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1 Introduction

A graph G=(V, E) consists of vertex-set } and edge-set E,we may write e=vw to indicate
that the ends of e are v and w. A subgraph H of G is a graph such that V(H) O V(G),

E(H) O E(G),and each e[JE(H) has the same ends in H as in G. A path P in a graph G is

a sequence v,e.v.e........ € ,vk where each vi is a vertex, each ei is an edge, and for

1 =i =k,the ends of eiare v,,and v.. It is a circuit if it is closed when v/=vx The graph G is
connected if every pair of vertices is joined by a path.

Definition:1.1 A connected graph with no circuit is called tree .
Definition:1.2 A subgraph H of G is a spanning tree if V(H)=V(G).

2  Minimum Spanning Tree Problem
MST(Minimum Spanning Tree Problem):

Given a connected graph G = <V, E > and a real cost ce
for each e[J E, find a minimum cost spanning tree of G.

Consider the following graph with given costs Figure (a) ,we can find the MST from this

graph as Figure (b).
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How can we figure out MST easily? We will present some algorithms later; here we
give some elementary results of graph theory:

Lemma 2.1: Every spanning tree on 2 or more vertices has at least one vertex of degree 1

Proof: By way of contradiction: Let G=(V,E) be a tree with the minimum degree 2; we
show that it must contain a cycle. Starting with an arbitrary vertex say a, construct a path
to the next adjacent vertex (say b) and from b to the next adjacent vertex and so on. Since
each vertex has degree at least 2, we can do this at least n times, i.e., we have a path of
length n. However, any path having n edges, must contain at least one cycle and hence G
cannot be a tree. It follows that at least one vertex must have degree 1. (See Figure 2.1)

Figure2.1
Lemma 2.2: Every spanning tree has exactly n-1 edges

Proof: We argue it by induction on vertices.
(1) Base case: if there are 2 vertices in the tree, it must have exactly one edge, shown as

Figure 2.2:
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Figure 2.2

(2) Assume the Lemma is true for all trees with vertices <n-1.
(3) Show it is true for any tree with n vertices.

a) By Lemma 2.1, a tree must contain at least one vertex of degree 1, so let us delete
that degree 1 vertex.

b) Now the tree contains n-1 vertices; By inductive hypothesis we know that a tree of
n-1 vertices has exactly n-2 edges.

Put the vertex back into the tree (just added only one edge for that is degree 1vertex),
so the tree with n vertices should have (n-2)+1=n-1 edges, done.

3 Algorithms for the MST problem

3.1 The cut theorem & Prim’s Algorithm

Definition 3.1.1: Given G=<V E>, S OV, the set &S)= {vw | v[IS, wLIS } is called
a cut or cut-set.



Example of a cut:

N

Figure3.1

From Figure 3.1, &S)= { ew , eac }is a cut and S={a}, V/S={b,c} .

Proposition: If we add an edge into a tree, it creates exactly one cycle, then we remove
any edge of that cycle ,it recreates a tree.

Lemma 3.1.2: Blue Rule
The lightest weight edge of any cut must be part of the MST.

Proof:

S v/s
the lightest edge

Figure 3.2
Consider a cut &) such that the minimum weight edge of &S) (say e) is not part of any
MST. Clearly this cut is connected in the MST by some edge say e’, where w(e) < w(e’).
Throw e into the tree; from above proposition, we know it must create a cycle. Remove
e’ from the cycle recreating a tree of weight at most the weight of the original tree.

The implementation of Prim’s Algorithm for MST

o Start with 7={r} (r be any vertex of the 7),
* Add the lightest weight cut edge to 7,
* Stop when you have a connected tree.
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Applying Prim’s Algorithm to Figure 3.3,
Start with vertex a: the lightest weight edge is ab (7<13<20), so add ab into T.

For b: the lightest weight edge is bc (8<12), add bc into T.
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And go on, for ¢(5<6), we can add cd into T,
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for d(4<20), de is added into 7, the following Figure 3.4 is just MST.
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3.2 The cycle theorem & Kruskal’s Algorithm

Lemma 3.2.1 Red Rule
Given any cycle in a graph, the heaviest edge cannot be part of any MST.

Proof:

Let us consider a cycle C with the heaviest edge e, such that e is part of some MST, as
shown in Figure 3.5 :

Claim: There is at least one-edge of C, which creates a cycle with e in T.
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Figure 3.5

Throw the edges of the cycle C into the 7 one by one.

If no edge of the cycle creates a cycle with e, then we cannot find C in the graph either
(since all the edges of the cycle have been added without creating the original cycle).
Thus, there must exist at least one cycle with e; deleting e from the cycle creates a cycle
of weight at most the weight of the original tree.

The implementation of Kruskal’s Algorithm for MST

*  Order the edges by weight ( such as
e<e<ex......... <e.),

* Throw each edge into the MST as long as it does
not create a cycle.

Take Figure3.3 For example:

First We order the edges by weight:

de, dc, ce, ab, bc, be, ae, ad.
And then add de, dc, ab, bc into the 7,ensure that these edges cannot create cycle.
We get MST as shown in Figure 3.4

3.2.2 Greedy proof of Kruskal’s Algorithm



\

* Suppose T produced by Kruskal’s Algorithm, the edges ordered by weight, such as
eier<es<...ek...<em. el must be part of any MST.

eLet T' be the MST produced by some other Algorithm, the ordered edges by weight,
suchasei'<ex’'<...ex'..<em’. We must have ei= e1’; otherwise e; can be thrown
into the non-Kruskal tree and any edge other than .; can be deleted from the resulting
cycle to create a tree of weight at most the weight of the original tree.

*Let & be the first index such that ex’ Z ex. Clearly, ex' = ex; or else e, would have been

considered first and hence would be in 7.

*Push ek into 77, a cycle is created but only with edges e;’...e,,” .This is because, if a

cycle was created with edges e;....ex, then that cycle would exist in 7" as well.

*Keep inserting edges of 7 into 7 and deleting non-7 edges as they are created; finally 7

is created from 77 and we are done.

4 Basis Extension Theorem

Definition 4.1 A setof edges B [ E, where G = <V, E > is called MST-extensible,
if B 0 T for some MST .

Theorem 4.2 Let Bis a MST- extensible set, let D be a cut-set such that Bn D=@and
let e be a minimum weight edge of D, then BU {e} is MST-extensible.

Proof:
¢ B is MST-extensible, so B U T (some MST),

(a) If {e}J T, we are done.

(b) Consider the case that {e} is not [J 7. The tree 7" must contain at least one edge of
the cut-set D say f# e; if not, it is not connected. Adding {e} to 7, creates a cycle
with f. Since e is the lightest edge of the cut-set D, throwing f out recreates a tree of
weight at most the original weight.

References
[1] William Cook, William H.Cunningham, William Pulleyblank, and Alexander Schrijver.
Combinatorial Optimization. John Wiley & Sons ,1998.



