Combinatorial Optimization

CS 491G

Shortest Path Problem

Babak Khorrami

Shortest Path problems are ubiquitous in real-world applications; both in their own right as well as in the modeling of certain optimization problems. There are a number of versions of the Shortest Path problem, viz. Single-Source, All-Pairs, etc. In this course, we shall focus on the Single Source Shortest Path (SSSP) problem only.

Digraph: A directed graph or digraph
[image: image1.wmf]G

 consists of disjoint finite sets
[image: image2.wmf])

(

G

V

V

=

 of nodes and
[image: image3.wmf])

(

G

E

E

=

of arcs and functions associating with each
[image: image4.wmf]E

e

Î

a tail
[image: image5.wmf]V

e

t

Î

)

(

 and a head
[image: image6.wmf]V

e

h

Î

)

(

. In other words, each arc has two end nodes, and a direction from one to the other.

[image: image146.wmf]p

y

,

 Although the problem specifies real costs
[image: image7.wmf])

(

E

c

e

Î

, for practical purposes, we can assume that the costs are rational or even integral!

Consider the following example:

Example 1. Find the shortest path from source node r to a in the following network,

[image: image147.wmf]y

[image: image148.wmf]G

[image: image149.wmf]V

r

Î

[image: image150.wmf])

(

E

c

e

Î

 a

[image: image8.wmf]·

 3
 2

[image: image151.wmf]V

v

Î

[image: image152.wmf]r

[image: image153.wmf]v

 r

[image: image9.wmf]·

 6
 -2

[image: image10.wmf]·

c Figure 1.

 -5 5

 1

b

There is no shortest path from r to a.

Reason: digraph depicted in Figure 1 contains negative cost cycle, the cycle between r and b. Instead of going from r to a directly, one can travel to b and then come back to r and make the cost -4 plus 3 to go to a. One can keep traveling from r to b and lowering the cost in each trip. Hence the shortest path problem is not defined in the presence of negative cost cycles.

Shortest Path Structure: The structure containing the shortest path from the source node r to every other node in the network is called the shortest path structure.

Observation: Shortest path structure should be a tree.

Reason: If there is a cycle in the shortest path structure between nodes a and b, by definition, should have a positive cost (weight). One can remove that cycle and still reach b from a, at cost which is at most the original cost!.

a C1 b
[image: image11.wmf]·

[image: image12.wmf]·

[image: image13.wmf]·

[image: image14.wmf]·

Figure 2.

Negative cost cycle can occur in a number of applications. One application is the currency arbitrage problem.
Statement of the problem:

We are given m currencies c1,c2,…cm. and the matrix Rij of pairwise conversion rates, where rij represents the number of units of cj that one can get from 1 unit of ci. The question that we face is the following: Can we start with k units of some currency, say ci, go through a series of conversions to other currencies and finally return to currency ci, having more than k units of ci? The phenomenon which makes such a trip possible is called arbitrage. The following relationship holds for all currencies:

[image: image15.wmf]ik

r

=
[image: image16.wmf]ij

r

 EMBED Equation.3 [image: image17.wmf]jk

r

.

We construct a complete directed graph, having nodes c1,c2,…cm and weight
[image: image18.wmf]ij

r

log

-

 on the edge between ci and cj.

 c2

[image: image19.wmf]·

 c3

[image: image20.wmf]·

c1
[image: image21.wmf]·

[image: image22.wmf]·

[image: image23.wmf]·

 cm

[image: image24.wmf]·

…

Figure 3

Claim: There exists arbitrage if and only if there exists a negative weight cycle in the above graph.

Proof: Exercise!

Feasible Potentials:

A vector
[image: image25.wmf]y

r

is given,
[image: image26.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

n

y

y

y

y

M

r

2

1

and it estimates the shortest paths from
[image: image27.wmf]r

to every other vertex in the network. We call
[image: image28.wmf]y

r

 a feasible potential if it satisfies the following conditions:

(1)
[image: image29.wmf]0

=

r

y

(2)
[image: image30.wmf]w

vw

v

y

c

y

³

+

, for all
[image: image31.wmf]E

vw

Î

Obviously the shortest path from source
[image: image32.wmf]r

 to itself is zero. The second condition is the basic idea behind all methods for solving the shortest path problems. Suppose there exists a dipath from r to v of cost
[image: image33.wmf]v

y

 for each
[image: image34.wmf]V

v

Î

and we find an arc
[image: image35.wmf]E

vw

Î

 satisfying
[image: image36.wmf]w

vw

v

y

c

y

<

+

. One can improve
[image: image37.wmf]w

y

, by adding the
[image: image38.wmf]vw

 to the dipath and going from r to w through v and the cost of the dipath from r to w would be
[image: image39.wmf]w

vw

v

y

c

y

=

+

.

If an assignment
[image: image40.wmf]y

r

 is given in which
[image: image41.wmf]0

¹

=

a

r

y

and
[image: image42.wmf]w

vw

v

y

c

y

³

+

, one can obtain the feasible potential by subtracting
[image: image43.wmf]r

y

 from all
[image: image44.wmf]v

y

s,
[image: image45.wmf]V

v

Î

.
[image: image46.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

=

¢

r

n

r

r

y

y

y

y

y

y

y

M

r

2

1

. Hence the important condition is
[image: image47.wmf]w

vw

v

y

c

y

³

+

. The following figure shows the notion of appending arc vw to the dipath between r and w and improving the
[image: image48.wmf]w

y

.

v

 v

[image: image49.wmf]v

y

[image: image50.wmf]·

[image: image51.wmf]v

y

[image: image52.wmf]·

[image: image53.wmf]vw

c

[image: image54.wmf]®

[image: image55.wmf]vw

c

r
[image: image56.wmf]·

[image: image57.wmf]·

w

 r
[image: image58.wmf]·

[image: image59.wmf]·

w

[image: image60.wmf]w

y

(a)
[image: image61.wmf]w

vw

v

y

c

y

<

+

(b)
[image: image62.wmf]w

vw

v

y

c

y

=

+

Figure 4.

Lemma 1:

Let
[image: image63.wmf]y

r

 be a feasible potential and let
[image: image64.wmf]P

 be a dipath from r to v. Then,
[image: image65.wmf]v

y

P

c

³

)

(

(i.e. cost of path (P)
[image: image66.wmf]v

y

³

).

Proof: Let
[image: image67.wmf]k

k

v

e

e

v

e

v

,

,...,

,

,

,

2

1

1

0

, where
[image: image68.wmf]r

v

=

0

 and
[image: image69.wmf]v

v

k

=

 be the dipath
[image: image70.wmf]P

. Then

[image: image71.wmf]å

å

Î

=

=

-

=

-

³

=

-

P

e

k

i

v

v

v

v

v

i

i

k

i

i

y

y

y

y

y

e

c

P

c

1

0

1

)

(

)

(

)

(

.

Subpaths of shortest paths are shortest paths, for instance v is in the least cost dipath P from r to w, then P splits into two dipaths,
[image: image72.wmf]1

P

 from r to v and
[image: image73.wmf]2

P

 from v to w. Obviously if
[image: image74.wmf]1

P

 is not the least cost dipath from r to v, one can replace it by a better dipath and at the same time obtain a better dipath from r to w.

Ford's Procedure:

Lemma 1 provides a stopping condition for the shortest path problem. Suppose there exists a feasible potential
[image: image75.wmf]y

r

 and for each
[image: image76.wmf]V

v

Î

 there is a
[image: image77.wmf]v

y

, which is the least cost path from
[image: image78.wmf]r

 to
[image: image79.wmf]v

. If there exists a vertex
[image: image80.wmf]w

 and an arc
[image: image81.wmf]vw

, which violate
[image: image82.wmf]w

vw

v

y

c

y

³

+

, we replace
[image: image83.wmf]w

y

 with
[image: image84.wmf]vw

v

c

y

+

. This procedure can be initialized by allowing
[image: image85.wmf]0

=

r

y

 and (
[image: image86.wmf]¥

=

v

y

) for
[image: image87.wmf]V

v

Î

 and
[image: image88.wmf]r

v

¹

. The least cost dipath from r to w, which contains arc vw, will satisfy
[image: image89.wmf]w

vw

v

y

c

y

=

+

. This dipath contains the least cost dipath from r to v plus arc vw. So knowing the last arc information at each node allows us to trace the least cost dipath from r. To do this, we need to keep the predecessor,
[image: image90.wmf])

(

w

p

, of each node
[image: image91.wmf]V

w

Î

, and set
[image: image92.wmf])

(

w

p

to
[image: image93.wmf]v

, whenever the least cost dipath to w,
[image: image94.wmf]w

y

 is set to be
[image: image95.wmf]w

vw

v

y

c

y

=

+

. An arc vw violating
[image: image96.wmf]w

vw

v

y

c

y

³

+

 is called incorrect. To correct vw, one needs to set
[image: image97.wmf]w

vw

v

y

c

y

=

+

 and
[image: image98.wmf]v

w

p

=

)

(

.

To start Ford’s procedure one needs to initialize
[image: image99.wmf]y

r

,
[image: image100.wmf]p

r

 which means to set
[image: image101.wmf]0

=

r

y

,
[image: image102.wmf]0

)

(

=

r

p

,
[image: image103.wmf]¥

=

v

y

 and
[image: image104.wmf]1

)

(

-

=

v

p

 for
[image: image105.wmf]V

v

Î

 and
[image: image106.wmf]r

v

¹

.
[image: image107.wmf]1

)

(

-

=

v

p

 means that the predecessor of v is still not defined.

Example: Consider the following network, apply the Ford’s Procedure and obtain the shortest paths to each node.

a

-3

 2

 r

3
-1

 c

-3

 2
 4
 Figure 5

b

 Initialize
[image: image108.wmf]p

y

,

;

[image: image109.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¥

¥

¥

¥

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

c

b

a

r

y

y

y

y

y

,
[image: image110.wmf]0

)

(

=

r

p

,
[image: image111.wmf]1

)

(

)

(

)

(

-

=

=

=

c

p

b

p

a

p

.

1) vw = ra,
[image: image112.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¥

¥

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

2

0

c

b

a

r

y

y

y

y

y

,
[image: image113.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

1

1

0

)

(

)

(

)

(

)

(

r

c

p

b

p

a

p

r

p

 2 a

 r

 c

b

2) vw = rb,
[image: image114.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¥

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

3

2

0

c

b

a

r

y

y

y

y

y

,
[image: image115.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

1

0

)

(

)

(

)

(

)

(

r

r

c

p

b

p

a

p

r

p

,

a

 r

c

 b

3) vw = ba,
[image: image116.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¥

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

3

0

0

c

b

a

r

y

y

y

y

y

,
[image: image117.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

1

0

)

(

)

(

)

(

)

(

r

b

c

p

b

p

a

p

r

p

,

 a

r

c

b

4) vw = ac,
[image: image118.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

3

3

0

0

c

b

a

r

y

y

y

y

y

,
[image: image119.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

a

r

b

c

p

b

p

a

p

r

p

0

)

(

)

(

)

(

)

(

,

a

 r

 c

b

If we consider other arcs, cb, bc, ab, we will not find and incorrect arc so the shortest path structure is:

a

r

c

b

[image: image120.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

3

3

0

0

c

b

a

r

y

y

y

y

y

,
[image: image121.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

a

r

b

c

p

b

p

a

p

r

p

0

)

(

)

(

)

(

)

(

.

Lemma 2:
If
[image: image122.wmf])

,

(

c

G

has no negative-cost cycle, then at any stage of the execution of Ford’s Procedure, we have:

(i) If
[image: image123.wmf]¥

¹

v

y

, then it is the cost of a simple dipath from r to v.

(ii) If
[image: image124.wmf]1

)

(

-

¹

v

p

, then p defines a simple dipath from r to v of cost at most
[image: image125.wmf].

v

y

Proof:

Let
[image: image126.wmf]j

v

y

 be the value of
[image: image127.wmf]v

y

, which is the cost of a dipath, at jth iteration of Ford’s procedure. Assume that the dipath is not simple, hence there is a sequence of nodes,

[image: image128.wmf]0

2

1

0

,...,

,

,

v

v

v

v

v

k

=

 and iteration numbers
[image: image129.wmf]k

q

q

q

q

<

<

<

<

...

2

1

0

 such that:

[image: image130.wmf]i

i

i

i

q

v

i

i

q

v

y

v

v

c

y

=

+

-

-

-

)

,

(

1

1

1

,

[image: image131.wmf].

1

k

i

£

£

The cost of the resulting dicircuit is:

[image: image132.wmf].

)

(

)

,

(

0

0

1

1

1

q

v

q

v

q

v

q

v

i

i

y

y

y

y

v

v

c

k

k

i

i

i

i

-

=

-

=

-

-

å

å

-

one should consider that the value of
[image: image133.wmf]v

y

 at the last iteration,
[image: image134.wmf]k

q

, has been lowered and
[image: image135.wmf]0

0

0

<

-

q

v

q

v

y

y

i

i

. The dipath has a negative cost which is a contradiction and (i) is proved.

To prove (ii), consider that p defines a closed path from r to v. there is a sequence,
[image: image136.wmf]0

2

1

0

,...,

,

,

v

v

v

v

v

k

=

 and
[image: image137.wmf].

)

(

1

-

=

i

i

v

v

p

Since
[image: image138.wmf])

),

(

(

)

(

v

v

p

c

y

y

v

p

v

³

-

, the cost of the resulting closed dipath is less than or equal to zero. And consider a case in which the predecessor has been most recently assigned, which means the value of
[image: image139.wmf])

(

v

p

y

 has been assigned and is lowered. Then the cost is strictly less than zero, which is a contradiction, negative cost cycle.

Consider the dipath P,
[image: image140.wmf]v

v

e

v

e

v

e

v

k

k

=

,

,...,

,

,

,

,

2

2

1

1

0

,
[image: image141.wmf]r

v

=

0

 and
[image: image142.wmf]1

)

(

-

=

i

i

v

v

p

 for
[image: image143.wmf]k

i

£

£

1

. The cost of this dipath:
[image: image144.wmf]v

r

v

v

v

y

y

y

y

y

P

c

i

i

=

-

=

-

£

-

å

)

)

(

1

, so the cost of this dipath is at most
[image: image145.wmf]v

y

 and that’s what we need.

Ford’s Procedure

Initialize � EMBED Equation.3 ���;

While � EMBED Equation.3 ��� is not a feasible potential

Find an incorrect arc vw and correct it.

Shortest Path Problem

Input: A digraph � EMBED Equation.3 ���, a node � EMBED Equation.3 ���, and a real cost vector � EMBED Equation.3 ���.

Objective: To find, for each � EMBED Equation.3 ���, a dipath from � EMBED Equation.3 ��� to � EMBED Equation.3 ��� of least cost (if one exists)

_1053694145.unknown

_1053891855.unknown

_1053896899.unknown

_1053897474.unknown

_1053898610.unknown

_1053899240.unknown

_1053899393.unknown

_1055050062.unknown

_1055050091.unknown

_1053899568.unknown

_1053899276.unknown

_1053899200.unknown

_1053899219.unknown

_1053898811.unknown

_1053897527.unknown

_1053898538.unknown

_1053897497.unknown

_1053897097.unknown

_1053897261.unknown

_1053896994.unknown

_1053896129.unknown

_1053896239.unknown

_1053896779.unknown

_1053896210.unknown

_1053895899.unknown

_1053896063.unknown

_1053895801.unknown

_1053890541.unknown

_1053891576.unknown

_1053891743.unknown

_1053891836.unknown

_1053891712.unknown

_1053891145.unknown

_1053891188.unknown

_1053890582.unknown

_1053890818.unknown

_1053888181.unknown

_1053890438.unknown

_1053888609.unknown

_1053888639.unknown

_1053888207.unknown

_1053694590.unknown

_1053888088.unknown

_1053888124.unknown

_1053888149.unknown

_1053888041.unknown

_1053694194.unknown

_1053694239.unknown

_1053694185.unknown

_1053279490.unknown

_1053282136.unknown

_1053515302.unknown

_1053515553.unknown

_1053515644.unknown

_1053694115.unknown

_1053515587.unknown

_1053515432.unknown

_1053515453.unknown

_1053515385.unknown

_1053515200.unknown

_1053515234.unknown

_1053515242.unknown

_1053285720.unknown

_1053514956.unknown

_1053515143.unknown

_1053285657.unknown

_1053281150.unknown

_1053281717.unknown

_1053281963.unknown

_1053282026.unknown

_1053281798.unknown

_1053281302.unknown

_1053281640.unknown

_1053281265.unknown

_1053280615.unknown

_1053280746.unknown

_1053280985.unknown

_1053280657.unknown

_1053280345.unknown

_1053280364.unknown

_1053280445.unknown

_1053280277.unknown

_1053277044.unknown

_1053278868.unknown

_1053279260.unknown

_1053279406.unknown

_1053279445.unknown

_1053278971.unknown

_1053279020.unknown

_1053279123.unknown

_1053278931.unknown

_1053278125.unknown

_1053278554.unknown

_1053278588.unknown

_1053278226.unknown

_1053278026.unknown

_1053278066.unknown

_1053277169.unknown

_1053247975.unknown

_1053250162.unknown

_1053277003.unknown

_1053277037.unknown

_1053250185.unknown

_1053249232.unknown

_1053250016.unknown

_1053249201.unknown

_1053206191.unknown

_1053208429.unknown

_1053208879.unknown

_1053206412.unknown

_1053202991.unknown

_1053203791.unknown

_1053203821.unknown

_1053203020.unknown

_1053203029.unknown

_1053202879.unknown

_1053202915.unknown

_1053202848.unknown

