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Shortest Path Problem

Babak Khorrami

Shortest Path problems are ubiquitous in real-world applications; both in their own right as well as in the modeling of certain optimization problems. There are a number of versions of the Shortest Path problem, viz. Single-Source, All-Pairs, etc. In this course, we shall focus on the Single Source Shortest Path (SSSP) problem only.

Digraph: A directed graph or digraph 
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. In other words, each arc has two end nodes, and a direction from one to the other.
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  Although the problem specifies real costs 
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, for practical purposes, we can assume that the costs are rational or even integral!

Consider the following example:

Example 1. Find the shortest path from source node r to a in the following network,

[image: image147.wmf]y

[image: image148.wmf]G

[image: image149.wmf]V

r

Î

[image: image150.wmf])

(

E

c

e

Î




     a

[image: image8.wmf]·

        

                                3
                                   2


[image: image151.wmf]V

v

Î

[image: image152.wmf]r

[image: image153.wmf]v


          r

[image: image9.wmf]·


         6
     -2


      
[image: image10.wmf]·

c             Figure 1.

                                        -5                          5

                                 1





b





There is no shortest path from r to a.

Reason: digraph depicted in Figure 1 contains negative cost cycle, the cycle between r and b.  Instead of going from r to a directly, one can travel to b and then come back to r and make the cost -4 plus 3 to go to a. One can keep traveling from r to b and lowering the cost in each trip. Hence the shortest path problem is not defined in the presence of negative cost cycles.

Shortest Path Structure: The structure containing the shortest path from the source node r   to every other node in the network is called the shortest path structure.

Observation: Shortest path structure should be a tree.

Reason: If there is a cycle in the shortest path structure between nodes a and b, by definition, should have a positive cost (weight). One can remove that cycle and still reach b from a, at cost which is at most the original cost!.
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Figure 2.

Negative cost cycle can occur in a number of applications. One application is the  currency arbitrage problem.
Statement of the problem:

We are given m currencies c1,c2,…cm. and the matrix Rij of pairwise conversion rates, where rij represents the number of units of cj that one can get from 1 unit of ci. The question that we face is the following: Can we start with k units of some currency, say ci, go through a series of conversions to other currencies and finally return to currency ci, having more than k units of ci? The phenomenon which makes such a trip possible is called arbitrage.  The following relationship holds for all currencies:
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We construct a complete directed graph, having nodes c1,c2,…cm  and weight
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Figure 3

Claim: There exists arbitrage if and only if there exists a negative weight cycle in the above graph.

Proof: Exercise!

Feasible Potentials:

A vector 
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and it estimates the shortest paths from 
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Obviously the shortest path from source 
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 to itself is zero. The second condition is the basic idea behind all methods for solving the shortest path problems. Suppose there exists a dipath from r to v of cost 
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If an assignment 
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, one can obtain the feasible potential by subtracting 
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. Hence the important condition is 
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. The following figure shows the notion of appending arc vw to the dipath between r and w and improving the
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Figure 4.

Lemma 1:

Let 
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Subpaths of shortest paths are shortest paths,  for instance v is in the least cost dipath P from r to w, then P splits into two dipaths, 
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 is not the least cost dipath from r to v, one can replace it by a better dipath and at the same time obtain a better dipath from r to w.

Ford's Procedure:

Lemma 1 provides a stopping condition for the shortest path problem. Suppose there exists a feasible potential 
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To start Ford’s procedure one needs to initialize 
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Example: Consider the following network, apply the Ford’s Procedure and obtain the shortest paths to each node.
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1) vw = ra, 
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2) vw = rb, 
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3) vw = ba, 
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4) vw = ac, 
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If we consider other arcs, cb, bc, ab, we will not find and incorrect arc so the shortest path structure is:
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Lemma 2:
If 
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one should consider that the value of 
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To prove (ii), consider that p defines a closed path from r to v. there is a sequence, 
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Consider the dipath P, 
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Ford’s Procedure





Initialize � EMBED Equation.3  ���;


While � EMBED Equation.3  ��� is not a feasible potential


Find an incorrect arc vw and correct it.





Shortest Path Problem


Input: A digraph � EMBED Equation.3  ���, a node � EMBED Equation.3  ���, and a real cost vector � EMBED Equation.3  ���.


Objective: To find, for each � EMBED Equation.3  ���, a dipath from � EMBED Equation.3  ��� to � EMBED Equation.3  ��� of least cost (if one exists)
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