CS491G Combinatorial Optimization
Push-Relabel Maximum Flow Algorithms
Lecture Notes

Zi Zhuang

1. Motivation and Overview

The Goldberg and Tarjan algorithm introduced the push-relabel method for finding
the maximum flow. In the previous lecture we introduced the max-flow algorithm. There
are cases through, where this algorithm does not have good performance. Consider a
graph with a many-hop, high-capacity path from the source,r, to another node, v, where
connected to the sink, s, by many low-capacity paths. In this topology, the max-flow
algorithm introduced earlier must send single units of flow individually over the
sequential part of the path (from » to v), since no full path from r to s has a capacity of
more than one. This is clearly a fairly time-consuming operation, and we can see that the
algorithm would benefit from the ability to push a large amount of flow from » to v in a
single step. This idea gives the intuition behind the Push-Relabel algorithm. Push-relabel
involves examining vertices with positive flow excesses and pushing flow from them to
vertices that are estimated to be closer to the sink.

2. Description of Framework
For purposes of this section it is convenient to take u,, =x, =0 if vwlE and

wvE.

For a vector X satisfying 0 < x<u, we define the auxiliary digraph G(X) just as
though x were a feasible flow, except that we do not bother with parallel arcs. That is,
we put vl E(G(x)) ifand onlyif x,, >0 or x,, <u,,.

If vw is an arc of G(x), then up to u,, =u, —x, +x, units of flow can be

“pushed” from v to w, without violating any non-negativity or capacity restrictions. (We
call u,, the residual capacity of vw.) Namely, we can increase x,, to u,, and we can

decrease x,, to 0.

Definition: We call x a preflow if it satisfies f.(v) 20 for all vOV \{r,s}.

2.3)

? Is a feasible preflow a flow?
NO, Flow should be equate to 0. Here for vector a, income flow 1 and outgoing flow 2
is1-2= -1

Definition: It is a feasible preflow if it also satisfies 0< x<u .

If we choose the pair (v,w) so that u,, >0 and f.(v)>0, then pushing up to

~

& =min(u,, , f.(v)) from v to w will produce a new feasible preflow. This is what we

v

mean by doing a push on vw. (There is some ambiguity if both vw and wv are arcs of
G and £<u,,. We can resolve it by decreasing x,, as much as possible. That is, we

decrease x,, by €'=min(€,x,,), and we increase x,, by €—¢&'.)

Definition: We call a node vV \{r,s} active if it has positive net flow, that is, if

S:(v)>0.
So a preflow is a flow precisely if there are no active nodes.

Definition: We say that a vector dO (z, O {00})M is a valid labelling with respect to a

preflow x if
d(ry=n,d(s)=0 (1.1)
for every arc vw of G(X), d(v)<d(w)+1.

Notice that d(v) =d (v,s) satisfies all of these conditions except d(r) =n. (Recall

that d‘x‘ (v,w) denotes the number of arcs in a shortest (v, w) -dipath in G(x)). So we can

“almost” get a valid labelling for any feasible preflow.

Corollary: Not every feasible preflow admits a valid labelling

But it is easy to construct some feasible preflow and a valid labelling for it, using
the following procedure, which we call initialize ¥,d . Put x, =u, for all arcs e having
tail , and put x, =0 for all other arcs e[JE . Put d(r)=n and d(v) =0 for all other

nodes vV . It is easy to check that x and d do satisfy (1.1). (Remark: We must assume
that each u,, # o0 .) The existence of a valid labelling for a preflow implies an important

property of the preflow, that is “saturates a cut.”

Lemma.l: If X is a feasible preflow and d is a valid labelling for x, then there exists an
(r,s)-cut &(R) such that x,, =u, forall vwS(R) and x,, =0 for all vwS(R).

Proof: Since there are n nodes, there exists a value &, such that 0 <k <n forall vOJ .
Take R={vUV :d(v)>k}. Then rUR and sOR. Clearly, (1.1) implies that no arc of

G(x) leaves R, which implies the statement of the proposition.

Corollary: If a feasible flow x has a valid labelling, then X is a maximum flow.

The corollary gives a possible termination condition for a maximum flow
algorithm. A push-relabel algorithm maintains a feasible preflow and a valid labelling
(and thus by Lemma. 1, a saturated cut) and terminates when the preflow becomes a flow.
So there is certain duality with an augmenting path algorithm, which maintains a feasible
flow and terminates when a cut becomes saturated.

Next we show in what sense a valid labelling gives an approximation to distances
in G(X).

Lemma.2 For any feasible preflow x, and any valid labelling d forx, we have
d.(v,w)2d(v)—d(w), forall v, wV

Proof: If d_(v,w) =0 this is certainly true, so suppose d.(v,w) is finite, and consider
any shortest (v,w) dipath in G(x). Adding up the inequality d(p)—d(q) <1 on the arcs
pq of the dipath gives the result.

In particular, it follows from Lemma.2 that d(v) is a lower bound on d.(v,s), and
d(v)—n 1s a lower bound on d.(v,r) . Notice that if d(v)=n, this means that
d.(v,s) =00, and excess flow at v should be moved toward the source ». Whether d(v)

is large or small, we try to move flow toward nodes w having d(w) <d(v), since such

nodes are estimated to be closer to the ultimate destination. Moreover, by the definition of
valid labelling, and vw an arc of G(x) implies that d(w)=d(v)—1. Therefore, push is

applied only to arcs vw of G(x) such that v is active and d(v) =d(w)+1. Such arcs are

called admissible. Notice that d is still a valid labelling for the new preflow, since the
only (possible) new restriction arises if wyv becomes an arc of G(x); this would require

d(w)<d(v)—1, which is already satisfied.

Now suppose that v is active but there is no arc vw of G(x) with d(v) =d(w)+1.
Then we can increase d(v) to min(d(w)+1:vwl E(G(X))) , without violating the
validity of the labelling. This is the relable operation.

Namely, once an active node v is chosen, we continue to perform push operations
on admissible arcs vw of G(X) until v either becomes inactive or is relabeled. Notice
that this is possible, because if there are no admissible arcs vw and v is still active, then
v can be relabeled. To perform this sequence of operations is to process v.

Process v
While there exists an admissible arc vw
Push on vw;
If v is active
Relabel v.

Now we can state the push-relabel maximum flow algorithm quite simply.

Push-Relabel Algorithm

Initialize X,d ;
While x is not a flow
Choose an active node v;
Process v.

The basic step of the push-relabel algorithm for the maximum flow problem is to
choose an active node v, then choose an arc vw of G(X), and do a push on vw.

However, we need to specify more carefully the choice of vw. Otherwise, for example,
one could easily have an infinite loop consisting of a push on vw, then a push in wv,
then a push on vw,... . The additional restriction comes from the idea that we want, as
much as possible, to push flow toward the sink, s. However, it is quite possible that we
reach a point where no more flow can be pushed toward the sink, but there are still active
nodes. In this case the only way to restore conservation of flow is to push the excess back
toward the resource, ». The device that allows us to make decisions about the direction of
pushes is an estimate of distance in G(X) .

We can summarize its execution as follows:

1. Set the source label d(r)=n, the sink label to d(s)=0, and the labels on the

remaining nodes to 0.
2. Send out as much flow as possible from the source r, saturating its outgoing edge
and placing excesses on its neighboring nodes.
Calculate the residual edges.
4. Relabel the active nodes, increasing values as much as possible without violating
the label constraint.
Push as much flow as possible on some admissible edge.
6. Repeat steps 4 and 5 until there are no active nodes left in the graph.

(98]

e

Lemma.3: If X is a preflow and w is an active node, then there is a(w,r)— dipath
inG(x).

Proof: Let R denote the set of nodes v for which there is a (v,r) —dipath in G(X). Then
no arc leaves R in G(¥), so ¥ (3(R)) = 0. But suppose that we add the inequalities f;(v)
> 0 for vOOR . Then we get x(3(R)) - x(0(R)) > 0. With x(3(R)) = 0, this implies
x(O(R))=0. So the sum of the inequalities holds with equality, which means that each of

them does. That is, there is no active node in R , so w R as required.

3. Analysis of the Algorithm

Lemma.4: At every stage of the push-relabel algorithm, for every vV, we have d(v) <
2n-1. Each node is relabelled at most 2n-1 times, and there are O(n?) relables in all.

Proof: Since each relabel of v increases d(v) by at least 1, the second statement follows
from the first. Since only active nodes relabelled, it is enough to prove the first statement
for v active. By Lemma.3 d.(v,r)<n—1. By lemma.2 d.(v,r) 2 d(v) —n. Combining
these two inequalities gives d(v) <2n—1.

It is useful to divide the push operations into two kinds. A push on vw is saturating if

u,, < f.(v),so that the value pushed is#,,, and arc vwleaves G(x). Otherwise, the push

w2

is nonsaturating, and in this case is no longer active.

Lemma.5 The number of saturating pushes performed by the push-relabel algorithm is at
most 2mn.

Proof: Consider a fixed pair (v,w) of nodes, such that vw[Jl E orwv [E . Between two
saturating pushes on vw, there must be a push on wv, since otherwise vw is not an arc of
G(X) . But since d(v) =d(w)+1 for a push on vw, and d(w) =d(v) +1for a push onwv,
and since d(v)never decreases, there must be a relabel of w before there can be a push on

wv . Hence between any two saturating pushes on vw, d(w) increases by at least 2, and

this can happen, by Lemma.4, at most n. Therefore, the total number of saturating pushes
associated with an arc vwlE (that is on vw, orwv) is at most 2n, and the total for all
arcs 1s at most 2mn.

Lemma.6 The number of nonsaturating pushes performed by the push-relabel algorithm
is O(mn?).

Proof: Let A be the set of active nodes with respect to the preflow x, and let
D=2(d(v):v A4). Observe that D is initially 0 and is never negative.
* Each relabel increases D by 2n-1.
e Saturating push on vw may increase d(A) by as much as 2n-1(since w could
enter A and v could remain in A).

Total increase in D = (n-2)(2n-1) + 2mn(2n-1) = O(mn?)

If wlIA , you could lose D to 2n-1.

If wlA, you will lose 1.

Every nonsaturating push decreases D by at least 1, Since the total decrease in D is at
most the total increase, there are O(mn”) nonsaturating pushes.

Lemma.7 The maximum distance push-relabel algorithm performs O(n®) nonsaturating
pushes.

Proof: Any nonsaturating push from a node v makes v inactive, and v cannot become
active again before there is a relabel, since all active nodes w have d(w) < d(v). Hence,

if there are n nonsaturating pushes is less than n times the number of labels, so by
Lemma.4, it is O(n?).

Theorem 1: The push-relabel algorithm performs O(n?) relabels and O(mn?) pushes.

Theorem 2: The maximum distance push-relabel algorithm performs O(n?) relabels and
O(n®) pushes.

4. Implementation of Push-Relabel Algorithms

We have proved quite good bounds on the numbers of basic steps of the push-relabel
algorithms. In order to convert these into statements about running times, we need to give
some details of implementation. For each node v we keep a list L of the pairs vw or wy

(or both) 1s an arc of G. We may refer to these as arcs; actually, they are the possible arcs
of G(X). With each element vwof L, we keepu,, . We also keep links between the pairs

vwlUL, and wvOL, so that after a push onvw, we can update fixed. In addition, we

keep with each node v the values d(v)and f.(v).

