CS 491 Minimum-Cost Flow Problems

Zi Zhuang

1. Minimum-cost Flow Problem

 We recall that the Maximum Flow Problem is the problem defined below.

 Maximize
[image: image1.wmf])

(

s

f

x

r

 (1.0)

 Subject to

[image: image2.wmf],

0

)

(

=

v

f

x

r

for all
[image: image3.wmf]}

,

{

\

s

r

V

v

Î

[image: image4.wmf]e

e

u

x

£

£

0

, for all
[image: image5.wmf]E

e

Î

.

 r is the source and s is the sink.

In a Minimum-cost Flow problem, every node has a demand and the goal is to find a feasible flow
[image: image6.wmf]x

r

 of minimum cost .

We take as our standard minimum-cost flow model as the following problem:

 Minimize
[image: image7.wmf]).

:

(

E

e

x

c

e

e

Î

S

 (1.1)

 Subject to

[image: image8.wmf],

)

(

v

x

b

v

f

=

r

for all
[image: image9.wmf]V

v

Î

[image: image10.wmf]e

e

u

x

£

£

0

, for all
[image: image11.wmf]E

e

Î

.

[image: image12.wmf]x

f

r

----Net flow into v, or the excess of
[image: image13.wmf]x

r

 at v

[image: image14.wmf]v

b

-----Demand of node
[image: image15.wmf]v

, If
[image: image16.wmf]0

<

v

b

, we can think of the demand as “supply”

[image: image17.wmf]e

u

-----Capacity of edge e
 The Transportation problem is a special case of the Minimum-cost flow problem. Here G is bipartite with bipartition {P, Q} and we are given positive numbers
[image: image18.wmf]P

p

a

p

Î

,

 and
[image: image19.wmf]Q

q

b

q

Î

,

, as well as costs
[image: image20.wmf]E

pq

c

pq

Î

,

 as shown in Figure 1. We define the problem as

 Minimize
[image: image21.wmf]).

:

(

E

pq

x

c

pq

pq

Î

S

 (1.2)

 Subject to

[image: image22.wmf]q

pq

b

E

pq

P

p

x

=

Î

Î

S

)

,

:

(

, for all
[image: image23.wmf]Q

q

Î

[image: image24.wmf]p

pq

a

E

pq

Q

q

x

=

Î

Î

S

)

,

:

(

, for all
[image: image25.wmf]P

p

Î

[image: image26.wmf]0

³

pq

x

, for all
[image: image27.wmf]E

pq

Î

.

[image: image175.wmf]x

r

[image: image176.wmf]x

r

Figure 1. A bipartite graph

 If we allow also constraints of the form
[image: image28.wmf]pq

pq

u

x

£

 with
[image: image29.wmf]pq

u

finite, we have a capacitated transportation problem. In either case, multiplying each of the second group of equations by –1, and putting
[image: image30.wmf]v

v

a

b

-

=

 for
[image: image31.wmf]P

v

Î

, we get a problem of type (1.1). If
[image: image32.wmf]e

u

 is
[image: image33.wmf]¥

, for all
[image: image34.wmf]E

e

Î

, such a problem is called a transshipment problem.

 The dual of (1.1), obtained by first writing the constraints
[image: image35.wmf]vw

vw

u

x

£

 as
[image: image36.wmf]vw

vw

u

x

-

³

-

, is

 Maximize
[image: image37.wmf])

:

(

)

:

(

E

vw

z

u

V

v

y

b

vw

vw

v

v

Î

S

-

Î

S

 (1.3)

 Subject to

[image: image38.wmf],

vw

vw

w

v

c

z

y

y

£

-

+

-

for all
[image: image39.wmf]E

vw

Î

[image: image40.wmf]0

³

vw

z

, for all
[image: image41.wmf]E

vw

Î

.

 If
[image: image42.wmf]¥

=

e

u

, then there is no dual variable
[image: image43.wmf]vw

z

, because the corresponding constraint
[image: image44.wmf]vw

vw

u

x

£

 is missing from (1.1).

 Given
[image: image45.wmf]V

v

v

y

y

v

v

Î

},

note

 with

associated

is

{

r

, it is convenient to denote
[image: image46.wmf]w

v

vw

y

y

c

-

+

 by
[image: image47.wmf]vw

c

, and call
[image: image48.wmf]vw

c

 reduced cost of edge vw. Hence a feasible solution
[image: image49.wmf])

,

(

z

y

r

r

 of (1.3) satisfies
[image: image50.wmf]0

³

e

c

 if
[image: image51.wmf]¥

=

e

u

. Moreover, if
[image: image52.wmf]e

e

e

e

e

c

z

z

z

u

-

³

³

¥

¹

and

0

only

satify

must

then

,

. Therefore,
[image: image53.wmf])

,

0

max(

e

e

c

z

-

=

.

 In terms of
[image: image54.wmf]y

r

 the complementary slackness conditions for the pair (1.1), (1.3) of the problems can be written

[image: image55.wmf]e

e

e

e

e

e

e

e

e

e

u

x

c

u

x

z

c

c

c

x

=

Þ

>

-

Þ

=

Þ

>

£

-

Þ

-

=

-

Þ

>

0

is

that

,

0

0

)

,

0

max(

0

 Thus only
[image: image56.wmf]y

r

 is necessary to describe a feasible or optimal dual solution. The Complementary Slackness Theorem then gives the desired characterization of optimality.

Theorem 1. A feasible solution
[image: image57.wmf]x

r

 of (1.1) is optimal if and only if there exits a vector
[image: image58.wmf]V

v

y

v

Î

,

r

 satisfying for each
[image: image59.wmf]E

e

Î

[image: image60.wmf]0

0

)

(

0

=

Þ

>

¥

¹

=

Þ

<

e

e

e

e

e

x

c

u

x

c

Proof: Follows from the above discussion.

Definition 1: Given a path P in G, not necessarily directed, we define the cost of P as

[image: image61.wmf]P)

in

reverse

:

(

P)

in

forward

:

(

)

(

e

c

e

c

P

c

e

e

S

-

S

=

Definition 2: Given
[image: image62.wmf],

0

satisfying

,

:

u

x

E

e

x

x

e

£

£

Î

=

r

r

 we define the auxiliary digraph G(
[image: image63.wmf]x

r

) as we did in the context of maximum flows, except that we include a notion of arc cost.

 For each
[image: image64.wmf]E

vw

Î

,
[image: image65.wmf]vw

vw

vw

vw

c

c

u

x

=

£

'

,

 For each
[image: image66.wmf]E

vw

Î

,
[image: image67.wmf]vw

vw

c

x

G

E

wv

x

-

=

Î

³

wv

c'

cost

 with

))

(

(

include

 we

,

0

 Then every
[image: image68.wmf]x

r

-incrementing path in G corresponds to a dipath in G(
[image: image69.wmf]x

r

) having the same cost.

 In particular, if
[image: image70.wmf]x

r

 is a feasible solution of (1.1), then an
[image: image71.wmf]x

r

-incrementing circuit of negative cost gives a solution of lower cost.

[image: image177.wmf]x

r

Figure 2. (
[image: image72.wmf]G

r

,
[image: image73.wmf]c

r

,
[image: image74.wmf]u

r

 ,
[image: image75.wmf]x

r

) and its auxiliary digraph

 Figure 2 illustrates some of these ideas. On the left is G; numbers beside arc e are
[image: image76.wmf]e

e

e

x

u

c

,

,

. On the right is G(
[image: image77.wmf]x

r

). Notice that G(
[image: image78.wmf]x

r

) has a dicircuit of cost –2, having node-sequence p,b,q,p. The corresponding circuit of G can be used to produce a feasible solution whose cost is lower by 6.

Theorem 2: A feasible solution
[image: image79.wmf]x

r

 of (1.1) is optimal if and only if there is no
[image: image80.wmf]x

r

-incrementing circuit having negative c-cost.

Proof: Add a node r to G(
[image: image81.wmf]x

r

) and, for each
[image: image82.wmf]V

v

Î

, an arc
[image: image83.wmf]rv

 with
[image: image84.wmf]0

'

=

rv

c

. If we solve the shortest path problem in this new digraph G’, we get either a negative-cost dicircuit or a feasible potential. A negative-cost dicircuit cannot use r, and hence corresponds to a negative-cost
[image: image85.wmf]x

r

-incrementing circuit of G.A feasible potential
[image: image86.wmf]y

r

satisfies

[image: image87.wmf],

w

vw

v

y

c

y

³

¢

+

for all
[image: image88.wmf]))

(

(

x

G

E

vw

Î

.

[image: image89.wmf],

w

vw

v

y

c

y

³

+

Þ

 if
[image: image90.wmf]vw

vw

u

x

<

[image: image91.wmf],

w

vw

v

y

c

y

³

-

Þ

if
[image: image92.wmf]0

>

vw

x

which are equivalent to the conditions of Theorem 1.

 An immediate consequence of the method of proof, is the following:

Theorem 3: Suppose that (1.1) has an optimal solution and c is integral. Then
[image: image93.wmf]y

r

 in Theorem 1 can be chosen integral; equivalently, the dual linear-programming problem of (1.1) has an optimal solution that is integral.

Proof: Since the cost-vector is integral, the cost of the shortest path in the proof of Theorem 2 is also integral. So
[image: image94.wmf]y

r

 can be chosen integral.

Theorem 4: Suppose that (1.1) has a feasible solution. Then it has an optimal solution if and only if there exists no negative-cost dicircuit of G, each of whose arcs had infinite capacity.

Proof: If there is such a circuit, then clearly there is no optimal solution. Otherwise, we can choose
[image: image95.wmf]e

z

= max
[image: image96.wmf])

,

0

(

e

c

-

if
[image: image97.wmf]¥

¹

e

u

 or simply find
[image: image98.wmf]y

r

 such that
[image: image99.wmf]0

³

e

c

 for all
[image: image100.wmf]vw

 with
[image: image101.wmf]¥

=

e

u

. Deleting all arcs of finite capacity from G, adding a new node r and an arc rv of cost 0 for each
[image: image102.wmf]V

v

Î

. The resulting digraph had no negative-cost dicircuit and hence has a feasible potential
[image: image103.wmf]y

r

, which has the desired property.

1.1 Reduction from min-cost flow to transshipment problem

 We can transform the (1.1) problem into a transshipment problem by taking the reduction.

See Figure 3. Given an arc e=vw with
[image: image104.wmf]¥

¹

e

u

, replace e by two nodes p,q and three arcs vp,qp,qw with
[image: image105.wmf]e

p

e

p

qw

qp

e

vp

u

b

u

b

c

c

c

c

-

=

=

=

=

=

,

,

0

,

; the new arcs have infinite capacity. And the new problem has O(m+n) nodes and O(m) arcs.

[image: image178.wmf]v

y

Figure 3.Getting rid of capacities

2. Primal Minimum-cost Flow Algorithm

 The primal minimum-cost flow algorithm was first proposed by Kantorovich [1942]. The name comes from the fact that at every step such an algorithm has a feasible solution to the “primal” linear-programming problem, that is, the minimum-cost flow problem.

[image: image179.wmf]vw

e

=

 How to find a feasible solution? We form a digraph G’ with
[image: image106.wmf]}.

,

{

'

s

r

V

V

È

=

 Each
[image: image107.wmf]E

vw

Î

 is an arc of G’, and has capacity
[image: image108.wmf]vw

u

. For each
[image: image109.wmf]V

v

Î

 with
[image: image110.wmf]0

<

v

b

, there is an arc rv with
[image: image111.wmf]v

rv

b

u

-

=

. For each
[image: image112.wmf]V

v

Î

 with
[image: image113.wmf]0

>

v

b

, there is an arc vs with
[image: image114.wmf]v

vs

b

u

=

. Now apply the Augmenting Path Algorithm to find an (r,s)-flow in G’ of value
[image: image115.wmf])

0

,

:

(

>

Î

å

v

v

b

V

v

b

 . Then the restriction of the flow to G is a feasible solution to the original problem.

 Figure 4 shows an bad example for the Augmenting Circuit Algorithm. Add an arc sr with
[image: image116.wmf]1

-

=

sr

c

 and
[image: image117.wmf]¥

=

sr

u

, give all original arcs a cost of zero, and put all demands equal to zero. Since we know that the number of steps in the basic augmenting path algorithm can be unacceptably high, we can get the same conclusion for the Augmenting Circuit Algorithm. So the algorithm may not terminate.

[image: image180.wmf]0

<

-

+

=

w

v

vw

vw

y

y

c

c

Figure 4. A bad example for the Augmenting Circuit Algorithm

 How to find “good” augmenting circuits? One idea is to find a most-negative augmenting circuit at each step. However, in the above maximum flow example, every negative cost augmenting circuit is most negative, since each has cost –1, so these may not provide a good choice. A better idea is to hind an augmenting circuit whose“ average arc cost” is small. The mean cost of a circuit C of k arcs is its cost divided by k. Notice that in the maximum flow setting, a minimum-mean-cost circuit is a good choice--- it corresponds to a shortest augmenting path!

3. The Network Simplex Method

 The Network Simplex Method is an interpretation of the linear-programming simplex method applied to the minimum cost flow problem.

 We assume that the digraph G has a spanning tree. It is convenient to present the algorithm first for the special case of the transshipment problem, that is, to assume that
[image: image118.wmf]¥

=

e

u

for every arc e. A tree solution for the transshipment problem is

[image: image119.wmf],

)

(

v

x

b

v

f

=

 for all
[image: image120.wmf]V

v

Î

[image: image121.wmf]0

=

e

x

 for all
[image: image122.wmf]T

e

Ï

Proposition 1: Let v, w be nodes of a tree T. Then there is a unique simple path from v to w in T.

 A tree T and arc h=pq of T determine a partition of the nodes into two sets, R(T,h) and V\R(T,h). See Figure 5.

[image: image181.wmf])

)

,

C(

of

arc

reverse

a

:

min(

e

T

j

x

j

=

q

Figure 5. Partition induced by a tree and an arc

 R(T,h) is the set of those nodes v such that the simple path in T from r to v does not use h. Obviously,
[image: image123.wmf])

,

(

h

T

R

r

Î

. And h is the only arc of T having one end in R(T,h) and one end not in R(T,h). Thus in any tree solution x associated with T the net flow into R(T,h) must be entirely carried by h. That is,

[image: image124.wmf]))

,

(

(

h

T

R

b

x

h

=

, if
[image: image125.wmf])

,

(

h

T

R

q

Î

[image: image126.wmf]))

,

(

(

h

T

R

b

x

h

-

=

, Otherwise

Proposition 2: A tree T uniquely determines its tree solution.

Theorem 5: If (G,
[image: image127.wmf]b

r

) has a feasible solution, then it has a feasible tree solution. If it has an optimal solution, then it has an optimal tree solution.

Proof: Let
[image: image128.wmf]x

r

 be a feasible solution. If
[image: image129.wmf]x

r

 is not a tree solution, then there is a circuit C, each of whose arcs carries positive flow. We may assume that C has at least one reverse arc, since otherwise we can replace C by the circuit defined by the same sequence taken in reverse. Now let
[image: image130.wmf]C)

of

arc

reverse

a

e

:

min(

e

x

=

e

. We replace
[image: image131.wmf]e

x

by
[image: image132.wmf]e

+

e

x

 if e is a forward arc of C, and by
[image: image133.wmf]e

-

e

x

 if e is a reverse arc of C. The new x is feasible and has fewer arcs carrying positive flow. Continuing this procedure, we get a feasible tree solution.

 If
[image: image134.wmf]x

r

 is an optimal solution, observe that the cycle C must have cost zero. This is because neither C nor its reverse can have positive cost as per Theorem 2! Thus we can use the same construction that we used for the feasible case to conclude that if there is an optimal solution, there must be an optimal tree solution.

 The Network Simplex Method maintains feasible tree solutions and looks for negative-cost circuits of a special kind. For each arc
[image: image135.wmf],

T

vw

e

Ï

=

there is a unique circuit C(T,e) having the following properties:

(a) Each arc of C(T,e) is an element of
[image: image136.wmf]};

{

e

T

U

(b) e is a forward arc of C(T,e);

(c) The initial node s of C(T,e) is the first common node of the simple paths in T from v and w to r.

 Figure 6 illustrates these conditions.

[image: image182.wmf]q

=

h

x

Figure 6. Example of C(T,e)

 Consider
[image: image137.wmf]y

r

, where
[image: image138.wmf]v

y

is defined as the cost of the simple path in T from r to v. Notice that, for any two nodes v, w, the cost of the simple path in T from v to w is just
[image: image139.wmf]v

w

y

y

-

. Hence the reduced costs
[image: image140.wmf]vw

c

 defined by

[image: image141.wmf]w

v

vw

vw

y

y

c

c

-

+

=

satisfy

[image: image142.wmf]0

=

vw

c

for all
[image: image143.wmf]T

vw

Î

;

[image: image144.wmf]vw

c

 is the cost of C(T,e) for all
[image: image145.wmf]T

E

vw

\

Î

 It follows immediately from this that, if every C(T,e) has nonnegative cost, then the tree solution
[image: image146.wmf]x

r

 determined by T satisfies the conditions of Theorem 1, so we have the following result.

Proposition 3: If the tree T determines the feasible tree solution
[image: image147.wmf]x

r

 and C(T,e) has nonnegative cost for every
[image: image148.wmf],

T

e

Ï

the
[image: image149.wmf]x

r

 is optimal.

 Testing whether T satisfies this optimality condition is relatively easy.

1. Compute
[image: image150.wmf])

(

n

O

y

®

r

time
2. Check
[image: image151.wmf]0

³

e

c

for all
[image: image152.wmf])

(

m

O

e

®

time

 Are we sure a circuit of this form is actually an augmenting circuit? We cannot, because it may have a reverse arc having zero flow. This difficult is illustrated in Figure 7. Here the numbers at the nodes are the demands, the pair
[image: image153.wmf]e

e

x

c

,

 is on arc e, and the tree arcs are the unbroken ones. Then C(T,wr) has positive cost, and C(T,vq) has a reverse arc vw having zero flow. But
[image: image154.wmf]x

r

 is not optimal—sending one unit of flow on the circuit with node-sequence r,v,q,w,r gives a better solution.

[image: image183.wmf]x

r

Figure 7. No augmenting circuit of type C(T,e)

 Using the Network Simplex Method, the basic idea is: Use C(T,e) to find a different tree
[image: image155.wmf]T

ˆ

 having the same tree solution
[image: image156.wmf]x

r

. Like the Figure 6 example,
[image: image157.wmf]}.

,

,

{

ˆ

vq

wq

vr

T

=

We can state the preliminary form of the algorithm as below.

[image: image184.wmf]q

 How to find the initial tree and flow? We use the tree T whose arcs are
[image: image158.wmf]}.

0

}

{

\

:

{

}

0

},

{

\

:

{

<

Î

³

Î

v

v

b

r

V

v

vr

b

r

V

v

rv

U

 If such an arc does not exist in G, add it to G, with a large enough cost. These extra arcs are called artificial arcs. If the original problem is feasible, then in the optimal solution, no artificial arc can carry positive flow!

Proposition 4: In an iteration of the Network Simplex Method, let T be the old tree,
[image: image159.wmf]}

{

\

})

{

(

ˆ

h

e

T

T

U

=

be the new tree, y be the old path costs, and
[image: image160.wmf]y

ˆ

be the new path costs. Then, where
[image: image161.wmf],

vw

e

=

[image: image162.wmf]).

,

(

if

)

,

(

all

for

,

ˆ

)

,

(

if

)

,

(

all

for

,

ˆ

)

,

(

all

for

,

ˆ

h

T

R

w

h

T

R

q

c

y

y

h

T

R

v

h

T

R

q

c

y

y

h

T

R

q

y

y

e

q

q

e

q

q

q

q

Î

Ï

-

=

Î

Ï

+

=

Î

=

[image: image185.wmf]};

{

\

})

{

(

h

e

T

U

Proof: If
[image: image163.wmf])

,

(

h

T

R

q

Î

 then the (r,q)-path in the new tree is the same as that in the old tree, so the cost is the same. Now suppose that
[image: image164.wmf])

,

(

h

T

R

q

Ï

, and that
[image: image165.wmf])

,

(

h

T

R

v

Î

. Then, where
[image: image166.wmf],

vw

e

=

the (r,q)-path in
[image: image167.wmf]T

ˆ

consists of the (r,v)-path in T , together with e, together with the (w,q)-path in T. (See Figure 7.) Therefore,
[image: image168.wmf]e

q

w

q

e

v

q

c

y

y

y

c

y

y

+

=

-

+

+

=

)

(

ˆ

. For the last case, where
[image: image169.wmf],

vw

e

=

the (r,q)-path in
[image: image170.wmf]T

ˆ

consists of the (r,w)-path in T , together with e, together with the (v,q)-path in T. We can tell that
[image: image171.wmf]e

q

v

q

e

w

q

c

y

y

y

c

y

y

-

=

-

+

-

=

)

(

ˆ

.(See Figure 9.)

Figure 8. The (r,q)-path in
[image: image172.wmf]T

ˆ

,where
[image: image173.wmf])

,

(

h

T

R

v

Î

[image: image186.wmf]y

r

Figure 9. The (r,q)-path ,where
[image: image174.wmf])

,

(

h

T

R

w

Î

A

b

c

d

a

B

C

D

P

Q

2,4,2

1,3,0

1,6,1

4,3,0

4,5,5

a

b

q

p

a

b

q

p

-4

1

-2

2

-1

4

1

v

w

Ce,Ue

v

w

Ue

-Ue

0,(

Ce,(

0,(

Augmenting Circuit Algorithm for the Min Cost Flow Problem

Find a feasible solution � EMBED Equation.3 ���;

While there exists an augmenting circuit

 Find an augmenting circuit C;

	 If C has no reverse arc and no forward arc of finite capacity, then stop;

 Augment � EMBED Equation.3 ��� on C.

b

s

r

a

0,1

0,(

0,(

0,(

0,(

-1,(

h

r

R(T,h)

V\R(T,h)

r

s

w

v

e

1 r

-1 v

1 q

-1 w

1,1

1,0

2,1

1,0

1,0

Network Simplex Method for the Transshipment Problem

 Find a tree T whose associated flow � EMBED Equation.3 ��� is feasible;

Compute � EMBED Equation.3 ���, the (r,v) path cost in T, for each node v;

 While there exists an arc � EMBED Equation.3 ���such

That � EMBED Equation.3 ���

 Find such an arc e;

If C(T,e) has no reverse arc, then stop;

 Compute � EMBED Equation.3 ���;

 Find a reverse arc h of C(T,e) with � EMBED Equation.3 ���;

 Augment � EMBED Equation.3 ��� by � EMBED Equation.3 ���on C(T,e);

 Replace T by � EMBED Equation.3 ���

 Update � EMBED Equation.3 ���.

v

w

e

r

q

h

w

v

e

r

q

h

PAGE
10

_1058609046.unknown

_1059223756.unknown

_1059369122.unknown

_1059369457.unknown

_1059369506.unknown

_1059371165.unknown

_1059369469.unknown

_1059369217.unknown

_1059368896.unknown

_1059368977.unknown

_1059298603.unknown

_1059298631.unknown

_1059224015.unknown

_1059224672.unknown

_1059223776.unknown

_1058804780.unknown

_1059202913.unknown

_1059221299.unknown

_1059221469.unknown

_1059221679.unknown

_1059223729.unknown

_1059221701.unknown

_1059221545.unknown

_1059221365.unknown

_1059221415.unknown

_1059221106.unknown

_1058883365.unknown

_1058886200.unknown

_1059202583.unknown

_1058886199.unknown

_1058886198.unknown

_1058867397.unknown

_1058867408.unknown

_1058804847.unknown

_1058815461.unknown

_1058803093.unknown

_1058804494.unknown

_1058804731.unknown

_1058804445.unknown

_1058610968.unknown

_1058611823.unknown

_1058613310.unknown

_1058611854.unknown

_1058611045.unknown

_1058609147.unknown

_1058609183.unknown

_1058609084.unknown

_1057305541.unknown

_1057946069.unknown

_1057946815.unknown

_1057995957.unknown

_1057996434.unknown

_1058023979.unknown

_1058338907.unknown

_1057998867.unknown

_1057996390.unknown

_1057995941.unknown

_1057946083.unknown

_1057946089.unknown

_1057946076.unknown

_1057580109.unknown

_1057687196.unknown

_1057688401.unknown

_1057945257.unknown

_1057689163.unknown

_1057775810.unknown

_1057776472.unknown

_1057776596.unknown

_1057776869.unknown

_1057776667.unknown

_1057776568.unknown

_1057776212.unknown

_1057776448.unknown

_1057776115.unknown

_1057776174.unknown

_1057743058.unknown

_1057743290.unknown

_1057743510.unknown

_1057743596.unknown

_1057743454.unknown

_1057743165.unknown

_1057689461.unknown

_1057742326.unknown

_1057741840.unknown

_1057741997.unknown

_1057689235.unknown

_1057688847.unknown

_1057689031.unknown

_1057689096.unknown

_1057688958.unknown

_1057688735.unknown

_1057688768.unknown

_1057687917.unknown

_1057687993.unknown

_1057688234.unknown

_1057687946.unknown

_1057687594.unknown

_1057687820.unknown

_1057687285.unknown

_1057581442.unknown

_1057581678.unknown

_1057686202.unknown

_1057687104.unknown

_1057582627.unknown

_1057581594.unknown

_1057581651.unknown

_1057581466.unknown

_1057581532.unknown

_1057580474.unknown

_1057580540.unknown

_1057580125.unknown

_1057305592.unknown

_1057305942.unknown

_1057307680.unknown

_1057305638.unknown

_1057305558.unknown

_1057305564.unknown

_1057305551.unknown

_1057305495.unknown

_1057305521.unknown

_1057305535.unknown

_1057305508.unknown

_1057305514.unknown

_1057305502.unknown

_1057299461.unknown

_1057302306.unknown

_1057305482.unknown

_1057305487.unknown

_1057305474.unknown

_1057299492.unknown

_1057300796.unknown

_1057302305.unknown

_1057299569.unknown

_1057297715.unknown

_1057297894.unknown

_1057257232.unknown

_1057257303.unknown

_1057257022.unknown

