥ 0, i ∈ I

Here we assume that we have at least one constraint, i.e., the set E ∪ I is not empty.

Moreover, we assume that the functions f and gi are continuously differentiable.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Constrained Optimization

Lagrangian function of the problem

The Lagrangian function (or Lagrangian) is defined as follows:

L(x, λ) = f (x)−
∑

i∈E∪I
λi · gi (x).

Why Lagrangian function?

It turns out that for suitably chosen values of λi , minimizing the unconstrained
Lagrangian function L(x, λ) is equivalent to solving the above constrained non-linear
program.
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Some definitions

Definition

A point x satisfying gi (x) = 0, i ∈ E and gi (x) ≥ 0, i ∈ I is called a feasible solution to
the non-linear program.

Definition

Let x be a feasible solution to the non-linear program, and let J ⊆ I be the set of
indices for which gi (x) ≥ 0 is satisfied with equality.

Then x is a regular point of the program, if the gradient vectors5gi(x) for i ∈ E ∪ J
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Problem Formulation: Regular points

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

In this example any feasible point is regular, since the gradients of the constraints are
(1, 0), (0, 1) and (−1,−1).
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First order necessary conditions

KKT conditions

The conditions that will be presented in the upcoming three theorems are called
Karush-Kuhn-Tucker (KKT) conditions after their inventors.

Theorem

Let x∗ be a local minimizer of the non-linear problem, and assume that x∗ is a regular
point for the constraints of the problem.

Then there exists λi , i ∈ E ∪ I such that

5f (x∗)−
∑

i∈E∪I
λi · 5gi (x∗) = 0,

λi ≥ 0, i ∈ I,
λi · gi (x∗) = 0, i ∈ I.
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Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

Problem Formulation: Example

max(x2 + y2)

x ≥ 0

y ≥ 0

x + y ≤ 1

Lagrangian function

L(x , y , λ) = −(x2 + y2)− λ1 · x − λ2 · y − λ3 · (1− x − y).

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

First order necessary conditions

The constraints

−2 · x − λ1 + λ3 = 0

− 2 · y − λ2 + λ3 = 0

λ1, λ2, λ3 ≥ 0

λ1 · x = 0

λ2 · y = 0

λ3 · (1− x − y) = 0

Stationary points

If λ3 = 0, it can be shown that x = y = 0.

On the other hand, if λ3 6= 0, then x + y = 1, hence the problem is reduced to one
dimensional case, which by standard methods lead to points (x = 0, y = 1),
(x = 1, y = 0) and (x = y = 1

2 ).
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(x = 1, y = 0) and (x = y = 1

2 ).
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Second order necessary conditions

Restatement of the last condition

Let A(x∗) denote the Jacobian of the active constraints at x∗, and let N(x∗) be a
null-space basis for A(x∗).

Then, the last condition of the previous theorem, is equivalent to the following condition:

NT(x∗) · (52f(x∗)−
∑

i∈E∪I
λi · 52gi(x∗)) · N(x∗)

Is positive semidefinite.
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Second order sufficient conditions

Theorem

Assume that f and gi , i ∈ E ∪ I are all twice continuously differentiable functions.

Let x∗ be a feasible solution of the non-linear problem, and assume that it is a regular
point for the constraints of the problem.

Let A(x∗) denote the Jacobian of the active constraints at x∗, and let N(x∗) be a
null-space basis for A(x∗).

If there exists λi , i ∈ E ∪ I satisfying the conditions of the first order necessary
theorem as well as the following condition:

gi (x∗) = 0, i ∈ I implies λi > 0,

and

NT(x∗) · (52f(x∗)−
∑

i∈E∪I
λi · 52gi(x∗)) · N(x∗)

is positive semidefinite, then x∗ is local minimizer of the non-linear program.
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The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Constrained non-linear programs

An approach

Below, we introduce an approach for solving non-linear programs.

It relies on the method of steepest decent method.

The idea is to reduce the number of variables using the constraints and to solve this
reduced and unconstrained problem using the steepest decent method.
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Linear equality constraints

Problem Formulation

min f (x) := x3
1 + x2 + x3

3 +x4

g1(x) := x1 + x2 + 4 · x3 + 4 · x4 − 4 = 0,

g2(x) := −x1 + x2 + 2 · x3 − 2 · x4 + 2 = 0,
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Solving the linear equations

x2 = 3 · x1 + 8 · x4 − 8,

x3 = −x1 − 3 · x4 + 3,
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Solving an unconstrained non-linear program

The above equations lead to the following unconstrained non-linear program:

min f (x1, x4) := x3
1 + (3 · x1 + 8 · x4 − 8) + (−x1 − 3 · x4 + 3)3 + x4.
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g1(x) ≈ 2 · x̄1 · x1 + x2 + 4 · x3 + 4 · x4 − (x̄2
1 + 4) = 0,
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-linear equality constraints

The general idea

The idea of Generalized Reduced Gradient Method (GRG) is to solve a sequence of
sub-problems, each of which uses a linear approximation of the constraints.

In each iteration of the algorithm, the constraint linearization is recalculated at the point
found from the previous iteration.

Though the constraints are only approximated, the subproblems yield points that are
progressively closer to the optimal point.
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Motivating Examples
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Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-linear equality constraints

Our example: Starting point

Let us start with x0 = (0,−8, 3, 0).

This point satisfies our constraints.

It is quite possible to start with an infeasible point.

Our example: the resulting program

Using the approximation formulas derived earlier, we get:

min f (x) := x2
1 + x2 + x2

3 +x4

g1(x) := x2 + 4 · x3 + 4 · x4 − 4 = 0,

g2(x) := −x1 + x2 + 2 · x3 + 2 = 0,
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Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-linear equality constraints

Solving the equality constraints

Solving with respect to x2 and x3, we get:

x2 = 2 · x1 + 4 · x4 − 8,

x3 = −
1
2
· x1 − 2 · x4 + 3,
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Motivating Examples
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Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-linear equality constraints

The resulting unconstrained program

min f (x1, x4) := x2
1 + (2 · x1 + 4 · x4 − 8) + (− 1

2 · x1 − 2 · x4 + 3)2 + x4.

The next point

Solving this unconstrained minimization problem, we get x1 = −0.375 and
x4 = 0.96875.

Substituting in equations for x2 and x3 gives x2 = −4.875 and x3 = 1.25.

Thus, the iteration of GRG method is x1 = (−0.375,−4.875, 1.25, 0.96875).
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Continuing the process

To continue the solution process, we would re-linearize the constraint functions at the
new point,

Use the resulting system of linear equations to express two of the variables in terms of
the others,

Substitute into the objective to get the new reduced problem,

Solve the reduced problem for x2, and so forth.

Stopping criterion

The stopping criterion is ‖xk+1 − xk‖ < T , where T is a small constant.
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Non-linear equality constraints

Our example

For example if we take, T = 0.0025 in the above example, we get
xk = (−0.498,−4, 823, 1.534, 0.610) and f (xk ) = −1.612.

The optimum solution is x∗ = (−0.500,−4.825, 1.534, 0.610) and has an objective
value of −1.612.
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Non-linear equality constraints

Remark

During the iteration, the values of f (xk ) can sometimes be smaller than the minimum
value.

How this is possible?

The reason is that the points xk computed by GRG are usually not feasible.

They are only feasible for linear approximations of these constraints.
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Starting from an infeasible solution

Assume that we have chosen the point x0 so that it is infeasible.

We consider a phase 1 problem, which is the construction of a feasible solution.

The objective function for the phase 1 problem is the sum of the absolute values of the
violated constraints.

The constraints for the phase 1 problem are the non-violated ones.
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Starting from an infeasible solution: Our example

If we had started from the point x0 = (1, 1, 0, 1), which happens to be infeasible, then
the phase 1 problem would be the following:

min |x2
1 + x2 + 4 · x3 + 4 · x4−4|

− x1 + x2 + 2 · x3 − 2 · x2
4 + 2 = 0,

This is because x0 violates the first constraint and satisfies the second one.

Observe that the value of the objective function is 0, if and only if the corresponding
point is a feasible solution.
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Linear inequality constraints

The general strategy

We will discuss how GRG solves problems when there are inequality as well as
equality constraints.

At each iteration, only the tight inequality constraints enter into the system of linear
linear equations used for eliminating variables (active inequality constraints).

The process is complicated by the fact that active inequality constraints at the current
point may need to be released in order to move to a better solution.
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Linear inequality constraints

An example

min f (x1, x2) = (x1−
1
2

)2 + (x2 −
5
2

)2

x1 − x2 ≥ 0,

x1 ≥ 0,

x2 ≥ 0,

x2 ≤ 2,

The process

Assume that the initial feasible solution is x0 = (1, 0).

It can be checked directly that the constraints x1 − x2 ≥ 0, x1 ≥ 0, and x2 ≤ 2 are
inactive, whereas the constraint x2 ≥ 0 is active.
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An example

First let us evaluate the gradient of the objective function at x0 = (1, 0).

5f (x0) = (2 · x0
1 − 1, 2 · x0

2 − 5) = (1,−5).

This means that we will get the largest decrease in f if we move in the direction
d0 = −5f(x0) = (−1, 5), that is, if we decrease x1 and increase x2.

The new point will be x1 = x0 + α0 · d0 for some α0 > 0.

The constraints imply that α0 ≤ 0.8333.

Now we perform a line search to determine the best value of α0 in this range.

It can be shown that α0 = 0.8333, so x1 = (0.8333, 0.8333).
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Motivating Examples
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Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-linear programming

Problem Formulation

Consider a general non-linear optimization problem:

minf (x)

gi (x) = 0,i ∈ E
gi (x) ≥ 0,i ∈ I

Quadratic Programs

In order to solve this problem, we can use methods available for quadratic programs.

This is the idea behind sequential quadratic programming.
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Non-linear programming

The idea

At the current feasible point xk , the problem is approximated by a quadratic program:

A quadratic approximation of the Lagrangian function is computed as well as linear
approximations of the constraints.

The resulting quadratic program is of the form:

min(5f (xk )T · (x− xk ) +
1
2
· (x− xk )T · Bk · (x−xk))

5 gi (xk )T · (x− xk ) + gi (xk ) = 0, i ∈ E

5 gi (xk )T · (x− xk ) + gi (xk ) ≥ 0, i ∈ I

Where Bk = 52
xxL(xk, λk) is the Hessian of the Langrangian function with respect to

the variables x and λk is the current estimate of the Lagrangian multipliers.
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Motivating Examples
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Non-smooth Optimization: Subgradient methods

Non-linear programming

Next iteration

This problem can be solved with one of the methods developed for quadratic programs.

The optimal solution of the quadratic program is used to determine a search direction.

Then a line search is performed to determine the next iterate.
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Motivating Examples
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Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.

However, the notion of gradient can be generalized as follows.

Definition

A subgradient of f at point x∗ is a vector s∗ = (s∗1 , ..., s
∗
n) such that

s∗ · (x− x∗) ≤ f (x)− f (x∗), for every x.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Non-smooth Optimization

Problem Formulation

We will consider unconstrained nonlinear programs of the form

min f (x)

where x = (x1, ..., xn) and f is a non-differentiable convex function.

Optimality conditions based on the gradient are not available since the gradient is not
always defined.
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Non-smooth Optimization

Subgradients

When the function is differentiable, the subgradient is identical to the gradient.

When f is not differentiable at point x, there are typically many subgradients at x.

For example consider the function

f (x) = |x − 1|.
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A property of convex functions

Theorem

Let f is a non-differentiable convex function.

The point x∗ is a minimum of f , if and only if f has a zero subgradient at x∗.

Example

In the case of f (x) = |x − 1|, 0 is a subgradient at point x∗ = 1, therefore this is the
point where the minimum of f is achieved.
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The method of steepest decent for convex functions

Idea

The method of steepest decent can be extended to non-differentiable functions.

First we compute any subgradient direction at the current point, and use its opposite
direction to make the next step.

Though subgradient directions are not always directions of ascent, one can still
guarantee convergence to the optimum point by choosing the step size appropriately.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

The method of steepest decent for convex functions

Idea

The method of steepest decent can be extended to non-differentiable functions.

First we compute any subgradient direction at the current point, and use its opposite
direction to make the next step.

Though subgradient directions are not always directions of ascent, one can still
guarantee convergence to the optimum point by choosing the step size appropriately.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

The method of steepest decent for convex functions

Idea

The method of steepest decent can be extended to non-differentiable functions.

First we compute any subgradient direction at the current point, and use its opposite
direction to make the next step.

Though subgradient directions are not always directions of ascent, one can still
guarantee convergence to the optimum point by choosing the step size appropriately.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

The method of steepest decent for convex functions

Idea

The method of steepest decent can be extended to non-differentiable functions.

First we compute any subgradient direction at the current point, and use its opposite
direction to make the next step.

Though subgradient directions are not always directions of ascent, one can still
guarantee convergence to the optimum point by choosing the step size appropriately.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

The method of steepest decent for convex functions

Idea

The method of steepest decent can be extended to non-differentiable functions.

First we compute any subgradient direction at the current point, and use its opposite
direction to make the next step.

Though subgradient directions are not always directions of ascent, one can still
guarantee convergence to the optimum point by choosing the step size appropriately.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

The method of steepest decent for convex functions

Formal description of the method

1: Input: Any point x0.
2: Output: A point xk .
3: Set i = 0.
4: Compute a subgradient si of f at point xi .
5: if (si is 0 or close to it) then
6: stop.
7: else
8: Let xi+1 = xi − αi · si, where αi > 0 denotes the step size.
9: Perform the next iteration.

10: end if
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Choice of αi

Several choices of step size αi have been proposed in the literature.

To guarantee convergence to the optimum, the step size αi needs to be decreased
very slowly.

For example, for the choice of αi → 0 such that
∑

i αi = +∞, will do.
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1 G. Cornuejols, R. Tütüncü, Optimization methods in Finance, Cambridge
University Press, 2007.

2 M. Bartholomew-Biggs, Nonlinear Optimization with Financial Applications, Kluwer
Academic Publishers, 2005.

Mkrtchyan Optimization Methods in Finance



Motivating Examples
Problem Formulation

Constrained Optimization
The generalized reduced gradient method

Non-smooth Optimization: Subgradient methods

Literature

The list of references
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