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1 Problems
1. Consider the cone defined as:

Cr
q = {(x1, x2, . . . xn) : 2 · x1 · x2 ≥

n∑
j=3

x2
j , x1, x2 ≥ 0.}

Show that x = (x1, x2, . . . , xn) ∈ Cr
q if and only if y = (y1, y2, . . . , yn) ∈ Cq , where, y1 = ( 1√

2
) · (x1 + x2),

y2 = ( 1√
2
) · (x1 − x2), yj = xj , j = 3, 4, . . . n and Cq is the Lorenz cone given by:

Cq = {y = (y1, y2, . . . , yn) ∈ <n : y1 ≥ ||(y2, y3, . . . , yn)||2}.

Solution:
Assume that x ∈ Cr

q . Since y1 = x1+x2√
2

and y2 = x1−x2√
2

, we have that x1 = y1+y2√
2

and x2 = y1−y2√
2

. Thus, we get:

2 · x1 · x2 ≥
n∑

j=3

x2
j

2 · (y1 + y2√
2

) · (y1 − y2√
2

) ≥
n∑

j=3

y2
j

y2
1 − y2

2 ≥
n∑

j=3

y2
j

y2
1 ≥

n∑
j=2

y2
j

As x1, x2 ≥ 0 we have that y1 ≥ 0. Thus, we get:

y1 ≥

√√√√ n∑
j=2

y2
j = ||(y2, y3, . . . , yn)||2

This means that, if x ∈ Cr
q , then y ∈ Cq .

Now, assume that y ∈ Cq . From
y1 ≥ ||(y2, y3, . . . , yn)||2
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we have y1 ≥ 0 and y2
1 ≥

∑n
j=2 y

2
j . Thus, y2

1 − y2
2 ≥

∑n
j=3 y

2
j which means that y2

1 − y2
2 ≥ 0. Since y1 ≥ 0, we

have that y1 ≥ |y2|. Thus x1, x2 ≥ 0. We also have that

y2
1 − y2

2 ≥
n∑

j=3

y2
j

(
x1 + x2√

2
)2 − (

x1 − x2√
2

)2 ≥
n∑

j=3

x2
j

x2
1 + 2 · x1 · x2 + x2

2

2
− x2

1 − 2 · x1 · x2 + x2
2

2
≥

n∑
j=3

x2
j

2 · x1 · x2 ≥
n∑

j=3

x2
j

This means that, if y ∈ Cq , then x ∈ Cr
q .
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2. Assume that −u1 ≤ f1(x) ≤ u1 and −u2 ≤ f2(x) ≤ u2. Use integer programming to model the following
conditions:

(a) Either f1(x) ≥ 0 or f2(x) ≥ 0.

(b) f1(x) ≥ 0→ f2(x) ≥ 0.

(c) Either f1(x) ≥ 0 or f2(x) ≥ 0, but not both.

(d) |
∑n

i=1 ai · xi| ≥ b, where b > 0.

Solution:
y1 and y2 are defined here and they will be used in the other following.

y1 =

{
1, if f1(x) ≥ 0
0, if f1(x) < 0.

y2 =

{
1, if f2(x) ≥ 0
0, if f2(x) < 0.

(1)

(a) Either f1(x) ≥ 0 or f2(x) ≥ 0.
Solution: so we can have {0, 1} and {1, 0} and {1, 1} but not {0, 0}, so the corresponding integer program is
going to be:

0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1
y1 + y2 ≥ 1
y1, y2 ∈ Z.

(b) f1(x) ≥ 0→ f2(x) ≥ 0.
Solution: So we have {1, 1} and {0, 0} and {1, 1} but not {1, 0} so the corresponding integer program is going
to be:

0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1
y1 − y2 ≤ 0
y1, y2 ∈ Z.

2



(c) Either f1(x) ≥ 0 or f2(x) ≥ 0, but not both.
Solution: So we can have {0, 1} and {1, 0} but not {1, 1} nor {0, 0}, so the corresponding integer program is
going to be:

0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1
y1 + y2 = 1
y1, y2 ∈ Z.

(d) |
∑n

i=1 ai · xi| ≥ b, where b > 0.
We know that absolute value could be formed like this:

y1 =

{
1, if

∑
(aixi) ≥ b.

0, otherwise.
y2 =

{
1, if

∑
(aixi) ≤ −b.

0, otherwise.
(2)

Here we can have {1, 0} and {0, 1} but we cannot have {0, 0} and also it is not possible to have {1, 1}, so the
corresponding integer program is going to be:

0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1
y1 + y2 = 1
y1, y2 ∈ Z.

2

3. Consider the following integer programming problem:

max z = 2 · x1 + x2

subject to
2 · x1 − 2 · x2 ≤ 3
−2 · x1 + x2 ≤ 2

2 · x1 + 2 · x2 ≤ 13
x1, x2 ≥ 0
x1, x2 integer

(a) Solve the above problem graphically.

(b) Solve the above problem using the branch-and-bound technique discussed in class. All linear programming
relaxations should be solved graphically.

Solution:
(a) If we were asked to solve the LP, then the optimal point would be a vertex. Since the objective function is
2 · X1 + X2, the result should be integer, too. That is why we can not use the point (4, 5/2), z = 10.5 since it is
not integer. Now we try to draw slip (skew) the objective function into the feasible solution to find the integral points
(point), which lie on that line.
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(3/2,0)

(0,-3/2)

(-1,0)

(0,2)

(13/2,0)

(0,13/2)

(3/2,5)

(4,5/2)

2x1 +X2 = 11

By testing the lines of 2X1 + X2 = {10, 9, 8}, we find that the objective function 2 · X1 + X2 = {10} does not
contain any integer point in the feasible solution, so we try 2 ·X1 +X2 = {9}, which contains the point (3, 3) giving
the optimal value Z = 9. These steps are shown in the following figure.
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(3/2,0)

(0,-3/2)

(-1,0)

(0,2)

(13/2,0)

(0,13/2)

(3/2,5)

(4,5/2)
(3,3)

(3,2)

(2,3)

(2,4)

(1,3)

(1,4)

z=10
z=9
z=8
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(b) In the following figure constraints and feasible solutions are shown.

(3/2,0)

(0,-3/2)

(-1,0)

(0,2)

(13/2,0)

(0,13/2)

(3/2,5)

(4,5/2)

Since the coefficients in the objective function are integers and positive, one of the vertices (4, 5/2) or (3/2, 5) should
be the answer for the linear programming. Since we have integer programming here we need to find out the integer
numbers around it. for (4, 5/2)⇒ z = 10.5, for (3/2, 5)⇒ z = 8.

Because the first point has larger value, we try to use that by adding two constraints to it by X2 ≤ 2 X2 ≥ 3 . Now
we have two areas and again we should find the optimal points by checking the vertices.
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x2 = 3

x2 = 2

(3/2,0)

(0,-3/2)

(-1,0)

(0,2)

(13/2,0)

(0,13/2)

(3/2,5), Z=8

(4,5/2)
(7/2,2),Z=9

(1/2,3) (7/2,3) ,Zm=10

So, now we find that Zmax = Zm = 10 in the blue region, but still this is not an integer solution. So again we need
to add two more constraints. Since the optimal vertex is (7/2, 3), we add X1 ≥ 4 and X1 ≤ 3.
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x2 = 3

x2 = 2

x1 = 3 x2 = 4
(3/2,0)

(0,-3/2)

(-1,0)

(0,2)

(13/2,0)

(0,13/2)

(3/2,5), Z=8

(4,5/2)
(7/2,2),Z=9

(3,7/2), Zm=9.5
(3,3) ,Z=9

(4,5/2), infeasible

Again we see here that Zm = 9.5 is not integer so we need to add two more constraints to the previous figure two:
X2 ≥ 4 and X2 ≤ 3 .
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x2 = 3

x2 = 2

x1 = 3 x1 = 4

x2 = 4

(3/2,0)

(0,-3/2)

(-1,0)

(0,2)

(13/2,0)

(0,13/2)

(3/2,5), Z=8

(4,5/2)

(5,4), Zm=9

(3,3) ,Zm=9

Here we see that Zm = 9, and the corresponding vertex is (3, 3).

Final solution : (x1 = 3, x2 = 3)⇒ (Zmax = 9).
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4. The following problem is called the stagewise shortest path problem:
You are given n cities, which are partitioned into (N + 1) stages. City O is the only city in Stage 0 and city D is the
only city in Stage N . Each city in stage k can advance to any city in stage k + 1, for k = 0, 1, 2, . . . (N − 1). The
distance between city i and city j is denoted by dij .

Formulate the dynamic programming recursion for the stagewise shortest path problem.

Solution:
Let vi, i = 1 . . .m denote the ith city with v1 = O and vm = D. Also, let Vk denote the set of cities in stage k. Thus,
V0 = {v1} and VN = {vm}. For all cities vi ∈ Vk let D(i, k) represent the length of the stagewise shortest path from
v1 to vi ∈ Vk. Thus, we can define D as follows:
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• D(1, 0) = 0.

• For each vi ∈ Vk, D(i, k) = minvj∈Vk−1(D(j, k − 1) + dij).

The goal is to find D(m,N). 2

5. Compute the value of an American put option on a stock with current price equal to $100, strike price equal to $98,
and expiration date five weeks from today. The yearly volatility of the logarithm of the stock return is σ = 0.30. The
risk-free interest rate is 4%. Use a binomial lattice with N = 5.

Solution: On page 246 of the textbook, this problem is solved for the case N = 4. Since the values of all parameters
are the same, we are going to have the same recursions as in the textbook. They are the following:

v(N, j) = max{c− uj · dN−j · S0, 0},

when j = 0, 1, ..., N , and

v(k, j) = max{ 1
R
· [pu · v(k + 1, j + 1) + pd · v(k + 1, j)], c− uj · dk−j · S0}.

k = N,N − 1, ..., 0 and j = 0, 1, ..., k. By taking N = 5, and using the values of the constants from the textbook,
one can get the following values for v(k, j), and in particular, for v(0, 0). The calculations are done via a program
written on C + +.

0

2.74

04.33

1
1.14

0
6.64

1
2.02

2
0.26

0
9.75

1
3.52

2
0.52

3
0.00

0
13.35

1
6.00

2
1.04

3
0.00

4
0.00

0
16.80

1
9.75

2
2.09

3
0.00

4
0.00

5
0.00

Figure 1: The values of v(k, j)
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