CS 491 Minimum-Cost Flow Problems

Zi Zhuang

1. Minimum-cost Flow Problem

       We recall that the Maximum Flow Problem is the problem defined below. 
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      r is the source and s is the sink.

In a Minimum-cost Flow problem, every node has a demand and the goal is to find a feasible flow 
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We take as our standard minimum-cost flow model as the following problem:
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      The Transportation problem is a special case of the Minimum-cost flow problem. Here G is bipartite with bipartition {P, Q} and we are given positive numbers 
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 as shown in Figure 1. We define the problem as
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Figure 1. A bipartite graph

       If we allow also constraints of the form 
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       The dual of (1.1), obtained by first writing the constraints 
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 is necessary to describe a feasible or optimal dual solution. The Complementary Slackness Theorem then gives the desired characterization of optimality.

Theorem 1.  A feasible solution 
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Proof:  Follows from the above discussion.

Definition 1: Given a path P in G, not necessarily directed, we define the cost of P as
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Definition 2: Given 
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Figure 2. (
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        Figure 2 illustrates some of these ideas. On the left is G; numbers beside arc e are 
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Theorem 2: A feasible solution 
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which are equivalent to the conditions of Theorem 1.

     An immediate consequence of the method of proof, is the following:

Theorem 3:  Suppose that (1.1) has an optimal solution and c is integral. Then 
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 in Theorem 1 can be chosen integral; equivalently, the dual linear-programming problem of (1.1) has an optimal solution that is integral.

Proof: Since the cost-vector is integral, the cost of the shortest path in the proof of Theorem 2 is also integral. So 
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Theorem 4:  Suppose that (1.1) has a feasible solution. Then it has an optimal solution if and only if there exists no negative-cost dicircuit of G, each of whose arcs had infinite capacity.

Proof: If there is such a circuit, then clearly there is no optimal solution. Otherwise, we can choose 
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1.1 Reduction from min-cost flow to transshipment problem

      We can transform the (1.1) problem into a transshipment problem by taking the reduction. 

See Figure 3. Given an arc e=vw with 
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; the new arcs have infinite capacity. And the new problem has O(m+n) nodes and O(m) arcs.   
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Figure 3.Getting rid of capacities

2. Primal Minimum-cost Flow Algorithm

       The primal minimum-cost flow algorithm was first proposed by Kantorovich [1942]. The name comes from the fact that at every step such an algorithm has a feasible solution to the “primal” linear-programming problem, that is, the minimum-cost flow problem.
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     How to find a feasible solution? We form a digraph G’ with 
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     Figure 4 shows an bad example for the Augmenting Circuit Algorithm. Add an arc sr with 
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, give all original arcs a cost of zero, and put all demands equal to zero. Since we know that the number of steps in the basic augmenting path algorithm can be unacceptably high, we can get the same conclusion for the Augmenting Circuit Algorithm. So the algorithm may not terminate.
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Figure 4. A bad example for the Augmenting Circuit Algorithm

     How to find “good” augmenting circuits? One idea is to find a most-negative augmenting circuit at each step. However, in the above maximum flow example, every negative cost augmenting circuit is most negative, since each has cost –1, so these may not provide a good choice. A better idea is to hind an augmenting circuit whose“ average arc cost” is small. The mean cost of a circuit C of k arcs is its cost divided by k. Notice that in the maximum flow setting, a minimum-mean-cost circuit is a good choice--- it corresponds to a shortest augmenting path! 

3. The Network Simplex Method

     The Network Simplex Method is an interpretation of the linear-programming simplex method applied to the minimum cost flow problem. 

     We assume that the digraph G has a spanning tree. It is convenient to present the algorithm first for the special case of the transshipment problem, that is, to assume that 
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Proposition 1: Let v, w be nodes of a tree T. Then there is a unique simple path from v to w in T.

      A tree T and arc h=pq of T determine a partition of the nodes into two sets, R(T,h) and V\R(T,h). See Figure 5.
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Figure 5. Partition induced by a tree and an arc

       R(T,h) is the set of those nodes v such that the simple path in T from r to v does not use h. Obviously, 
[image: image123.wmf])

,

(

h

T

R

r

Î

. And h is the only arc of T having one end in R(T,h) and one end not in R(T,h). Thus in any tree solution x associated with T the net flow into R(T,h) must be entirely carried by h. That is, 

                                               
[image: image124.wmf]))

,

(

(

h

T

R

b

x

h

=

,  if 
[image: image125.wmf])

,

(

h

T

R

q

Î


                                               
[image: image126.wmf]))

,

(

(

h

T

R

b

x

h

-

=

, Otherwise

Proposition 2:  A tree T uniquely determines its tree solution.

Theorem 5:  If (G, 
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) has a feasible solution, then it has a feasible tree solution. If it has an optimal solution, then it has an optimal tree solution.

Proof: Let 
[image: image128.wmf]x

r

 be a feasible solution. If 
[image: image129.wmf]x

r
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 if e is a reverse arc of C. The new x is feasible and has fewer arcs carrying positive flow. Continuing this procedure, we get a feasible tree solution.

          If 
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 is an optimal solution, observe that the cycle C must have cost zero. This is because neither C nor its reverse can have positive cost as per Theorem 2! Thus we can use the same construction that we used for the feasible case to conclude that if there is an optimal solution, there must be an optimal tree solution.

     The Network Simplex Method maintains feasible tree solutions and looks for negative-cost circuits of a special kind. For each arc 
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(a) Each arc of C(T,e) is an element of  
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(b) e is a forward arc of C(T,e);

(c) The initial node s of C(T,e) is the first common node of the simple paths in T from v and w to r.

    Figure 6 illustrates these conditions.
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Figure 6. Example of C(T,e)

     Consider 
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    It follows immediately from this that, if every C(T,e) has nonnegative cost, then the tree solution 
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Proposition 3: If the tree T determines the feasible tree solution 
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    Testing whether T satisfies  this optimality condition is relatively easy.
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     Are we sure a circuit of this form is actually an augmenting circuit? We cannot, because it may have a reverse arc having zero flow. This difficult is illustrated in Figure 7. Here the numbers at the nodes are the demands, the pair 
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Figure 7. No augmenting circuit of type C(T,e)

       Using the Network Simplex Method, the basic idea is: Use C(T,e) to find a different tree 
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     How to find the initial tree and flow? We use the tree T whose arcs are 
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 If such an arc does not exist in G, add it to G, with a large enough cost. These extra arcs are called artificial arcs. If the original problem is feasible, then in the optimal solution, no artificial arc can carry positive flow!

Proposition 4:  In an iteration of the Network Simplex Method, let T be the old tree, 
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Augmenting Circuit Algorithm for the Min Cost Flow Problem





Find a feasible solution � EMBED Equation.3  ���;


While there exists an augmenting circuit


                    Find an augmenting circuit C;


	        If C has no reverse arc and no forward arc of finite capacity, then stop;


                    Augment � EMBED Equation.3  ��� on C.
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Network Simplex Method for the Transshipment Problem





                        Find a tree T whose associated flow � EMBED Equation.3  ��� is feasible;


Compute � EMBED Equation.3  ���, the (r,v) path cost in T, for each node v;


                       While there exists an arc � EMBED Equation.3  ���such


That � EMBED Equation.3  ���


                                    Find such an arc e;


If C(T,e) has no reverse arc, then stop;


                                   Compute � EMBED Equation.3  ���;


                                   Find a reverse arc h of C(T,e) with � EMBED Equation.3  ���;


                                   Augment � EMBED Equation.3  ��� by � EMBED Equation.3  ���on C(T,e);


                                   Replace T by � EMBED Equation.3  ���


                                   Update � EMBED Equation.3  ���.
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