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Shortest Path problems are ubiquitous in real-world applications; both in their
own right as well as in the modeling of certain optimization problems. There are a
number of versions of the Shortest Path problem, viz. Single-Source, All-Pairs, etc. In

this course, we shall focus on the Single Source Shortest Path (SSSP) problem only.

Digraph: A directed graph or digraph G consists of disjoint finite sets V' =V (G) of
nodes and E = E(G) of arcs and functions associating with each el E a tail #(e) UV and
a head h(e) UV . In other words, each arc has two end nodes, and a direction from one to

the other.

Shortest Path Problem

Input: A digraph G, anode r )V, and a real cost vector (c, LI E).

Objective: To find, for each vV, a dipath from 7 to v of least cost (if one exists)

Although the problem specifies real costs (c, L] E), for practical purposes, we can

assume that the costs are rational or even integral!
Consider the following example:

Example 1. Find the shortest path from source node 7 to a in the following network,
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There is no shortest path from r to a.

Reason: digraph depicted in Figure 1 contains negative cost cycle, the cycle between r
and b. Instead of going from 7 to a directly, one can travel to » and then come back to
and make the cost -4 plus 3 to go to a. One can keep traveling from r to b and lowering
the cost in each trip. Hence the shortest path problem is not defined in the presence of

negative cost cycles.

Shortest Path Structure: The structure containing the shortest path from the source node r
to every other node in the network is called the shortest path structure.

Observation: Shortest path structure should be a tree.

Reason: If there is a cycle in the shortest path structure between nodes a and b, by
definition, should have a positive cost (weight). One can remove that cycle and still reach

b from a, at cost which is at most the original cost!.

Figure 2.

Negative cost cycle can occur in a number of applications. One application is the
currency arbitrage problem.

Statement of the problem:

We are given m currencies ¢;,¢y, ...c,. and the matrix R;; of pairwise conversion rates,
where r;j; represents the number of units of ¢; that one can get from 1 unit of ¢;. The
question that we face is the following: Can we start with k units of some currency, say c;,
go through a series of conversions to other currencies and finally return to currency c;,
having more than k units of ¢;? The phenomenon which makes such a trip possible is

called arbitrage. The following relationship holds for all currencies:

Ty = Tij Ty -



We construct a complete directed graph, having nodes ¢;,¢5,...c,, and weight—logr; on

the edge between c; and c;.
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Claim: There exists arbitrage if and only if there exists a negative weight cycle in the
above graph.
Proof: Exercise!

Feasible Potentials:

[y O
O

O

A vector yis given, y = E}? Band it estimates the shortest paths from 7 to every other
70

vertex in the network. We call y a feasible potential if it satisfies the following

conditions:

(M y-=0

2) y, tcpy 2y, forall vwwl E

Obviously the shortest path from source r to itself is zero. The second condition is the

basic idea behind all methods for solving the shortest path problems. Suppose there exists

a dipath from r to v of cost y,, for each v} and we find an arc vwU E satisfying
vy t ¢ <, . One can improve y,,, by adding the vw to the dipath and going from r

to w through v and the cost of the dipath from » to w would be y, +¢,,, = »,,.



If an assignment y is given in which y, =a #0and y, +c¢,,, 2 y,,, one can obtain the
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o - y
feasible potential by subtracting y, fromall y,s, vOV . y' = EYZ : " S Hence the
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important condition is y, +c¢,,, = »,,. The following figure shows the notion of

appending arc vw to the dipath between r and w and improving the y,, .
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Lemma 1:

Let y be a feasible potential and let P be a dipath from r to v. Then, ¢(P) = y,, (i.e. cost
of path (P) = »,).
Proof: Let vy, ep,vy,ep,...,e;, v , where vy =7 and v, =v be the dipath P. Then
k
c(P)= z c(e;) 2 z(yvi W ) :yvk Wy, =My
e UP £1

Subpaths of shortest paths are shortest paths, for instance v is in the least cost dipath P

from r to w, then P splits into two dipaths, P, from r to v and P, from v to w. Obviously

if A is not the least cost dipath from 7 to v, one can replace it by a better dipath and at the

same time obtain a better dipath from » to w.

Ford's Procedure:




Lemma 1 provides a stopping condition for the shortest path problem. Suppose there

exists a feasible potential 3 and for each vV there is a y , which is the least cost path
from r to v. If there exists a vertex w and an arc vw, which violate y, +c¢,,, 2 »,,, we
replace y, with y +c . This procedure can be initialized by allowing y. =0 and

(y, =) for vOV and v # r . The least cost dipath from r to w, which contains arc vw,
will satisty y, +c¢,,, = »,,. This dipath contains the least cost dipath from r to v plus arc

vw. So knowing the last arc information at each node allows us to trace the least cost

dipath from r. To do this, we need to keep the predecessor, p(w), of each node wl V",
and set p(w)to v, whenever the least cost dipath to w, y, issettobe y, +c,, =y, .
An arc vw violating y, +c,,, = y,, is called incorrect. To correct vw, one needs to set
Yy tcp =y, and p(w) =v.

To start Ford’s procedure one needs to initialize 3, p which means toset y, =0,
p(r)=0, y, = and p(v)=-1 for vV and v# r. p(v) =—1 means that the

predecessor of v is still not defined.

Ford’s Procedure

Initialize y, p;
While y is not a feasible potential
Find an incorrect arc vw and correct it.

Example: Consider the following network, apply the Ford’s Procedure and obtain the

shortest paths to each node.
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Initialize y, p;
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If we consider other arcs, ¢b, bc, ab, we will not find and incorrect arc so the shortest

path structure is:
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Lemma 2:

If (G, c) has no negative-cost cycle, then at any stage of the execution of Ford'’s
Procedure, we have:

(1) If y, # oo, then it is the cost of a simple dipath from 7 to v.

(i)  If p(v) # -1, then p defines a simple dipath from » to v of cost at most .

Proof:
Let y/ be the value of y,, which is the cost of a dipath, at jth iteration of Ford’s
procedure. Assume that the dipath is not simple, hence there is a sequence of nodes,

VosVysVysees vy =V, and iteration numbers ¢, < g, <g, <...<g, such that:

vt te(vi,v) =y, 1<i<k.



The cost of the resulting dicircuit is:

> i v) =Y Oy =y =i -y
one should consider that the value of y, at the last iteration, ¢, , has been lowered and
yi— y;’o‘) < 0. The dipath has a negative cost which is a contradiction and (i) is proved.

To prove (ii), consider that p defines a closed path from r to v. there is a sequence,

VosVisVasesV, =V and p(v;) =v,_.Since y, =y, 2 c(p(v),v), the cost of the resulting

closed dipath is less than or equal to zero. And consider a case in which the predecessor

has been most recently assigned, which means the value of y ,,, has been assigned and is

lowered. Then the cost is strictly less than zero, which is a contradiction, negative cost
cycle.
Consider the dipath P, v ,e,,v,,€,,V,,....,e,,v, =v, v, =r and p(v,)=v, for1<i<k.

The cost of this dipath: ¢(P) < Z Y, ~V..) =Y, =Y. =Y,,sothe cost of this dipath is

at most y, and that’s what we need.



