CS 491 Minimum-Cost Flow Problems

Zi Zhuang

1. Minimum-cost Flow Problem

We recall that the Maximum Flow Problem is the problem defined below.
Maximize f.(s) (1.0)
Subject to
f:(v)=0,forall v V\{r,s}
0<x,<u,forall eDE.

7 is the source and s is the sink.

In a Minimum-cost Flow problem, every node has a demand and the goal is to find a feasible
flow X of minimum cost .
We take as our standard minimum-cost flow model as the following problem:

Minimize 2(c,x, :eE). (1.1)
Subject to
f-(v)=b, ,forall vOV

0<x,<u,forall elE.

f.----Net flow into v, or the excess of x atv
b,----- Demand of node v, If b, <0, we can think of the demand as “supply”

v

u,----- Capacity of edge e

The Transportation problem is a special case of the Minimum-cost flow problem. Here G is
bipartite with bipartition {P, O} and we are given positive numbers a,, pUP and b,,qUQ, as

well as costs ¢, pg L E as shown in Figure 1. We define the problem as

Minimize (¢, x, : pgUE). (1.2)

prq prq
Subject to

2(x,, :pUP,pgUE)=b,, forall ¢UQ
2(x,, :qUQ0,pgUE)=a,, forall pOP
x,, 20, forall pgUE.

e OA o
b. .B
0O OC
d. .D

Figure 1. A bipartite graph

If we allow also constraints of the form x, <u, with u, finite, we have a capacitated
transportation problem. In either case, multiplying each of the second group of equations by —1,
and putting b, = —a, for v P, we get a problem of type (1.1). If u, is o, for all e[JE, such a
problem is called a transshipment problem.

The dual of (1.1), obtained by first writing the constraints x,, <u, as —x, 6 =-u, ,1s

Maximize 2(b,y, :vUV)-2(u, z, :vwlUE) (1.3)

W vw

Subject to
-y, ty, —z, <c,forall vwlOE

z,, 20, forall vwOE.

If u, =c , then there is no dual variable z because the corresponding constraint

w2

x,, <u,, 1s missing from (1.1).

Given y {y,isassociated with note v},v1}, it is convenient to denote c, +y, —y, by

c,,,» and call ¢, reduced cost of edge vw. Hence a feasible solution (y,z) of (1.3) satisfies

w2

¢, 20 if u, =00 . Moreover, if u, # o,then z, must satify only z, =0and z, 2 —c, . Therefore,

z, =max(0,—c,).

In terms of y the complementary slackness conditions for the pair (1.1), (1.3) of the
problems can be written

x,>00 —c¢, =max(0,—c,)
0 —c,<0
z,>00 x, =u,,thatisl] —¢c, >0 x, =u,

Thus only y 1is necessary to describe a feasible or optimal dual solution. The
Complementary Slackness Theorem then gives the desired characterization of optimality.

Theorem 1. A feasible solution x of (1.1) is optimal if and only if there exits a vector y, ,vUV
satisfying for each e J E

¢, <00 x, =u, (#x)
c,>00 x,=0

Proof: Follows from the above discussion.
Definition 1: Given a path P in G, not necessarily directed, we define the cost of P as

c(P) =2(c, : eforwardin P) — Z(c, : ereversein P)

Definition 2: Given X = x, : e J E,satisfying 0 < X <u, we define the auxiliary digraph G(x) as
we did in the context of maximum flows, except that we include a notion of arc cost.
Foreach wlUE, x,, <u,,c' =c

w2 vw W

For each vwUE, x,, 20, we include wy L1 E(G(x)) with cost ¢' = —c

vw

Then every x -incrementing path in G corresponds to a dipath in G(x) having the same
cost.

In particular, if x is a feasible solution of (1.1), then an X -incrementing circuit of negative
cost gives a solution of lower cost.

Figure 2. (é, ¢,u ,Xx)and its auxiliary digraph

Figure 2 illustrates some of these ideas. On the left is G; numbers beside arc e are c,,u,,x,.
On the right is G(X). Notice that G(x) has a dicircuit of cost —2, having node-sequence p,b,q,p.

The corresponding circuit of G can be used to produce a feasible solution whose cost is lower by
6.

Theorem 2: A feasible solution x of (1.1) is optimal if and only if there is no X -incrementing
circuit having negative c-cost.

Proof: Add a node r to G(x) and, for each vV, an arc rv with ¢', =0. If we solve the

shortest path problem in this new digraph G’, we get either a negative-cost dicircuit or a feasible
potential. A negative-cost dicircuit cannot use », and hence corresponds to a negative-cost X -
incrementing circuit of G.A feasible potential y satisfies

y, tc 2y, forall vwOE(G(x)).
D yv +va Zyw’ lf wi <uvw

D yv _va 2yw’if wi >O

which are equivalent to the conditions of Theorem 1.
An immediate consequence of the method of proof, is the following:

Theorem 3: Suppose that (1.1) has an optimal solution and c is integral. Then y in Theorem I

can be chosen integral; equivalently, the dual linear-programming problem of (1.1) has an
optimal solution that is integral.

Proof: Since the cost-vector is integral, the cost of the shortest path in the proof of Theorem 2 is
also integral. So y can be chosen integral.

Theorem 4: Suppose that (1.1) has a feasible solution. Then it has an optimal solution if and
only if there exists no negative-cost dicircuit of G, each of whose arcs had infinite capacity.

Proof: If there is such a circuit, then clearly there is no optimal solution. Otherwise, we can
choose z,= max (0,—c,) if u, # or simply find y such that ¢, 20 for all vw with u, =c .

Deleting all arcs of finite capacity from G, adding a new node » and an arc »v of cost 0 for each
v UV . The resulting digraph had no negative-cost dicircuit and hence has a feasible potential y,

which has the desired property.

1.1 Reduction from min-cost flow to transshipment problem

We can transform the (1.1) problem into a transshipment problem by taking the reduction.
See Figure 3. Given an arc e=vw with u, # o, replace e by two nodes p,q and three arcs

vp.qp,qw with ¢, =¢,,c,, =¢c,, =0,b, =u,,b, =-u,; the new arcs have infinite capacity. And

the new problem has O(m+n) nodes and O(m) arcs.

CCSUC

Figure 3.Getting rid of capacities

2. Primal Minimum-cost Flow Algorithm

The primal minimum-cost flow algorithm was first proposed by Kantorovich [1942]. The
name comes from the fact that at every step such an algorithm has a feasible solution to the
“primal” linear-programming problem, that is, the minimum-cost flow problem.

Augmenting Circuit Algorithm for the Min Cost Flow Problem

Find a feasible solution X ;
While there exists an augmenting circuit
Find an augmenting circuit C;
If C has no reverse arc and no forward arc of finite capacity, then stop;

Augment x on C.

How to find a feasible solution? We form a digraph G’ with V'=V {r,s}. Each vw E is
an arc of G’, and has capacity u . Foreach v V with b, <0, there is an arc rv with u,, =-b,.
For each vV with b, >0, there is an arc vs with u,, =b,. Now apply the Augmenting Path

Algorithm to find an (r,s)-flow in G* of value (b, v V,b, >0) . Then the restriction of the

flow to G is a feasible solution to the original problem.

Figure 4 shows an bad example for the Augmenting Circuit Algorithm. Add an arc s with
¢, =—land u, =0, give all original arcs a cost of zero, and put all demands equal to zero.

sr

Since we know that the number of steps in the basic augmenting path algorithm can be
unacceptably high, we can get the same conclusion for the Augmenting Circuit Algorithm. So

the algorithm may not terminate.

Figure 4. A bad example for the Augmenting Circuit Algorithm

How to find “good” augmenting circuits? One idea is to find a most-negative augmenting
circuit at each step. However, in the above maximum flow example, every negative cost
augmenting circuit is most negative, since each has cost —1, so these may not provide a good
choice. A better idea is to hind an augmenting circuit whose* average arc cost” is small. The
mean cost of a circuit C of k arcs is its cost divided by k. Notice that in the maximum flow
setting, a minimum-mean-cost circuit is a good choice--- it corresponds to a shortest augmenting
path!

3. The Network Simplex Method

The Network Simplex Method is an interpretation of the linear-programming simplex method
applied to the minimum cost flow problem.

We assume that the digraph G has a spanning tree. It is convenient to present the algorithm
first for the special case of the transshipment problem, that is, to assume that u, = o for every arc

e. A tree solution for the transshipment problem is

f.(v)=b,, forall vOV
x,=0 forall eOT

Proposition 1: Let v, w be nodes of a tree 7. Then there is a unique simple path from v to w in T.

A tree T and arc h=pq of T determine a partition of the nodes into two sets, R(7,4) and
V\R(T,h). See Figure 5.

Figure 5. Partition induced by a tree and an arc

R(T,h) is the set of those nodes v such that the simple path in 7 from » to v does not use 4.
Obviously, »JR(T,h). And & is the only arc of T having one end in R(7,4) and one end not in

R(T,h). Thus in any tree solution x associated with 7 the net flow into R(7,/4) must be entirely
carried by 4. That is,

%, =b(R(T,h)), if gOR(T,h)
x, =—b(R(T,h)), Otherwise

Proposition 2: A tree 7 uniquely determines its tree solution.

Theorem 5: [If (G, l;) has a feasible solution, then it has a feasible tree solution. If it has an
optimal solution, then it has an optimal tree solution.

Proof: Let x be a feasible solution. If X is not a tree solution, then there is a circuit C, each of
whose arcs carries positive flow. We may assume that C has at least one reverse arc, since
otherwise we can replace C by the circuit defined by the same sequence taken in reverse. Now let
€ =min(x, :eareversearcof C). We replace x, by x, +€ if e is a forward arc of C, and by

x, —€ if e is a reverse arc of C. The new x is feasible and has fewer arcs carrying positive flow.

Continuing this procedure, we get a feasible tree solution.

If X is an optimal solution, observe that the cycle C must have cost zero. This is because
neither C nor its reverse can have positive cost as per Theorem 2! Thus we can use the same
construction that we used for the feasible case to conclude that if there is an optimal solution,
there must be an optimal tree solution.

The Network Simplex Method maintains feasible tree solutions and looks for negative-cost
circuits of a special kind. For each arc e =vw[T, there is a unique circuit C(7,e) having the

following properties:

(a) Each arc of C(Te) is an element of 7' U {e};

(b) e is a forward arc of C(7e);
(c) The initial node s of C(7,e) is the first common node of the simple paths in 7 from v and
wto r.

Figure 6 illustrates these conditions.

Figure 6. Example of C(7e)

Consider y, where y, is defined as the cost of the simple path in 7 from r to v. Notice that,
for any two nodes v, w, the cost of the simple path in 7" from v to w is just y —, . Hence the

reduced costs ¢, defined by

va' = CVW + yv - y]/V Satisfy
¢,, =0forall vwlT;
c,, 1s the cost of C(T,e) for all vwwlE\T

It follows immediately from this that, if every C(7,e) has nonnegative cost, then the tree

solution x determined by 7 satisfies the conditions of Theorem 1, so we have the following
result.

Proposition 3: If the tree T determines the feasible tree solution X and C(7,e) has nonnegative
cost for every e[JT,the X is optimal.

Testing whether T satisfies this optimality condition is relatively easy.
1. Compute y — O(n)time
2. Check ¢, 20for all e — O(m)time
Are we sure a circuit of this form is actually an augmenting circuit? We cannot, because it
may have a reverse arc having zero flow. This difficult is illustrated in Figure 7. Here the
numbers at the nodes are the demands, the pair c,,x, is on arc e, and the tree arcs are the
unbroken ones. Then C(7,wr) has positive cost, and C(7,vq) has a reverse arc vw having zero
flow. But X is not optimal—sending one unit of flow on the circuit with node-sequence r,v,q,w,r
gives a better solution.

1,1 RN 1,0
SA
~
~
~
Ir 1,0 ~
~ Y lq
~
~
1,0 NS
~ 2,1
-1 w

Figure 7. No augmenting circuit of type C(7,e)

Using the Network Simplex Method, the basic idea is: Use C(7,e) to find a different tree T
having the same tree solution x. Like the Figure 6 example, T= {vr,wq,vq}.We can state the
preliminary form of the algorithm as below.

Network Simplex Method for the Transshipment Problem

Find a tree T whose associated flow X is feasible;
Compute y, , the (r,v) path cost in 7, for each node v;
While there exists an arc e = vwsuch
Thatc, =c,, +y, -y, <0

Find such an arc ¢;

If C(T,e) has no reverse arc, then stop;

Compute 6 =min(x; : j a reversearc of C(T',e));

Find a reverse arc & of C(7,e) with x, =0 ;

Augment X by 8on C(T,e);

Replace T by (T'U{e})\ {h};

Update y .

How to find the initial tree and flow? We use the tree 7 whose arcs are
{rvovOV\{r},b, 20} U {vr:vOV \{r}b, <0}. If such an arc does not exist in G, add it to G,

with a large enough cost. These extra arcs are called artificial arcs. If the original problem is
feasible, then in the optimal solution, no artificial arc can carry positive flow!

Proposition 4: In an iteration of the Network Simplex Method, let 7 be the old tree,

T= (T U{e})\ {h} be the new tree, y be the old path costs, and y be the new path costs. Then,
where e =vw,

y, =y, forallg UR(T,h)
v, =y, te,,forallgOR(T,h)if vOOR(T, h)
v, =y, ~¢,forallg UR(T,h)if wR(T,h).

Proof: If ¢ 1R(T,h) then the (7,q)-path in the new tree is the same as that in the old tree, so the
cost is the same. Now suppose that ¢ L1 R(T,4), and that vLIR(T,h) . Then, where e =vw, the

(r,q)-path in T consists of the (7, v)-path in 7', together with e, together with the (w,g)-path in T.
(See Figure 7.) Therefore, y, =y, +c, +(y, —»,) =y, +c,. For the last case, where e =vw, the

(r,9)-path in T consists of the (r,w)-path in T, together with e, together with the (v,¢)-path in 7.
We can tell that y, =y, —c, +(y, =»,) =y, —c,.(See Figure 9.)

h

Figure 8. The (r,q)-path in T ,wherev O R(T,h)

Figure 9. The (7,q)-path ,where wll R(T, h)

10

