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1 Problems
1. Convexity:

(a) Let S denote a set and let x denote a point of S. Argue that x is an extreme point of S, if and only if S − {x}
is convex.

(b) Consider the linear program:

max c · x
A · x ≤ b

x ≥ 0

Let x1 and x2 represent two optimal solutions for the above linear program. Argue that the parametric point
(α · x1 + (1− α) · x2), α ∈ [0, 1] is also an optimal solution for the linear program.

(c) Given two convex sets S1 and S2, what can you say about the sets S1 ∪ S2 and S1 ∩ S2 as regards convexity.

Solution:

(a) Let S be a convex set, and let x be an extreme point of S. Consider the set S − {x}. Let z1 and z2 be any two
points in S − {x}, and let α ∈ [0, 1]. We show that (α · z1 + (1− α) · z2) ∈ (S − {x}). Suppose not. Since S
is a convex set, we have that (α · z1 + (1 − α) · z2) ∈ S, hence we have that x = α · z1 + (1 − α) · z2. Since
z1 6= x and z2 6= x, we get a contradiction to x being an extreme point of S.
Conversely, assume that the set S − {x} is convex. We claim that x is an extreme point of S. Suppose not. Then
there are z1, z2 ∈ S, z1 6= x and z2 6= x such that x = α · z1 + (1 − α) · z2 for some α ∈ (0, 1). Clearly,
z1, z2 ∈ S − {x} and x /∈ S − {x}. Hence the set S − {x} is not convex contradicting our assumption.

(b) Let c∗ be the optimum value of the linear program in hand. We have that

c · x1 = c · x2 = c∗.

Consider the parametric point (α · x1 + (1− α) · x2), α ∈ [0, 1]. We have that

c·(α · x1 + (1− α) · x2) = α · c · x1 + (1− α) · c · x2

= α · c∗ + (1− α) · c∗

= c∗.

Moreover, since α ∈ [0, 1], we also have that
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A·(α · x1 + (1− α) · x2) = α ·A · x1 + (1− α) ·A · x2

≤ α · b + (1− α) · b
= b,

and

(α · x1 + (1− α) · x2) ≥ 0.

This implies that the parametric point (α · x1 + (1− α) · x2), α ∈ [0, 1] is also an optimal solution for the linear
program.

(c) The union of two convex sets is not necessarily convex. Take two disjoint convex sets, and take one point from
each of them. Then, the line connecting these points has a point that lies outside the union of the sets.
On the positive side, the intersection of two convex sets is always convex. Let S1 and S2 be two convex sets, and
let x1,x2 ∈ S1 ∩ S2. Consider the parametric point (α · x1 + (1 − α) · x2), α ∈ [0, 1]. Clearly, x1,x2 ∈ S1

and x1,x2 ∈ S2, and since both of the sets are convex, we also have that (α · x1 + (1 − α) · x2) ∈ S1 and
(α · x1 + (1− α) · x2) ∈ S2. Thus, (α · x1 + (1− α) · x2) ∈ S1 ∩ S2.
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2. Linear Programming:
Consider the following linear program:

max z = x1 + 2 · x2 − 9 · x3 + 8 · x4 − 36 · x5

2 · x2 − x3 + x4 − 3 · x5 ≤ 40
x1 − x2 + 2 · x4 − 2 · x5 ≤ 10

x1, x2, x3, x4, x5 ≥ 0

(a) Solve the problem using the Simplex algorithm, showing all the steps.

(b) Write down the dual of the above problem.

(c) Solve the dual graphically and then solve the primal using complementary slackness.

Solution:

(a) We add slack variables s1 and s2 to the program, so that we have it in canonical form.
x1 x2 x3 x4 x5 s1 s2

Z −1 −2 9 −8 36 0 0 0
S1 0 2 −1 1 −3 1 0 40
S2 1 −1 0 2 −2 0 1 10

The next tableau is the following:
x1 x2 x3 x4 x5 s1 s2

Z 3 −6 9 0 28 0 4 40
S1 −0.5 2.5 −1 0 4 1 −0.5 35
X4 0.5 −0.5 0 1 −1 0 0.5 5

After one iteration, we get:
x1 x2 x3 x4 x5 s1 s2

Z 1.8 0 6.6 0 37.6 2.4 2.8 124
X2 −0.2 1 −0.4 0 1.6 0.4 −0.2 14
X4 0.4 0 0.2 1 −0.2 0.2 0.4 12

We have reached the final point. The optimal value is 124 and X = [0, 14, 0, 12, 0].
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(b) The dual program of the above mentioned linear program is given below:

min z = 40 · y1 + 10 · y2
y2 ≥ 1

2 · y1 − y2 ≥ 2
−y1 ≥ −9

y1 + 2 · y2 ≥ 8
−3 · y1 − 2 · y2 ≥ −36

y1, y2 ≥ 0

(c) The graphical solution to the dual, is shown in Figure 1.

y1

y2

y1 = 9

3 · y1 + 2 · y2 = 36

y2 = 1

y1 + 2 · y2 = 8
2 · y1 − y2 = 2

z = 124 z = 200 z = 280 z = 360

Figure 1: Graphical solution to the dual program

From this figure we get that (y1, y2) = (2.4, 2.8). Moreover, the constraints 2 · y1 − y2 ≥ 2 and y1 + 2 · y2 ≥ 8
are satisfied with equality. Thus, both primal constraints are met with equality and only x2 and x4 can be non-
zero. Thus, the primal optimum satisfies 2 · x2 + x4 = 40 and −x2 + 2x4 = 10. This gives us a solution of
(x1, x2, x3, x4, x5) = (0, 14, 0, 12, 0).
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3. Non-linear Programming (Theory):

(a) Solve the following NLP analitically:

min(x2 + x3 − 5)2 − (x3 + x4 + 2)
7

+ 4
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−x1 + x2 + x3 − 5 = 0
−3 · x1 − x2 + x3 − 3 = 0
−7 · x1 + x3 + x4 + 2 = 0

x1 ≤ 1, x2 ≤ 1, x3 ≤ 6, x4 ≤ 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(b) Check the point (1, 2) for first order necessary conditions (KKT conditions):

max 2 · x3
1 + 3 · x4

2

x1 + x2 ≥ 1
x1 + x2 ≤ 3
x2 − x1 ≤ 1

x1 − x2 ≥ −1
x1 ≥ 0, x2 ≥ 0.

Solution:

(a) By adding the first two constraints, and solving with respect to x1, we get

x3 = 2 · x1 + 4.

Plugging this into the third constraint, and solving with respect to x1, we get:

x4 = 5 · x1 − 6.

Now, taking into account that 0 ≤ x1 ≤ 1, we have that −6 ≤ x4 ≤ −1. Thus the program has no feasible
solutions, because we have that 0 ≤ x4 ≤ 1.

(b) We first write the program as a minimization problem, and change all constraints to the form ≥ 0. Taking into
account that there are two constraints that are equivalent, we get:

min(−2 · x3
1 − 3 · x4

2)
x1 + x2 − 1 ≥ 0
−x1 − x2 + 3 ≥ 0
x1 − x2 + 1 ≥ 0

x1 ≥ 0
x2 ≥ 0.

The Lagrangian of the resulting program is:

L(x1, x2, λ) = −2 · x3
1 − 3 · x4

2 − λ1 · (x1 + x2 − 1)− λ2 · (−x1 − x2 + 3)− λ3 · (x1 − x2 + 1)− λ4 · x1 − λ5 · x2.

The first order KKT conditions for this program are:

∂L

∂x1
(x1, x2, λ) = −6 · x2

1 − λ1 + λ2 − λ3 − λ4 = 0

∂L

∂x2
(x1, x2, λ) = −12 · x3

2 − λ1 + λ2 + λ3 − λ5 = 0

λ1 · (x1 + x2 − 1) = 0
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λ2 · (−x1 − x2 + 3) = 0
λ3 · (x1 − x2 + 1) = 0

λ4 · x1 = 0
λ5 · x2 = 0

λ1, λ2, λ3, λ4, λ5 ≥ 0

We need to check the point (1, 2) for the first order KKT conditions, so we plug the values of x1 and x2 in the
program. We get:

−6− λ1 + λ2 − λ3 − λ4 = 0
−96− λ1 + λ2 + λ3 − λ5 = 0

λ1 · 2 = 0
λ2 · 0 = 0
λ3 · 0 = 0
λ4 · 1 = 0
λ5 · 2 = 0

λ1, λ2, λ3, λ4, λ5 ≥ 0

These conditions imply that λ1 = 0 , λ4 = 0 , λ5 = 0. By plugging these values into the first two constraints, we
get:

−6 + λ2 − λ3 = 0
−96 + λ2 + λ3 = 0

λ2, λ3,≥ 0

By solving the system of linear equations, we get λ2 = 51 and λ3 = 45. We see that the values found for λs are
non-negative, hence the point (1, 2) meets the first order KKT conditions.
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4. Non-linear Programming (Applications):

The partial derivative ∂f(x)
∂xi

of the function f(x) with respect to the ith coordinate of the x vector can be estimated as

∂f(x)
∂xi

≈ f(x+ h · ei)− f(x)
h

,

where ei denotes the ith unit vector. Assuming that f is continuously differentiable, provide an upper bound on the
estimation error from this finite-difference approximation using a Taylor series expansion for the function f around
x. Next compute a similar bound for the alternative finite-difference formula given by

∂f(x)
∂xi

≈ f(x+ h · ei)− f(x− h · ei)
2 · h

.

Comment on potential advantages and disadvantages of these two approaches.

Solution: Using the Taylor series expansion for the function f around x, we have the following equality:

f(x+ h · ei) = f(x) +
∂f(x)
∂xi

· h+
1
2!
· ∂

2f(x)
∂x2

i

· h2 +O(h3).
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By replacing h with −h in this expression, we get:

f(x− h · ei) = f(x)− ∂f(x)
∂xi

· h+
1
2!
· ∂

2f(x)
∂x2

i

· h2 +O(h3).

When h→ 0, we have that

f(x+ h · ei)− f(x)
h

=
∂f(x)
∂xi

+O(h),

and

f(x+ h · ei)− f(x− h · ei)
2 · h

=
∂f(x)
∂xi

+O(h2).

The last two equations imply that the second finite-difference formula is more preferable than the first one, since it
has O(h2) error-term in contrast with the first one which has that of O(h).
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5. Quadratic Programming:

(a) Consider the quadratic function f(x) = cT · x+ 1
2 · x

T ·Q · x, where the matrix Q is n× n and symmetric.
i. Prove that if xT ·Q · x < 0 for some x, then f is unbounded below.

ii. Prove that if Q is positive semidefinite (but not positive definite), then either f is unbounded below or it
has an infinite number of solutions.

iii. True or False: f has a unique minimizer if and only if Q is positive definite.
(b) Consider the following quadratic program:

min x1 · x2 + x2
1 + 3

2x2
2 + 2 · x2

3

+2 · x1 + x2 + 3 · x3

subject to x1 + x2 + x3 = 1
x1 − x2 = 0
x1, x2, x3 ≥ 0

i. Is the optimization function convex?
ii. Is the point ( 1

2 ,
1
2 , 0) optimal? Provide a rigorous argument for your answer.

Solution:

(a) i. Assume that there is x, so that xT ·Q · x < 0. Since 0T ·Q · 0 = 0, we have that x 6= 0. Consider arbitrary
number α 6= 0. We have that

f(α · x) = cT · (α · x) +
1
2
· (α · x)T ·Q · (α · x)

= α · (cT · x) +
1
2
· α2 · (xT ·Q · x).

Since xT ·Q · x < 0, we get that f(α · x)→ −∞ when α→∞.
ii. Assume thatQ is positive semidefinite, but not positive definite. Then there is x 6= 0, such that xT ·Q ·x = 0.

Consider arbitrary number α 6= 0, and the vector α · x. We have that α · x 6= 0. Now, by the equality proved
above, we have that

f(α · x) = α · (cT · x) +
1
2
· α2 · (xT ·Q · x)

= α · (cT · x).
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We consider three cases. If (cT ·x) > 0, then clearly f(α·x)→ −∞when α→ −∞. Hence f is unbounded
in this case. If (cT · x) < 0, then clearly f(α · x) → −∞ when α → +∞. Hence f is unbounded in this
case as well. Finally, if (cT ·x) = 0, then clearly f(α ·x) = 0, for any α, hence we have that f has infinitely
many zeros.

iii. We claim that the answer to this statement is True. That is, we claim that f has a unique minimizer if and
only if Q is positive definite.
One direction is easy to prove. Assume that Q is positive definite. Then |Q| > 0, hence |Q| 6= 0. We have
that 5f = cT + Q · x and 52f = Q. Since |Q| 6= 0, we have that 5f = 0 has a unique solution, and as
52f = Q is positive definite, we have that this solution is a unique minimizer of the function f .
For the proof of the converse statement, assume that x∗ is the unique minimizer of f . By the first part of this
assignment, we have that Q is positive semi-definite. We claim that Q is positive definite. Assume that there
is a vector l 6= 0, such that lT · Q · l = 0. By the second part of this assignment, we have that cT · l = 0.
Consider the vector (x∗ + l). We have that:

5f(x∗) = cT +Q · x∗ = 0,

and

f(x∗ + l) = cT · (x∗ + l) +
1
2
· (x∗ + l)T ·Q · (x∗ + l)

= cT · x∗ + cT · l + 1
2
· [(x∗)T ·Q · (x∗) + 2 · lT ·Q · x∗ + lT ·Q · l]

= f(x∗) + cT · l + lT ·Q · x∗ +
1
2
· lT ·Q · l

= f(x∗) + cT · l − lT · c+
1
2
· lT ·Q · l

= f(x∗)

Since l 6= 0, we have that x∗ is not a unique minimizer of f , contradicting our assumption.

(b) i. The Hessian of the optimization function f is

∂2f

∂x2
=

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 0
1 3 0
0 0 2

∣∣∣∣∣∣
∣∣∣∣∣∣

Since ∣∣ 2
∣∣ = 2 > 0,

∣∣∣∣ 2 1
1 3

∣∣∣∣ = 5 > 0,

∣∣∣∣∣∣
2 1 0
1 3 0
0 0 4

∣∣∣∣∣∣ = 20 > 0,

we have that the Hessian of the optimization function f is positive definite, hence f is a convex function.
ii. First, we check for feasibility. We have that

1
2

+
1
2

+ 0 = 1

1
2
− 1

2
= 0

1
2
,
1
2
, 0 ≥ 0
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Thus primal conditions are satisfied.
Now we need to check the remaining optimality conditions. There should exist y and s such that:

y1 + y2 − 2 · x1 − x2 + s1 = 2
y1 − y2 − x1 − 3 · x2 + s2 = 1

y1 − 4 · x3 + s3 = 3
s1, s2, s3 ≥ 0

s1 · x1 = 0, s2 · x2 = 0, s3 · x3 = 0

Taking into account that (x1, x2, x3) = ( 1
2 ,

1
2 , 0), we get:

y1 + y2 + s1 =
7
2

y1 − y2 + s2 = 3
y1 + s3 = 3
s1, s2, s3 ≥ 0

s1 = 0, s2 = 0, 0 = 0

These conditions imply that (y1, y2) =
(

13
4 ,

1
4

)
and s3 = 3− y1 = − 1

4 < 0. Thus, the optimality conditions
are not satisfied. This means that ( 1

2 ,
1
2 , 0) is not an optimal solution.
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