CS491G     Combinatorial Optimization

Push-Relabel Maximum Flow Algorithms

Lecture Notes

Zi Zhuang

1. Motivation and Overview

       The Goldberg and Tarjan algorithm introduced the push-relabel method for finding the maximum flow. In the previous lecture we introduced the max-flow algorithm. There are cases through , where this algorithm does not have good performance. Consider a graph with a many-hop, hig-capacity path from the source, r , to another node , v, where cinnected to the sink, s, by many low-capacity paths. In this topology, the max-flow algorithm introduced earlier must send single units of flow individually over the sequential part of the path( from r to v), since no full path from r to s has a capacity of more than one. This is clearly a fairly time-consuming operation, and we can see that the algorithm would benefit from the ability to push a large amount of flow from r to v in a single step. This idea gives the intuition behind the Push-Relabel algorithm. Push-relabel involves examining vertices with positive flow excesses and pushing flow from them to vertices that are estimated to be closer to the sink.

2. Description of Framework

        For purposes of this section it is convenient to take 
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Definition: We call 
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?  Is a feasible preflow a flow?

    NO, Flow should be equate to 0. Here for vector a, income flow 1 and outgoing flow 2 is 1-2=  - 1

Definition: It is a feasible preflow if it also satisfies 
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      If we choose the pair 
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Definition: We call a node 
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         So a preflow is a flow precisely if there are no active nodes.

Definition: We say that a vector 
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Corollary: Not every feasible preflow admits a valid labelling

         But it is easy to construct some feasible preflow and a valid labelling for it, using the following procedure, which we call initialize 
[image: image54.wmf]d

x

,

. Put 
[image: image55.wmf]e

e

u

x

=

 for all arcs e having tail 
[image: image56.wmf]r

, and put 
[image: image57.wmf]0

=

e

x

 for all other arcs 
[image: image58.wmf]E

e

Î

. Put 
[image: image59.wmf]n

r

d

=

)

(

 and 
[image: image60.wmf]0

)

(

=

v

d

 for all other nodes 
[image: image61.wmf]V

v

Î

. It is easy to check that 
[image: image62.wmf]x

 and 
[image: image63.wmf]d

 do satisfy (1.1). (Remark: We must assume that each 
[image: image64.wmf]¥

¹

rv

u

.) The existence of a valid labelling for a preflow implies an important property of the preflow, that is “saturates a cut.”

Lemma.1: If 
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Proof: Since there are 
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Corollary: If a feasible flow 
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 has a valid labelling, then 
[image: image84.wmf]x

 is a maximum flow. 

          The corollary gives a possible termination condition for a maximum flow algorithm. A push-relabel algorithm maintains a feasible preflow and a valid labelling (and thus by Lemma.1, a saturated cut) and terminates when the preflow becomes a flow. So there is certain duality with an augmenting path algorithm, which maintains a feasible flow and terminates when a cut becomes saturated.

          Next we show in what sense a valid labelling gives an approximation to distances in 
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Lemma.2  For any feasible preflow 
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       In particular, it follows from Lemma.2 that 
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       Now suppose that 
[image: image119.wmf]v

 is active but there is no arc 
[image: image120.wmf]vw

 of 
[image: image121.wmf])

(

x

G

 with 
[image: image122.wmf]1

)

(

)

(

+

=

w

d

v

d

. Then we can increase 
[image: image123.wmf])

(

v

d

 to 
[image: image124.wmf])))

(

(

:

1

)

(

min(

x

G

E

vw

w

d

Î

+

, without violating the validity of the labelling. This is the relable operation. 

        Namely, once an active node 
[image: image125.wmf]v

 is chosen, we continue to perform push operations on admissible arcs 
[image: image126.wmf]vw

 of 
[image: image127.wmf])

(

x

G

 until 
[image: image128.wmf]v

 either becomes inactive or is relabeled. Notice that this is possible, because if there are no admissible arcs 
[image: image129.wmf]vw

 and 
[image: image130.wmf]v

 is still active, then 
[image: image131.wmf]v

 can be relabeled. To perform this sequence of operations is to process 
[image: image132.wmf]v

.


                                             Process 
[image: image133.wmf]v


                                 While there exists an admissible arc 
[image: image134.wmf]vw


                                              Push on 
[image: image135.wmf]vw

;

                                  If 
[image: image136.wmf]v

 is active

                                              Relabel 
[image: image137.wmf]v

.

Now we can state the push-relabel maximum flow algorithm quite simply.


Push-Relabel Algorithm

Initialize x,d;

While x is not a flow 


Choose an active node v;


Process v.

            The basic step of the push-relabel algorithm for the maximum flow problem is to choose an active node 
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           We can summerize its execution as follows:

1. Set the source label d(r)=n, the sink label to d(s)=0, and the labels on the remaining nodes to 0.

2. Send out as much flow as possible from the source r, saturating its outgoing edge and placing excesses on its neighboring nodes.

3. Calculate the residual edges.

4. Relabel the active nodes, increasing values as much as possible without violating the label constraint.

5. Push as much flow as possible on some admissible edge. 

6. Repeat steps 4 and 5 until there are no active nodes left in the graph.

Lemma.3: If 
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Proof: Let R denote the set of nodes v for which there is a 
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3. Analysis of the Algorithm

Lemma.4: At every stage of the push-relabel algorithm, for every 
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       It is useful to divide the push operations into two kinds. A push on 
[image: image167.wmf]vw

 is saturating if 
[image: image168.wmf]vw

u

~

 
[image: image169.wmf])

(

v

f

x

£

, so that the value pushed is
[image: image170.wmf]vw

u

~

, and arc 
[image: image171.wmf]vw

leaves 
[image: image172.wmf])

(

x

G

. Otherwise, the push is nonsaturating, and in this case is no longer active. 
Lemma.5 The number of saturating pushes performed by the push-relabel algorithm is at most 2mn.

Proof:  Consider a fixed pair 
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Lemma.6 The number of nonsaturating pushes performed by the push-relabel algorithm is O(mn2).

Proof: Let A be the set of active nodes with respect to the preflow x, and let D=((
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· Each relabel increases D by 2n-1.

· Saturating push on 
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Total increase in D = (n-2)(2n-1) + 2mn(2n-1) = O(mn2)

       If w(A , you could lose D to 2n-1.

       If w(A, you will lose 1.

       Every nonsaturating push decreases D by at least 1, Since the total decrease in D is at most the total increase, there are O(mn2) nonsaturating pushes.

Lemma.7 The maximum distance push-relabel algorithm performs O(n3) nonsaturating pushes.

Proof: Any nonsaturating push from a node v makes v inactive, and v cannot become active again before there is a relabel, since all active nodes w have 
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Theorem 1: The push-relabel algorithm performs O(n2) relabels and O(mn2) pushes. 

Theorem 2: The maximum distance push-relabel algorithm performs O(n2) relabels and O(n3) pushes.



4. Implementation of Push-Relabel Algorithms

     We have proved quite good bounds on the numbers of basic steps of the push-relabel algorithms. In order to convert these into statements about running times, we need to give some details of implementation. For each node v we keep a list 
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