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CS 491 G Combinatorial Optimization 

 

Lecture Notes 
 

             Junhui Jia    
 

 
 
 

1. Linear Programming Problems 
 
A Product-Mix Problem:  
 
HiTech, inc., a small manufacturing firm produces two microwave switches, switch A 
and B. The return per unit of Switch A is $5, whereas the return per unit of Switch B is 
$8. Because of contractual commitments, HiTech must manufactures at least 20 units of 
Switch A per week, and based on the present demand for its products, it can sell all that it 
can manufacture. However, it wishes to maximize profit while determining the 
production sizes to satisfy various limits resulting from a small production crew. These 
includes 
 

Assembly hours: 40 hours available per week 
Testing hours: 30 hours available per week 

 
Switch A requires 3 hours assembly and 2 hours of testing, Switch B requires 4 hours 
assembly and 1 hours of testing  
 
Determination of the decision variables 
 
The problem is obviously to determine the optimal number of each type of switch to 
manufacture based on the limited resources available. The variables directly under 
Hitech�s control are 
 

=1x  amount of Switch A manufactured per week 

=2x  amount of Switch B manufactured per week  
 
Formulation of the objective 
 
The overall objective is to maximize weekly profit and because the unit returns for 
switches A and B are $5 and $8, respectively, the objective can be written as follows: 
 

maximize 21 85 xxz +=   (profit per week) 
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Formulation of the constraints 
 
Based on the consumption rates of the two switches and the limited resources available, 
the production constraints can be formulated as follows: 
 
 

4043 21 ≤+ xx   (assembly hours per week) 

302 21 ≤+ xx   (testing hours per week) 
 

Also, the minimum requirement for Switch A is given simply as   
 

201 ≥x   (Switch A demand per week) 
 

The nonnegative restrictions on each variable are written as 
 

01 ≥x   

02 ≥x  

 
As a result, the mathematical model for this problem may be summarized as follows: 
 

maximize 21 85 xxz +=  
 

subject to  
 

4043 21 ≤+ xx  

302 21 ≤+ xx  

201 ≥x  

02 ≥x  
 
  
Max LP model canonical form (1) 
 

max xcz
��=  

Constraints: bxA
�

� ≤   

0
�

� ≥x  
 
For the above product-mix problem: 
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Max LP model standard form (2) 
 

max xcz
��=  

Constraints: bxA
�

� =  

0
�

� ≥x  
 
Converting a linear program into standard form 
 
In general, it is far easier to deal with equations than with inequalities. In this section, we 
provide a simple technique that allows us to convert any inequality into an equation by 
means of introducing some additional variables into the formulation. 
 
First, consider an inequality constraint  set of the following form: 
 

bxA
�

� ≤  

0
�

� ≥x  
  
We introduce a new variable sx

�

, so that the above equation can be rewritten as  

 

bxxA s

�

�� =],[  

0
�

� ≥x , 0
�

� ≥sx  

 
Now it allows us to express an inequality in a more convenient equality format. 
 
Example 1.1: 
 
Given the constraints of the following linear programming model, covert it into standard 
form. 
 

4043 21 ≤+ xx  
 

Introducing a new variable 3x , convert the inequality into standard form: 

 
4043 321 =++ xxx  

03 ≥x  

 
Definition: 1.1 Hyper-plane 
 
A linear equation cxa =��  is called a hyper-plane in the n-dimensional Euclidean space 

nR . 
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Definition: 1.2 Half-space 
 
A linear relationship of the form cxa ≤��  is called a half-space in the n-dimensional 
Euclidean space nR . 
 
Definition: 1.3 Convex set 
 
A set of S is said to be convex if for any Sxx ∈21,

��

 

Sxx ∈−+ 21 )1(
�� λλ , where 10 ≤≤ λ  

 
 
 
 
 
 
 
 
 
 
 
 
Definition: 1.4 Polyhedral set 
 
A polyhedral set is the conjunction of a set of half spaces. 
 
Observation: All Polyhedral sets are convex sets. 
 
Definition: 1.5 Linearly independent and dependent 
 
The vectors 

naaa
���

...21  

 
in a vector space V are said to be linearly independent  if  
 

02211 =+++ nnakakak
�

�

��

 

 

implies that all of the scalars nkkk ...21  are equal to zero, otherwise the vectors are 

said to be linearly dependent. 
 
Example1.2:  
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Figure 1. Illustration of a convex set  Figure 2. Illustration of a non-convex set  
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1a
�

 and 2a
�

are linearly independent, 1a
�

and 3a
�

are not linearly independent, because  

 

02 31

�

�� =− aa  

 
Definition: 1.6 Basis 
 
Given an nm ×  matrix A ( nm < ), a collection of m linearly independent columns is 
called a basis. 
 

 
Basic Solution 
 
Given 

bxA
�

� =  
 

We partition A into 
 

[ ] [ ]NBaaaA n == ���

...21  

 
Likewise, we partition x

�

 into 

�
�

�
�
�

�
=

N

B

x

x
x

�

�

�

 

 

Bx
�

 is the set of basic variables and Nx
�

 is the set of non-basic variables. Substituting the 

above partitioned expressions of A  and x
�

 into bxA
�

� = , we get 
 

[ ] b
x

x
NB

N

B
�

�

�

=�
�

�
�
�

�

Expanding the above equation, we have  
  

bxNxB NB

�

�� =+
 
The inverse of matrix B exists since B is a collection of m linearly independent vectors. 
Multiplying the above equation by 1−B , we get: 
 

NB xNBbBx
�

�

� 11 −− −=  

 
Basic solution is obtained by setting the non-basic solution into zero: The solution 
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is called a basic solution, with vector Bx

�

 called the vector of basic variables, and Nx
�

 is 

called the vector of non-basic variables. If, in addition, 01 ≥= − bBxB

�

�

, then 
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=

−
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is called a basic feasible solution (b f s) of  the constraint system. 
 
 
Lemma 1.1:  
 
Max xc

��

is always attained at a basic feasible solution.  
Proof is given in Ref. 2. 

The total number of possible basic solution is ��
�

�
��
�

�

m

n
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algebra of the simplex method 
 
Now consider the objective function xcz

��= . Partition the cost vector c
�

 into basic and 
non-basic components 
 

),( NB ccc
��� =  

 

x 

y 

Figure 1. Illustration of basis points 
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Inserting the partitioned expression of c
�

 and x
�

 into xcz
��= , the objective function can 

be recast as 
 

NNBB xcxcz
���� +=  

 

Since NB xNBbBx
�

�

� 11 −− −= , z can be rewritten as  

 

NNBB xcNBcbBcz
���

�

�

)( 11 −−= −−  

 
Let J = {Index set of non-basic variables}, then objective function can be rewritten as 
follows: 
 

�
=

−− −−=
Jj

jjjBB xcaBcbBcz )( 11 ��

�

�

 

 
Checking for optimality 
 
Observe that the coefficient )( 1

jjB caBc −− − ��

 of jx  represents the rate of change of z 

with respect to the non-basic variable jx . That is, 

 

)( 1
jjB

j

caBc
x

z −−=
∂
∂ − ��

 

 

Thus, if 0>
∂
∂

jx

z
, then increasing the non-basic variable jx  will increase z. The quantity 

)( 1
jjB caBc −− ��

 is sometimes referred as the reduced cost and for convenience is usually 

denoted by jj cz − . We can thus state the optimality conditions for a maximization linear 

programming problem. 
 
Optimality Conditions 
 

The basic feasible solution represented by 0
0

1

≥�
�

�
�
�

�
=�

�

�
�
�

�
=

−

�

�

�

�

� bB

x

x
x

N

B  will be optimal to (LP) 

if 

0)()( 1 ≤−−=−−=
∂
∂ −

jjBjj
j

caBccz
x

z ��

, for all Jj ∈  

 
or, equivalently, if 

01 ≥−=− −
jjBjj caBccz

��

, for all Jj ∈  
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Note that because 0=− jj cz  for all basic variables, then the optimality conditions could 

also be stated simply as 0≥− jj cz , for all nj ,,1 �= . 

 
 
 
Determining the entering variable 
 
Suppose there exists some non-basic variable kx  with a reduced cost 0<− kk cz . Then 

0>
∂
∂

kx

z
 and the objective function can be improved by increasing kx  from its current 

value of zero. Typically, we choose to increase that non-basic variable that forces the 
greatest rate of change of the objective, that is, the non-basic variable with the most 
negative jj cz − . The selected variable kx  is called the entering variable. That is, kx  is 

going to enter the current basis.   
 
Determining the leaving variable 
 
Let�s now investigate the consequence of the preceding results. The question is:  we want 
to bring in ka

�

 into the basis, which variable (column) should be kicked out? Consider the 

vector of coefficient of the non-basic variable kx  and let 

 

kk aB
�� 1−=α  

 
Note that the rate of change of the basic variables with respect to the non-basic variable 

kx  is given by 

 

kk
k

B aB
x

x α−=−=
∂
∂ − �1  

 
That is, if the non-basic variable kx  is increased from its current value of zero while 

holding all other non-basic variable at zero, the basic variables will change according to 
the relationship 
 

kkkkB xbBaBxbBx α−=−+= −−− 111 )(
�

 

 
Because all variables must remain nonnegative, it follows that 
 

01 ≥−= −
kkB xbBx α  

 
Now let 
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bB
��

1−=β  
 

Since 0≥−= kkxx αββ
�

�

�

, an upper bound on kx  can be easily found quite easily as 

 

��

�
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��

�
�
�

>≤ 0min ,
,

ki
ki

i
kx α

α
β �

�

�

�

 

 
This process provides a very simple method for determining the maximum value of the 
entering variable.  
 
 
Algorithm 1.1 
 
 
 

 
 
 

 
Example 1.3: 
 
 
 

max 21 32 xxz +=  
Constraints: 

42 21 ≤− xx  

182 21 ≤+ xx  

102 ≤x  

01 ≥x   02 ≥x  
 
 
 
 
 

 
1. Represent matrix A in the following way )( NBA =  
2. Assume a feasible basis B. 
3. If B is optimal, then stop. 

4. Bring in the variable with the maximum 
jx

z

∂
∂

. 

5. Kick out the variable with respect to column that drops to zero. 
6. Go to step 3 and check new basis optimal or not. 
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From the above graph, we can get every corner point coordinates, then substitute into the 
maximum equation, and we get the solution of 38=z . 
 
Using our algorithm 
 

42 321 =+− xxx  

182 421 =++ xxx  

1052 =+ xx  

 
01 ≥x  02 ≥x  03 ≥x  04 ≥x  05 ≥x  

 
 

The data for this problem can be summarized as follows: 
 

[ ]00032=c
�
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We begin the solution process by choosing a convenient starting basis matrix B. Because 
the solution will be determined by B-1, we will choose the starting basis matrix B = I. 
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Figure 2. Solution by a graph for this example 
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2
1

=
∂
∂
x

z
                 3

2

=
∂
∂
x

z
 

 

Because 
2x

z

∂
∂

>
1x

z

∂
∂

, therefore choose 2x  as the entering variable. 

213 24 xxx +−=  

214 218 xxx −−=  

25 10 xx −=  

 
By the minimum ratio test, the maximum value of 2x  is equal to minimum {18, 10) = 10. 

Therefore, 5x  is the departing variable. Then we have:  

 

52 10 xx −=  

513 224 xxx +−=  

514 28 xxx +−=  

 

51 3302 xxz −+=  

 
 

This solution is not yet optimal because 02
1

>=
∂
∂
x

z
, thus 1x  is chosen as the entering 

variable. As before the minimum ratio test yields minimum {24, 4) = 4, and 4x  is the 
departing variable. Then we have:  

 

541 2

1

2

1
4 xxx +−=  

52 10 xx −=  

543 2

3

2

1
20 xxx −+=  

 

54 238 xxz −−=  

 
Therefore, maximum value is 38, at point of (4,10). 
 
Duality  
 
Given primal (P)  
 

max xcz
��=  

Constraints: bxA
�

� ≤  
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0
�

� ≥x  
 
we define the dual to be 
 

min ybw
�

�

=  
Constraints: cAy

�� ≥  

0
�

� ≥y  
  
 
 
Example 1.4:  
 
Write the dual of Example 1.3. 
 
 

min 321 10184 yyy ++  

22 21 ≥+ yy  

32 321 ≥++− yyy  

01 ≥y  02 ≥y  03 ≥y  

So 

�
�
�
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�
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A  

Lemma 1.2 
 
Dual of dual is primal. The proof is given in Ref. 2. 
 
FORMULATION OF THE LINEAR PROGRAMMING DUAL 
 
The canonical form of the dual 
 
The basic characteristics of the canonical primal and dual are summarized in table 1.1. As 
we shall see when discussing general duality, these relationships can be extended to any 
linear programming problem. 
 

TABLE 1.1 CANONICAL PRIMAL-DUAL RELATIONSHIPS 
 

Maximization problem Minimization problem 
m constraints m variables 
≤  0≥  
n variables n constraints 

0≥  ≥  
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General duality 
 
The objective may be either of a maximizing or minimizing form, variables may be 
restricted or unrestricted, or the constraints may be of any form and any mixture of the 
forms. These motivate the rules for finding the dual from the general form. By utilizing 
the relationship in Table 1.2, it is possible to write the dual problem for a given linear 
programming without going through the intermediate step of transforming the problem to 
canonical form. 
 
 
 

TABLE 1.2 PRIMAL-DUAL RELATIONSHIPS 
 

Maximization problem Minimization problem 
Constraints Variables 

≤  0≥  
≥  0≤  
= unrestricted 

Variables Constraints 
0≥  ≥  
0≤  ≤  

unrestricted = 
 
 
 
Example 1.5: 

max xcz
��=  

Constraints: bxA
�

� =  

0
�

� ≥x  
 

min ybz
�

�

=  
Constraints: cAy

�� ≥  
y
�

 unrestricted 
 
Weak Duality:  
 
Given (P) & (D) 
 

ybxc
�

�

�� ≤  
 

Proof:   ybbyxAyxc
�

��

����� ≤≤≤ )(  
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Corollary 
 
If (P) is unbounded, (D) is infeasible. 
If (D) is unbounded, (P) is infeasible. 
If (P) is infeasible, (D) is unbounded or infeasible. 
 
Strong Duality:  
 
Given (P) & (D) and *x

�

 optimal for (P) and *y
�

optimal for (D), then 
 

** ybxc
�

�

�� =  
 
Proof:    Given primal (P) 

Max xcz
��=  

Constraints: bxA
�

� ≤  

0
�

� ≥x  
 
we can rewrite (P) as : 

Max Sxxcz
�

�

��

0+=  

Constraints: b
x

x
IA

S

�

�

�

=�
�

�
�
�

�
],[  

0
�

� ≥x , 0
�

� ≥Sx  

Let B be the optimal basis. Then, 

bBcz B

�

� 1−= , bBx
�

� 1* −=  
 
The Dual (D) is:  

Min by
�

�

 
Constraints: cAy

�� ≥  

0
�

� ≥y  
 

Choose 1* −= Bcy B

��

 then we have byxc
�

��� ** = . So we have a vector *y
�

 in the dual space, 
where the dual objective function has the same value as the primal objective function. All 
we need to show is that *y

�

 is feasible. 

Note that the primal basis must satisfy 0≥− jj cz  for all j. Thus, we have 

 
01 ≥−− cABcB

��

 
 

i.e.  *y
�

cA
�≥ . Since, we also have 001

��

� ≥−− IBcB , i.e. 01
�

� ≥−BcB ,  we have: 
 

*y
�

0
�

≥  
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Thus, we have a dual feasible solution, such that the primal and dual objective functions 
have the same value. This proves the Strong Duality Theorem. 
 
Farkas Lemma 
 

Either x
�∃  bxA

�

� ≤ , 0
�

� ≥x  or 0
�

� ≥∃ y  0
�

� ≥Ay , 0<by
�

�

 
 
 
Proof: Consider the linear program (P): 

Max xz
�

�

0=  

bxA
�

� ≤  

0
�

� ≥x  
 Its dual is (D): 

Min yb
�

�

 

0
�

� ≥Ay  

0
�

� ≥y  
 
 
Case 1: (P) and (D) have finite optimal (D) must have optimum zero, so we have  
 

0=yb
�

�

 
 

Case 2: (P) is unbounded, (D) is infeasible. This is not possible, since (D) is always 

feasible ( 0
�

� =y !) 
Case 3: (D) is unbounded, (P) is infeasible. Since (D) is unbounded, there is a vector y

�

,  

such that yb
�

�

 tends to .∞−  From the continuity of the solution space, we know that there 

must exist a vector y
�

,  such that 0<yb
�

�

. 

Case 4: (P) and (D) are both infeasible. This is not possible because 0
�

� =y  satisfies (D).  
 
Complementary Slackness 
 

Given a primal and dual optimal pair ),( ** yx
��

, let ** xAbs
�

�

� −=  and cAyt
��

�

−= ** , then  
 

0** =ys
��

 

0** =xt
�

�

. 
 
 
 
 
 
 



 16

 
 
Proof: 

 

*****

****

****

****

)(

)(

xtsyby

xtsby

xtxAy

xtAyxc

�
�

��

�

�

�
�

�

�

�

�
�

��

�
�

���

−−=

−−=

−=
−=

 

 

So we have 0**** =+ xtsy
�

�
��

. But all the vectors, ,, ** ys
��

 0,*
�

�
�

≥xt .  The theorem follows. 
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