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1 Problems

1. Consider the cone defined as:
Cy ={(r1,22,...20) 12 71 - 22 > Zoj?, 1,29 > 0.}
=3
Show that x = (r1,%2,...,2,) € Cy if and only if y = (y1,%2,...,yn) € Cy, Where, y; = (%) (x1 + x2),
Yo = (%) (21— x2),y; = x4, = 3,4, ...nand Cy is the Lorenz cone given by:

Cq = {y = (ylay27"'7yn) S Y1 > ‘|(y2ay37"'ayn)||2}'

Solution:
Assume that x € Cy. Since y; = % and yp = %, we have that z; = %\@y? and 25 = % Thus, we get:
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As x1,x2 > 0 we have that y; > 0. Thus, we get:

ZyJQ = ||(y27y37 oo 7yn)||2
j=2
This means that, if x € Cy, theny € C,.

Now, assume that y € C,. From
y1 2 [|(y2,ys, - yn)ll2



we have y; > Oand y7 > -7, y7. Thus, y§ —y3 > 37 5 y7 which means that y7 — y5 > 0. Since y1 > 0, we
have that y; > |y2|. Thus x1, 22 > 0. We also have that
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This means that, if y € C,, then x € C]Z“.
O
2. Assume that —u; < f1(x) < uy and —ug < fo(x) < wg. Use integer programming to model the following
conditions:
(a) Either f1(x) > 0or fa(x) > 0.
(b) fi(x) >0— fa(x) > 0.
(c) Either fi(x) > 0 or fa(x) > 0, but not both.
(A |>°% a; - ;] > b, where b > 0.

Solution:

y1 and g9 are defined here and they will be used in the other following.

ylz{l, if f1(z) >0 yzz{

0, if fo(z) < 0. %

0, if fi(z) <O0.

(a) Either f1(x) > 0or fo(x) > 0.
Solution: so we can have {0,1} and {1,0} and {1, 1} but not {0,0}, so the corresponding integer program is
going to be:

0<y1 <1

0<y2 <1

y1+y2 =1

Y1,Y2 € Z.
(b) fi(x) >0— fa(x) > 0.

Solution: So we have {1,1} and {0,0} and {1, 1} but not {1, 0} so the corresponding integer program is going
to be:

0<y1 <1
0<y2<1
y1—y2<0
Y1,Y2 € Z.



(c) Either f1(x) > 0 or fo(x) > 0, but not both.
Solution: So we can have {0, 1} and {1,0} but not {1, 1} nor {0, 0}, so the corresponding integer program is
going to be:

0<y <1
0<y <1
y1+y2=1
Y1, Y2 € Z.

(d) | >0, a; - ;| > b, where b > 0.
We know that absolute value could be formed like this:

{1, if S (a2;) > b {1, if S (aiz;) < —b.
Y= 0 Y2 =

0, otherwise.

2)

otherwise.

Here we can have {1,0} and {0, 1} but we cannot have {0, 0} and also it is not possible to have {1,1}, so the
corresponding integer program is going to be:

0<y <1
0<y, <1
y1+y2=1
Y1, Y2 € Z.

O
3. Consider the following integer programming problem:

maxz = 2-xy + o
subject to
2-21—2-29<3
—2-x1+x0 <2
2-x1+2-22<13
r1,T2 >0

x1, To integer

(a) Solve the above problem graphically.

(b) Solve the above problem using the branch-and-bound technique discussed in class. All linear programming
relaxations should be solved graphically.

Solution:

(a) If we were asked to solve the LP, then the optimal point would be a vertex. Since the objective function is
2 - X1 + Xo, the result should be integer, too. That is why we can not use the point (4,5/2), z = 10.5 since it is
not integer. Now we try to draw slip (skew) the objective function into the feasible solution to find the integral points
(point), which lie on that line.
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By testing the lines of 2X; + Xo = {10,9, 8}, we find that the objective function 2 - X; + X5 = {10} does not

contain any integer point in the feasible solution, so we try 2 - X; + X» = {9}, which contains the point (3, 3) giving
the optimal value Z = 9. These steps are shown in the following figure.



0,1

13) 23\
LN @)

/2)

Vo Vo 1YY
=39y



(b) In the following figure constraints and feasible solutions are shown.

A

A

Since the coefficients in the objective function are integers and positive, one of the vertices (4, 5/2) or (3/2,5) should
be the answer for the linear programming. Since we have integer programming here we need to find out the integer
numbers around it. for (4,5/2) = z = 10.5, for (3/2,5) = z = 8.

Because the first point has larger value, we try to use that by adding two constraints to it by Xo < 2 X5 > 3. Now
we have two areas and again we should find the optimal points by checking the vertices.
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So, now we find that Z,,,,, = Z,,, = 10 in the blue region, but still this is not an integer solution. So again we need
to add two more constraints. Since the optimal vertex is (7/2,3), we add X; > 4 and X; < 3.



X2) (4,5/2), infeasible
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Again we see here that Z,,, = 9.5 is not integer so we need to add two more constraints to the previous figure two:
X2 24andX2 S 3.
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Here we see that Z,,, = 9, and the corresponding vertex is (3, 3).

Final solution : (1 = 3,22 = 3) = (Zmaz = 9).

O

. The following problem is called the stagewise shortest path problem:

You are given n cities, which are partitioned into (N + 1) stages. City O is the only city in Stage 0 and city D is the

only city in Stage N. Each city in stage k can advance to any city in stage k + 1, for k = 0,1,2,... (N — 1). The
distance between city ¢ and city j is denoted by d;;.

Formulate the dynamic programming recursion for the stagewise shortest path problem.
Solution:

Letv;,i = 1...m denote the 5" city with vy = O and v,,, = D. Also, let V}, denote the set of cities in stage k. Thus,
Vo = {v1} and Vy = {v,,, }. For all cities v; € V}, let D(i, k) represent the length of the stagewise shortest path from
v1 to v; € V. Thus, we can define D as follows:



e D(1,0) = 0.
e Foreach v; € Vi, D(i, k) = min,, cv;,_, (D(j, k — 1) + dy;).
The goal is to find D(m, N). O

. Compute the value of an American put option on a stock with current price equal to $100, strike price equal to $98,
and expiration date five weeks from today. The yearly volatility of the logarithm of the stock return is 0 = 0.30. The
risk-free interest rate is 4%. Use a binomial lattice with N = 5.

Solution: On page 246 of the textbook, this problem is solved for the case N = 4. Since the values of all parameters
are the same, we are going to have the same recursions as in the textbook. They are the following:

v(N,j) = max{c —u/ - d¥ 77 - Sy,0},

when 7 =0,1,..., NV, and

1 ) )
U(kmj) = max{ﬁ : [pu U(k+ 1aj+ 1) + Dd - U(k+ 1,j)],C— u’ 'dki] ! SO}

k=N/,N—-1,..,0and j = 0,1,..., k. By taking NV = 5, and using the values of the constants from the textbook,
one can get the following values for v(k, j), and in particular, for v(0,0). The calculations are done via a program
written on C + +.

Figure 1: The values of v(k, j)
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