CS 491G Combinatorial Optimization

Lecture Notes

Jingjing Chen

1. Review

Question: Given a directed graph G and an algorithm to find the maximum flow between r and s, how do we find the minimum capacity subset of edges such that removing them disconnect r from s?

- (1) Find the max-flow \vec{x}
- (2) Construct $G(\vec{x}')$
- (3) Find all vertices which can be reached from r call this set R, $\delta(R)$ is the min-cut as previous Max-Flow Min-Cut Theorem.

2. Minimum cuts in undirected graphs

Now let us begin with a discussion of "global minimum cut" problem for undirected graphs.

2.1 Global Minimum Cuts

Minimum Cut Problem

Given a connected, undirected graph G = (V, E) and $u_e > 0$ for all $e \in E$, find a set $\delta(S)$ such that $\Phi \subset S \subset V$ and $u(\delta(S))$ is minimum.

We say that nodes v, w of G are **separated** by a cut $\delta(S)$, if exactly one of v, w is in S. We surely can use flow techniques to solve above problem, now look at the following undirected graph G:

Replace each undirected edge by a pair of oppositely directed arcs and give them the same capacity as the edge shown on graph G_1 :

Claim: Every cut of G corresponds to a cut of G_1 .

Proof: \Rightarrow The fact that a cut of G corresponds to a cut of G_1 is obvious.

 \Leftarrow Suppose $\delta(S_1)$ is a cut of G_1 . Every directed edge in $\delta(S_1)$ has a corresponding undirected edge in G. Denote these edges by $\delta(S)$. If $\delta(S)$ is not a cut of G, we can find a undirected path P from r to s in G, such that there must have a corresponding directed path P_1 from r to s in G_1 , a contradiction with the fact that $\delta(S_1)$ is a cut of G_1 . Done.

Corollary: Every min-cut of G corresponds to a min-cut of G_1 .

If we fix one node r of G_1 , every cut of G_1 is a (r, s)-cut for some node s. Since there are n nodes and we know that the running time of push-relabel algorithm is $O(n^3)$. Therefore, we can solve the min-cut problem by solving n-1 max-flow problems, and the running time is $O(n^4)$.

It is convenient to use the notation $\lambda(G)$ for the capacity of a minimum cut of G, and $\lambda(G; v, w)$ for the capacity of a minimum (v, w)-cut of G.

2.2 Node Identification

Let v, w be distinct nodes, then G_{vw} is obtained by *identifying* v with w. we put $V(G_{vw}) = (V \setminus \{v, w\}) \cup \{x\}$, where x is a new node, and $E(G_{vw}) = E \setminus \gamma(\{v, w\})$; for each edge $e \in E$ and end p of e in G, p is an end of e in G_{vw} if $p \neq v, w$, and otherwise x is an end of e in G_{vw} . The edges of G_{vw} have the same capacities as they had in G. Figure 2.2 shows the effect of identifying nodes c, d in the example of figure 2.1.

Figure 2.2

Note that the operation may create multiple edges, but no loop. We replace multiple edges e_{fc} , e_{fd} by a new edge e_{fx} with capacity equal to the sum of the capacities of the edges replaced.

3. Node Identification Algorithm

Proposition 3.1 Every cut of G_{vw} is a cut of G. Every cut of G that does not separate v from w is a cut of G_{vw} .

Proof: It is obvious that

$$\lambda(G) = \min(\lambda(G_{vw}), \lambda(G; v, w))$$

Definition 3.2 A *legal ordering* $v_1, v_2,, v_n$ of G is one in which

$$Vi = \{ v_1, v_2,, v_n \},$$

$$u(\delta(V_{i-1}) \cap \delta(v_i)) \ge u(\delta(V_{i-1}) \cap \delta(v_i))$$
 for $2 \le i \le j \le n$

We can choose any node to be v_1 and at step i we choose v_i to be the node that has the largest total capacity of edges joining it to the previously chosen nodes.

For example, in Figure 3.1,

Figure 3.1 Legal Ordering

Let a be the first node $\{a\}$; since $u(e_{ac}) > u(e_{ab})$ (3>2), we choose c as the second node $\{a,c\}$;

```
from c, we find node b has the largest total capacity of edges \{a, c, b\}; then from b, for u(e_{bd}) > u(e_{bf}) = u(e_{be})(3>2=2), we choose d \{a, c, b, d\}; keep going, we get a legal ordering beginning with a is \{a, c, b, d, f, e\}.
```

The running time of finding a legal ordering is $O(n^2)$ by using a technique that is similar to Prim's Algorithm or Dijkstra's Algorithm.

Theorem 3.3 If $v_1, v_2,, v_n$ is a legal ordering of G, then $\delta(v_n)$ is a minimum (v_n, v_{n-1}) -cut of G.

Assuming that Theorem 3.3 is correct, we get the following algorithm for finding the global min-cut of a graph G.

```
Node Identification Minimum Cut Algorithm
```

```
Initialize M = \infty, A = undefined;

While G has more than one node

Find a legal ordering v_1, v_2, ....., v_n of G;

If u(\delta(v_n)) < M

Replace M by u(\delta(v_n)), A by \delta(v_n);

Replace G by G_{v_{n-1}v_n};
```

The running time of above algorithm is $O(n^3)$, since there are n nodes and determining a legal ordering takes $O(n^2)$ running time.

Lemma 3.4 If
$$p,q,r \in V$$
, then $\lambda(G;p,q) \ge \min(\lambda(G;r,q),\lambda(G;p,r))$.

Proof:

```
Consider the minimum (p,q)-cut\ \delta(S) with p\in S.

If r\in S, then \delta(S) is a (r,q)-cut and so u(\delta(S))\geq \lambda(G;q,r).

Otherwise \delta(S) is a (p,r)-cut and so u(\delta(S))\geq \lambda(G;p,r).

The result follows.
```

<u>Proof</u>: (of Theorem 3.3) All we need to show is that $u(\delta(v_n)) \leq lambda(G; v_{n-1}, v_n)$ in a legal ordering. We use induction on the number of vertices and edges. The statement is trivially true if |V| = 2 or |E| = 0. We use δ ' to refer to δ on G'. Consider the following 2 cases:

1. Let $e = v_n v_{n-1}$ be an edge of G and let $G' = G \setminus \{e\}$. Note that the ordering v_1, v_2, \ldots, v_n is still legal in G'. Now,

$$u(\delta(v_n)) = u(\delta'(v_n)) + u_e$$

$$= \lambda(G'; v_{n-1}, v_n) + u_e \text{ (by induction)}$$

$$= \lambda(G; v_{n-1}, v_n)$$

2. Suppose that v_n and v_{n-1} are not adjacent. It suffices to show that

$$u(\delta(v_n)) \le \lambda(G; v_{n-2}, v_n) \tag{1}$$

and

$$u(\delta(v_n)) \le \lambda(G; v_{n-2}, v_{n-1}) \tag{2}$$

Then by using Lemma (3.4), we can conclude that $u(\delta(v_n)) \leq \lambda(G; v_{n-1}, v_n)$.

To prove (1), apply induction to $G' = G \setminus v_{n-1}$. Clearly, $v_1, v_2, \ldots, v_{n-2}, v_n$ is a legal ordering of G'. Now, $u(\delta(v_n)) = u(\delta'(v_n)) = \lambda(G'; v_{n-2}, v_n)$ (by induction) $\leq \lambda(G; v_{n-2}, v_n)$.

To prove (2), apply induction on $G' = G \setminus v_n$. Once again, $v_1, v_2, \ldots, v_{n-1}$ is a legal ordering of G'. Hence, $u(\delta(v_n)) \leq u(\delta(v_{n-1})) = u(\delta'(v_{n-1})) = \lambda(G'; v_{n-2}, v_{n-1})$ (by induction) $\leq \lambda(G; v_{n-2}, v_{n-1})$.