CS 491G Combinatorial Optimization
Lecture Notes
Jingjing Chen

1. Review

Question: Given a directed graph G and an algorithm to find the maximum flow
between r and s, how do we find the minimum capacity subset of edges such that
removing them disconnect » from s?

(1) Find the max-flow X'

(2) Construct G(x)

(3) Find all vertices which can be reached from r call this set R, &R) is the min-cut as
previous Max-Flow Min-Cut Theorem.

2. Minimum cuts in undirected graphs
Now let us begin with a discussion of “global minimum cut” problem for
undirected graphs.

2.1 Global Minimum Cuts

Minimum Cut Problem
Given a connected, undirected graph G = (V, E) and u,> 0 for all e U E, find

aset &(S) such that @ 0 § 0V and u(d(S)) is minimum.

We say that nodes v, w of G are separated by a cut &(S), if exactly one of v, wis in S.
We surely can use flow techniques to solve above problem, now look at the following
undirected graph G:

(G)
Replace each undirected edge by a pair of oppositely directed arcs and give them the
same capacity as the edge shown on graph G, :

b
(G))
Claim: Every cut of G corresponds to a cut of G, .
Proof: U The fact that a cut of G corresponds to a cut of G, is obvious.
[0 Suppose O(S,) is a cut of G,. Every directed edge in 9(S,) has a
corresponding undirected edge in G. Denote these edges by O(S) . If (S)is not a cut of

G, we can find a undirected path P from r to s in G, such that there must have a
corresponding directed path P, from r to s in G, , a contradiction with the fact that

0(S,) is a cut of G, . Done.
Corollary: Every min-cut of G corresponds to a min-cut of G, .

If we fix one node r of G,, every cut of G, is a (¥, s)-cut for some node s. Since there
are n nodes and we know that the running time of push-relabel algorithm is O(#’) .
Therefore, we can solve the min-cut problem by solving #» —1 max-flow problems, and
the running time is O(n*).

It is convenient to use the notation A(G) for the capacity of a minimum cut of G, and
A(G;v,w) for the capacity of a minimum (v, w)-cut of G.

2.2 Node Identification
Let v, w be distinct nodes, then G is obtained by identifying v with w. we put

V(G,,) =¥ \{v,w}) U {x}, where x is a new node, and E(G,,) = E\y({v,w}); for each
edge eE andend pof ein G, pisanendof e in G,, if p # v, w, and otherwise x is
anend of e in G, . The edges of G,, have the same capacities as they had in G.

Figure 2.2 shows the effect of identifying nodes c,d in the example of figure 2.1.

Figure 2.1 Figure 2.2

Note that the operation may create multiple edges, but no loop. We replace multiple
edges e, ,e, byanew edge e, with capacity equal to the sum of the capacities of the

edges replaced.

3. Node Identification Algorithm

Proposition 3.1 Every cut of G, is a cut of G. Every cut of G that does not separate v

fromwisacutof G .

Proof: It is obvious that
A (G) = min(}\ (va), A (G; v, w))

Definition 3.2 A legal ordering v,,v,,.....,v, of G is one in which

u(@(_)no(v,))= u(J(Vi_l)m 5(vj))f0r2 Si<j<n

1

We can choose any node to be v, and at step i we choose v, to be the node that has the
largest total capacity of edges joining it to the previously chosen nodes.

For example, in Figure 3.1,

Figure 3.1 Legal Ordering

Let a be the first node {a} ;
since u(e,)>ule,,) (3>2), we choose ¢ as the second node {a,c};

from ¢, we find node b has the largest total capacity of edges {a,c,b};
then from b, for u(ebd) > u(ebf) = u(ebe)(3>2=2), we choose d {a,c,b,d};
keep going , we get a legal ordering beginning with a is {a,c,b,d, f,e} .

The running time of finding a legal ordering is O(n*) by using a technique that is similar
to Prim’s Algorithm or Dijkstra’s Algorithm.

Theorem 3.3 If v,v,,....,v, is a legal ordering of G, then 5(vn) 1S a minimum
(vn ,vn_l)-cut of G.

Assuming that Theorem 3.3 is correct, we get the following algorithm for finding the
global min-cut of a graph G.

Node Identification Minimum Cut Algorithm

Initialize M = oo, A = undefined,
While G has more than one node
Find a legal ordering v,,v,,.....,v, of G;

If u(6(v,)< M
Replace M by u(5 (V,,)), Aby o (V,,);
Replace Gby G, ;

Return 4.

The running time of above algorithm is O(#n’), since there are n nodes and
determining a legal ordering takes O(n*) running time.

Lemma 3.4 If p,q,r OV, then A(G; p,q)=2 min(A(G;r,¢) A(G; p,7)).

Proof:
Consider the minimum (p,q)— cut 0 (S) with pOS.
If »0S,then &(S) isa (r,q)—cut and so u(5(S))=A(G;q.r).
Otherwise 8(S) is a(p,r)— cut and so u(53(S))= A(G; p,r).
The result follows.

Proof: (of Theorem 3.3) All we need to show is that u(d(vy)) < lambda(G;vn_1,v,) in a legal ordering. We
use induction on the number of vertices and edges. The statement is trivially true if |V| =2 or |E| =0. We use
0’ to refer to § on G'. Consider the following 2 cases:

1. Let e = vpun—1 be an edge of G and let G' = G \ {e}. Note that the ordering vi,va, ..., v, is still legal in
G'. Now,
u(@(va)) = u(d'(vn)) + ue
= MG';0n-1,0n) + ue (by induction)
=)‘(G;vn—lavn)

2. Suppose that v, and v,_1 are not adjacent. It suffices to show that
u(d(vn)) < A(G;vn—2,vn) (1)
and
u(d(vn)) < AN(G;vn—2,0n-1) (2)
Then by using Lemma (3.4), we can conclude that uw(d(vy,)) < A(G;vn—1,vn).

To prove (1), apply induction to G' = G\ vp—1. Clearly, vi,va,...,Un_2,vn is a legal ordering of G'. Now,
w(0(vy)) = u(d' (vy)) = MG';vp—2,v,) (by induction) < A(G;vp—2,v,).

To prove (2), apply induction on G' = G\ v,. Once again, v1,va,...,v,_1 s a legal ordering of G'. Hence,
u(6(vn)) < u(d(vn—1)) = u(6'(vn-1)) = MG';0n-2,vn-1) (by induction) < MG;v,_2,Vp_1).

