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1 Ford Procedure (continuing from previous lecture)

Ford Procedure (for solving Shortest Paths Problem):

while (~y 6= a feasible potential)

Find an incorrect edge (evw : yv + cost(evw) < yw)

Relax evw (yw = yv + cost(evw))

The Ford Procedure (called “Ford’s Algorithm” in the textbook [1, p.21]) can be used to solve the
Shortest Paths Problem for graphs that do not contain negative cycles. We call it a “procedure” rather than
an “algorithm” because it is not guaranteed to terminate. In particular, the Ford Procedure will run forever
on graphs containing negative cycles.

As the Ford Procedure runs on a graph, the values in ~y will decrease, converging to a set of shortest
paths from r to all v ∈ V . The overall order of relaxations is arbitrary, and a particular edge may be relaxed
more than once. Consider the following shortest path from a to d:

a b
edge ab relaxed in iteration q_alpha

c
edge bc relaxed in iteration q_beta

d

Suppose this shortest path from a to d is the output from an application of the Ford Procedure, that the
edge eab was most recently relaxed in iteration qα (of the code within the while loop above), and that the
edge ebc was most recently relaxed in iteration qβ .

Is it possible that α > β—that is, iteration qα occurred after iteration qβ? Before the most recent
relaxation of eab, the value of yb must have been greater than its relaxed value, otherwise the relaxation
would not have been done. If α > β, then this relaxation made yb less than what it was at the time ebc was
relaxed. Since eab is part of the path to c, yc may be decreased further to take into account the decrease in
yb—this means ebc will need to be relaxed again. Either α < β or there are more relaxations to be done; so
α must be < β if this is truly the shortest path.

Now consider the same path but modified to include a cycle:

a b c
edge bc relaxed in iteration q_beta

edge cb relaxed in iteration q_alpha
d

Is it possible this is a shortest path? If so α < β < α < β . . . Obviously this would lead to a contradiction.
We conclude that no shortest path may contain a cycle.
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2 Special Cases

For certain special graphs we can verfiy ahead of time that there will be no negative cycles. We will consider
three special cases: unit-cost graphs, DAG’s (directed acyclic graphs), and nonnegative-cost graphs. Before
presenting and proving algorithms for these special cases, we need to define the “scan” operation, which will
be used by these algorithms:

scan(v):

1. Let L(v) = {a : eva ∈ E}.

2. Relax all edges eva, where a ∈ L(v) (all edges beginning at v).

2.1 Unit-Cost Graphs

We define a “unit-cost digraph” as a weighted digraph in which all weights are equal and ≥ 0 (and therefore
all weights may be set = 1 without losing any information). Since all edge weights are ≥ 0, the graph cannot
have a negative cycle. So we could use the Ford Procedure and be guaranteed termination. But the shortest
path may be found more efficiently if we exploit the structure of the unit-cost digraph.

We observe that the shortest path will be the path with the least number of edges (since all edge weights
are equal). This means that a BFS (breadth-first search) of the graph, beginning at r, will give us a set of
shortest paths from r to all other vertices. And BFS will process each edge only once—that is, no edge will
need to be relaxed more than once if we use the following algorithm, based on BFS:

BFS-based shortest paths algorithm for unit-cost digraphs:

1. Initialize FIFO (first-in, first-out) queue to empty, all ~y values to ∞, and all ~p
(array of vertices’ parents) values to −1.

2. Put r into the queue, set yr = 0, and set pr = r.

3. while (queue 6= empty)

a) Extract vertex v from queue head.
b) scan(v), updating ~y and ~p.
c) As v is scanned, check to see whether child vertices of the edges from
v have ever been in the queue; if not, put them in the queue.

For example, we can run the algorithm on the following unit-cost digraph:

r a
1

b

1

c
1

1

After initializing the queue, ~y, and ~p, we put r into the queue, set yr = 0, and set pr = r:
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v ∈ V ~y ~p
r 0 r
a ∞ −1
b ∞ −1
c ∞ −1

queue = r →

We take r out of the queue and scan(r) (relax all edges whose tails begin at r—in this case that’s era
and erb). Also, since a and b have not yet been in the queue, we put them into the queue. Updating ~y, ~p,
and the queue, we have:

v ∈ V ~y ~p
r 0 r
a 1 r
b 1 r
c ∞ −1

queue = a→ b→

We take a from the queue, scan it, find that c has never yet been in the queue, and update accordingly:

v ∈ V ~y ~p
r 0 r
a 1 r
b 1 r
c 2 a

queue = b→ c→

We take b from the queue and scan it. But, although a is a child of b, there are no edges to relax, since
ya < yb+ 1. Finally, we take c from the queue and find that no changes result from scan(c). Since the queue
is empty, we are done.

To prove the correctness of this approach, we note first of all that it must be (trivially) correct for v = r
(yr is initialized to 0 and never changes after that). Since it is true in that trivial case, we know it must
be true for v ∈ {the set of vertices one edge away from r}, where yv = 1, since yv couldn’t possibly be less
than 1 in a unit-cost digraph. By induction, the algorithm must be correct for all v ∈ V because of the
optimal substructure property of shortest paths (shortest paths contain shortest subpaths): the algorithm
will assign 1+ some correct ~y value to each new ~y value, which must be the shortest because no better
edge (cost(e) < 1) can exist in a unit-cost digraph. In the case of vertices not connected to r, yv = ∞ at
initialization and doesn’t change.

2.2 DAG’s (directed acyclic graphs)

A DAG is a directed graph with no cycles. It may have negative edge weights, but since there are no cycles,
obviously there are no negative cycles. We could therefore solve the shortest paths problem for a DAG using
the Ford Procedure and be guaranteed that the procedure would terminate. But as we found with unit-cost
digraphs, it is possible to exploit the structure of a DAG and thereby solve the shortest paths problem more
efficiently. The important feature of a DAG is that there will always be a “topological sort” of the vertices:

Topological Sort:

An ordering of the vertices in a DAG such that if eij ∈ E, then vi precedes vj .

A topological sort may be thought of as an arrangement of vertices so that all of the edges point in the
same direction. For example:
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a b

c

d

e

r

Although it is difficult to see, the graph above is a DAG and can be rearranged so that all of its edges
point from left to right:

r

b

a

d

e

c

The topological sort of this graph’s vertices would be r, a, c, b, d, e (the order from left to right in the
graph above). For our DAG shortest paths algorithm, we will also need the following lemma:

Lemma:

Deleting a vertex from a DAG produces a DAG structure.
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For the proof (by contradiction) of the lemma, assume we have deleted a vertex and the resulting graph
has a cycle (it is not a DAG). If so, there must have been a cycle in the original graph, because deleting a
vertex (and any edges connected to that vertex) could not have created a new cycle. Therefore the original
graph must not have been a DAG. If the original graph had been a DAG, the new graph could not contain
a cycle.

DAG shortest paths algorithm:

1. Initialize ~y values to ∞ and set yr = 0; initialize ~p values to −1 and set pr = r.

2. Create a list L with all vertices v ∈ V ordered in a topological sort.

3. while (L 6= empty)

a) Remove first vertex v from L.
b) scan(v).

We can run the algorithm on the following DAG:

r

b

-3

a

7

d

4

e

21

c

2

-18

-6

1

s

2

After the first two steps, we have:

v ∈ V ~y ~p
r 0 r
s ∞ −1
a ∞ −1
c ∞ −1
b ∞ −1
d ∞ −1
e ∞ −1

L = r → s→ a→ c→ b→ d→ e→

We remove r and scan it:
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v ∈ V ~y ~p
r 0 r
s ∞ −1
a 7 r
c ∞ −1
b −3 r
d ∞ −1
e ∞ −1

L = s→ a→ c→ b→ d→ e→

We remove s and scan it, but because ys =∞ this has no effect on ~y or ~p. So we remove a and scan it:

v ∈ V ~y ~p
r 0 r
s ∞ −1
a 7 r
c 9 a
b −3 r
d 14 a
e ∞ −1

L = c→ b→ d→ e→

We remove c and scan it:

v ∈ V ~y ~p
r 0 r
s ∞ −1
a 7 r
c 9 a
b −9 c
d 3 c
e ∞ −1

L = b→ d→ e→

We remove b and scan it:

v ∈ V ~y ~p
r 0 r
s ∞ −1
a 7 r
c 9 a
b −9 c
d −5 b
e −7 b

L = d→ e→

We remove d and scan it, which has no effect; nor does e, so we are done. A topological sort can be
done in time = O(n). It should therefore be clear that this shortest paths algorithm will terminate in time
= O(m+ n) (m = |E| and n = |V |).

For the proof of this algorithm’s correctness, we note first that any vertices v not connected to r will
have yv =∞ at initialization and will not change. For finite-length paths to vertices v (connected to r) from
r, since edges are relaxed in order according to the topological sort, the vertices in the path will appear in
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the same order as they appear in the topological sort (for any path from r to v found by the algorithm, only
vertices preceding v in the topological sort may appear in that path).

For any shortest path P from r to vk (found by the algorithm), we know that the shortest paths to all
vertices between r and vk (subpaths of P ) in that path would have been found first, in order according to
the topological sort. Clearly the first subpath found (from r to v1 is just one edge, and is found correctly
by the algorithm (if there is a lower-cost single edge alternative to that subpath, it would have been found
before progressing through the topological sort to v; any shorter multiple-edge path would include preceding
vertices in the sort, since there are no negative-cost edges). The next subpath found (from r to v2) would
be two edges long, and would consist of the shortest path from r to v1 and from v1 to v2 (it is the shortest
path from v1 to v2 for the same reasons the previous path (from r to v1) must be shortest. Progressing
through the algorithm in this way, we build the path from r to vk by putting together subpaths, which are
each shortest paths. Therefore our final result must be the shortest path from r to vk.

2.3 Dijkstra’s Algorithm

The most important special case we consider of digraphs without negative cycles is that of digraphs with no
negative weights (cij ≥ 0 ∀i, j). Edge weights representing real-world cost, weight, capacity, time, distance,
etc. will always be non-negative, so many (most) practical problems fit into this special case. These are the
graphs for which Dijkstra’s Algorithm may be used to solve the shortest paths problem (note: for Dijkstra’s
Algorithm we require a “priority queue” of vertices ordered by their ~y values—this just means we are able
to remove from the queue the vertex with minimum ~y value).

Dijkstra’s Algorithm:

1. Initialize ~y values to ∞ and set yr = 0; initialize ~p values to −1 and set pr = r.

2. Put all vertices v ∈ V into a priority queue keyed by ~y values.

3. while (queue 6= empty)

a) Remove vertex v with minimum yv from the queue.
b) scan(v).

We can run Dijkstra’s Algorithm on the following graph, which has no negative edge weights (notice the
graph does contain cycles):
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r

a

1

2
b

2

d

1

3

c

1

2

3

3

e

2

1

After the first two steps, we have:

v ∈ V ~y ~p
r 0 r
a ∞ −1
b ∞ −1
c ∞ −1
d ∞ −1
e ∞ −1

queue = r → c→ a→ b→ d→ e
(a, b, c, d, e in some aribtrary order)

We remove r, scan it, and update accordingly:

v ∈ V ~y ~p
r 0 r
a 1 r
b ∞ −1
c ∞ −1
d ∞ −1
e ∞ −1

queue = a→ c→ b→ d→ e
(a is now at the head of the queue since ya is the minimum ~y value of vertices in the queue)

We remove a, scan it, and update:
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v ∈ V ~y ~p
r 0 r
a 1 r
b 3 a
c ∞ −1
d 2 a
e ∞ −1

queue = d→ b→ c→ e

We remove d, scan it, and update:

v ∈ V ~y ~p
r 0 r
a 1 r
b 3 a
c ∞ −1
d 2 a
e 4 d

queue = b→ e→ c

We remove b, scan it, and update:

v ∈ V ~y ~p
r 0 r
a 1 r
b 3 a
c 4 b
d 2 a
e 4 d

queue = e→ c

We remove e and scan it, but no changes result; nor do any changes result from a scan of c. So we are
done. For the proof of Dijkstra’s Algorithm, we begin with the following lemma:

Lemma:

When (during the execution of Dijkstra’s Algorithm on a digraph with no negative
edges) vertex v is extracted from the queue, yv is the length of the shortest path
from r to v.

The lemma is trivially true when v = r. When r is removed from the queue, yr = 0 (from initialization),
and the shortest path from r to r (obviously) has length = 0. For vertices v 6= r, we know that yv is the
minimum ~y value of all vertices in the queue (if we think of the queue as the set of vertices that have been
reached but not yet scanned, of those vertices v is the closest to r). If there were a path to v shorter than yv,
it would have to go through one of the other “frontier” (reached but not yet scanned) vertices in the queue
at the time v was removed. But we know that these vertices’ ~y values are all ≥ yv. So if there is a path
through one of these that eventually comes back to v, it must have a negative edge somewhere along the
way or else it can not be shorter than our original yv. Since the digraph has no negative edges, the lemma
must be true for all v ∈ V .
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r

v

y_v

a

y_a >= y_v

b

y_b >= y_v

c

y_c >= y_v

d

At least one of these
edges would have to be
negative if y_v were not

the shortest path to v.

e

f

g

To prove Dijkstra’s Algorithm (by contradiction), let u be the first vertex for which the lemma is false,
i.e. vertex u is extracted from the queue, but there is some path from r to u shorter than yu. Let the actual
shortest path from r to u have length du, where du < yu. If r is not connected to u, du = yu =∞, we have a
contradiction, and the lemma is proved. If r is connected to u, the the shortest path from r to u must exist.

Let S be the set of vertices for which yv is known to be the shortest path for every vertex v ∈ S. Let
x ∈ S be the vertex through which the shortest path to u runs. Let z be a vertex in the path between x and
u (if the lemma is false and yu 6= the length of the shortest path to u at the time u is extracted from the
queue, the true shortest path must exist to be found later after some other intermediate vertex z has been
extracted):
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S

r

x

Known to be the
shortest path from r to x.

z

u

If the path shown above is truly the shortest path from r to u, then yz must be the length of the shortest
path from r to z, and the path from z to u must also be the shortest. But if all this is true, z would
definitely have been extracted from the queue before u, so that at the time u is extracted z is already in S,
and therefore the yu value when u is eventually extracted is in fact the length of the shortest path from r to
u.

2.4 Determining the Actual Shortest Path (not just the length—the actual path)

Suppose we have an oracle (or “black box” algorithm) that gives us ~y. This tool can be used to find the
actual shortest path (the intermediate vertices and edges) from r to v ∈ V (with length = yv). We would
run our oracle and check yv over and over, each time deleting an edge from the original graph. If deleting an
edge causes yv to increase, we put it back. When we get to the point where no edge can be deleted without
increasing yv, we are left with the actual path from r to v.

3 Shortest Paths Problem General Case (Bellman-Ford Algorithm)

In general a digraph may have negative cycles. The Ford Procedure discussed earlier will not terminate
when run on a digraph with a negative cycle. The Bellman-Ford algorithm solves this problem, but before
discussing it we need the concept of “embedding”:

Embedding:

A path P from r to v is said to be “embedded” in an edge sequence S if edges in P
appear in S in the same order as they appear in P .
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The shortest paths algorithms (and procedure) discussed so far all proceed by relaxing edges in some
sequence. The Ford Procedure uses an arbitrary order, the DAG procedure a topological sort, Dijkstra’s
Algorithm uses a priority queue of ~y values, etc. If we had some way of ordering the edges in a graph so
that the relaxation sequence followed the path from r to v, this would give us the shortest path on the first
try (a similar idea was used in the discussion of the Ford Procedure to show that a shortest path may not
contain cycles). For example, this graph shows the shortest path from r to v:

r a b c v

If we could guarantee that our shortest paths algorithm relaxed edges consecutively era, eab, ebc, ecv, we
could know for sure that we had the shortest path after passing across the graph only once. In general, it is
the order of relaxations that is important, not that they be done consecutively. So what we really want is
for all shortest paths to be embedded in the sequence of edges relaxed by our algorithm.

How can we sort edges so that our relaxations proceed in the right order? We start by selecting edges
beginning at r. Clearly all shortest paths must start with edges beginning at r. Next we select edges
beginning one away from r. Again it should be obvious that the second edge in any shortest path will be a
second edge from r. In general, the maximum length of a shortest path will be n− 1, where n is the number
of vertices in the graph. So in constructing our edge sequence for relaxations, we know we have finished
when we come to the set of edges n− 1 away from r.

The Bellman-Ford Algorithm creates the edge sequence described in the last paragraph and then goes
through doing the relaxations in order. There is a finite number of relaxations to be done, so we know the
algorithm will terminate.

Bellman-Ford Algorithm:

1. Initialize ~y values to ∞ and set yr = 0; initialize ~p values to −1 and set pr = r.

2. Create a sequence of edge sets S1S2 . . . Sn−1 ordered by the number of edges away
from r (described above in detail).

3. for (i = 1 to n− 1)

Relax all edges e ∈ Si.

4. if (~y not feasible)

return “There is a negative cycle.”

We can apply the algorithm to the following digraph:
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r

a

2

b
3

0

d

-3

-1

c
2

2

e
1

We begin by selecting edges to put into the set S1 (edges connected to r). These will be era and erb. S2

will get edges eab, ead, eba, ebc, and so on, until we have:

S1 = {era, erb}
S2 = {eab, ead, eba, ebc}
S3 = {eab, ead, eba, ebc, ecd, ece}
S4 = {eab, ead, eba, ebc, ecd, ece}

Sn−1 = S5 = {eab, ead, eba, ebc, ecd, ece}

Notice that the edges from S2 reappear in S3, S4 and S5. This is because of the cycle between vertices a
and b. After initializing ~y and ~p, we have:

v ∈ V ~y ~p
r 0 r
a ∞ −1
b ∞ −1
c ∞ −1
d ∞ −1
e ∞ −1

Relaxing the edges in S1 (era, erb) gives us:

v ∈ V ~y ~p
r 0 r
a 2 r
b −3 r
c ∞ −1
d ∞ −1
e ∞ −1

Relaxing the edges in S2, we have:
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v ∈ V ~y ~p
r 0 r
a −4 b
b −4 r
c −2 b
d −7 a
e ∞ −1

We relax the edges in S3:

v ∈ V ~y ~p
r 0 r
a −5 b
b −5 a
c −3 b
d −8 a
e −2 c

We relax the edges in S4:

v ∈ V ~y ~p
r 0 r
a −6 b
b −6 a
c −4 b
d −9 a
e −3 c

And finally, we relax the edges in S5 (= Sn−1):

v ∈ V ~y ~p
r 0 r
a −7 b
b −7 a
c −5 b
d −10 a
e −4 c

Notice that with each of the iteration, all ~y values seem to be decreasing by 1. This is because we have a
negative cycle between vertices a and b. If we were running the Ford Procedure, it would continuing relaxing
and decreasing ~y values forever, but the Bellman-Ford Algorithm only does relaxations up through the list
of edges in Sn−1. After finishing relaxations, Belman-Ford must verify that ~y is feasible (if ~y isn’t feasible,
there must be a negative cycle). So at this point we check to see whether yv ≤ yu + cost(euv), where u = pv.
We skip the trivial case where v = u = r, and try v = a and u = pv = b:

ya ≤ yb + cost(eba)
−7 ≤ −7 +−1
−7 ≤ −8

Obviously the inequality does not hold, indicating that the graph has a negative cycle and therefore its
shortest paths are unbounded.
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