CS491G Combinatorial Optimization

Push-Relabel Maximum Flow Algorithms

Lecture Notes

Zi Zhuang

1. Motivation and Overview

 The Goldberg and Tarjan algorithm introduced the push-relabel method for finding the maximum flow. In the previous lecture we introduced the max-flow algorithm. There are cases through , where this algorithm does not have good performance. Consider a graph with a many-hop, hig-capacity path from the source, r , to another node , v, where cinnected to the sink, s, by many low-capacity paths. In this topology, the max-flow algorithm introduced earlier must send single units of flow individually over the sequential part of the path(from r to v), since no full path from r to s has a capacity of more than one. This is clearly a fairly time-consuming operation, and we can see that the algorithm would benefit from the ability to push a large amount of flow from r to v in a single step. This idea gives the intuition behind the Push-Relabel algorithm. Push-relabel involves examining vertices with positive flow excesses and pushing flow from them to vertices that are estimated to be closer to the sink.

2. Description of Framework

 For purposes of this section it is convenient to take
[image: image1.wmf]0

=

=

wv

wv

x

u

 if
[image: image2.wmf]E

vw

Î

 and
[image: image3.wmf]E

wv

Ï

.

 For a vector
[image: image4.wmf]x

 satisfying
[image: image5.wmf]u

x

£

£

0

, we define the auxiliary digraph
[image: image6.wmf])

(

x

G

r

 just as though
[image: image7.wmf]x

 were a feasible flow, except that we do not bother with parallel arcs. That is, we put
[image: image8.wmf]))

(

(

x

G

E

vw

Î

 if and only if
[image: image9.wmf]0

>

wv

x

 or
[image: image10.wmf]vw

vw

u

x

<

.

 If
[image: image11.wmf]vw

 is an arc of
[image: image12.wmf])

(

x

G

, then up to
[image: image13.wmf]wv

vw

vw

vw

x

x

u

u

+

-

=

~

 units of flow can be “pushed” from
[image: image14.wmf]v

 to
[image: image15.wmf]w

, without violating any nonnegativity or capacity restrictions. (We call
[image: image16.wmf]vw

u

~

 the residual capacity of
[image: image17.wmf]vw

.) Namely, we can increase
[image: image18.wmf]vw

x

 to
[image: image19.wmf]vw

u

 and we can decrease
[image: image20.wmf]wv

x

 to 0.

Definition: We call
[image: image21.wmf]x

r

 a preflow if it satisfies
[image: image22.wmf]0

)

(

³

v

f

x

r

 for all
[image: image23.wmf]}

,

{

\

s

r

V

v

Î

.

? Is a feasible preflow a flow?

 NO, Flow should be equate to 0. Here for vector a, income flow 1 and outgoing flow 2 is 1-2= - 1

Definition: It is a feasible preflow if it also satisfies
[image: image24.wmf]u

x

£

£

0

.

 If we choose the pair
[image: image25.wmf])

,

(

w

v

 so that
[image: image26.wmf]0

~

>

vw

u

 and
[image: image27.wmf]0

)

(

>

v

f

x

, then pushing up to
[image: image28.wmf]))

(

,

~

min(

v

f

u

x

vw

=

e

 from
[image: image29.wmf]v

 to
[image: image30.wmf]w

 will produce a new feasible preflow. This is what we mean by doing a push on
[image: image31.wmf]vw

. (There is some ambiguity if both
[image: image32.wmf]vw

 and
[image: image33.wmf]wv

 are arcs of
[image: image34.wmf]G

 and
[image: image35.wmf]vw

u

~

<

e

. We can resolve it by decreasing
[image: image36.wmf]wv

x

 as much as possible. That is, we decrease
[image: image37.wmf]wv

x

 by
[image: image38.wmf])

,

min(

'

wv

x

e

e

=

, and we increase
[image: image39.wmf]vw

x

 by
[image: image40.wmf]'

e

e

-

.)

Definition: We call a node
[image: image41.wmf]}

,

{

\

s

r

V

v

Î

 active if it has positive net flow, that is, if
[image: image42.wmf]0

)

(

>

v

f

x

.

 So a preflow is a flow precisely if there are no active nodes.

Definition: We say that a vector
[image: image43.wmf]V

Z

d

})

{

(

¥

È

Î

+

r

 is a valid labelling with respect to a preflow
[image: image44.wmf]x

 if

[image: image45.wmf]0

)

(

,

)

(

=

=

s

d

n

r

d

 (1.1)

 for every arc
[image: image46.wmf]vw

 of
[image: image47.wmf])

(

x

G

,
[image: image48.wmf]1

)

(

)

(

+

£

w

d

v

d

.
 Notice that
[image: image49.wmf])

,

(

)

(

s

v

d

v

d

x

=

 satisfies all of these conditions except
[image: image50.wmf]n

r

d

=

)

(

. (Recall that
[image: image51.wmf])

,

(

w

v

d

x

 denotes the number of arcs in a shortest
[image: image52.wmf])

,

(

w

v

-dipath in
[image: image53.wmf])

(

x

G

). So we can “almost” get a valid labelling for any feasible preflow.

Corollary: Not every feasible preflow admits a valid labelling

 But it is easy to construct some feasible preflow and a valid labelling for it, using the following procedure, which we call initialize
[image: image54.wmf]d

x

,

. Put
[image: image55.wmf]e

e

u

x

=

 for all arcs e having tail
[image: image56.wmf]r

, and put
[image: image57.wmf]0

=

e

x

 for all other arcs
[image: image58.wmf]E

e

Î

. Put
[image: image59.wmf]n

r

d

=

)

(

 and
[image: image60.wmf]0

)

(

=

v

d

 for all other nodes
[image: image61.wmf]V

v

Î

. It is easy to check that
[image: image62.wmf]x

 and
[image: image63.wmf]d

 do satisfy (1.1). (Remark: We must assume that each
[image: image64.wmf]¥

¹

rv

u

.) The existence of a valid labelling for a preflow implies an important property of the preflow, that is “saturates a cut.”

Lemma.1: If
[image: image65.wmf]x

r

 is a feasible preflow and
[image: image66.wmf]d

r

 is a valid labelling for
[image: image67.wmf]x

, then there exists an
[image: image68.wmf])

,

(

s

r

-cut
[image: image69.wmf])

(

R

d

 such that
[image: image70.wmf]vw

vw

u

x

=

 for all
[image: image71.wmf])

(

R

vw

d

Î

 and
[image: image72.wmf]0

=

vw

x

 for all
[image: image73.wmf])

(

R

vw

d

Î

.

Proof: Since there are
[image: image74.wmf]n

 nodes, there exists a value
[image: image75.wmf]k

, such that
[image: image76.wmf]n

k

<

<

0

 for all
[image: image77.wmf]V

v

Î

. Take
[image: image78.wmf]}

)

(

:

{

k

v

d

V

v

R

>

Î

=

. Then
[image: image79.wmf]R

r

Î

 and
[image: image80.wmf]R

s

Ï

. Clearly, (1.1) implies that no arc of
[image: image81.wmf])

(

x

G

 leaves
[image: image82.wmf]R

, which implies the statement of the proposition.

Corollary: If a feasible flow
[image: image83.wmf]x

 has a valid labelling, then
[image: image84.wmf]x

 is a maximum flow.

 The corollary gives a possible termination condition for a maximum flow algorithm. A push-relabel algorithm maintains a feasible preflow and a valid labelling (and thus by Lemma.1, a saturated cut) and terminates when the preflow becomes a flow. So there is certain duality with an augmenting path algorithm, which maintains a feasible flow and terminates when a cut becomes saturated.

 Next we show in what sense a valid labelling gives an approximation to distances in
[image: image85.wmf])

(

x

G

.

Lemma.2 For any feasible preflow
[image: image86.wmf]x

r

, and any valid labelling
[image: image87.wmf]d

r

 for
[image: image88.wmf]x

r

, we have

[image: image89.wmf])

(

)

(

)

,

(

w

d

v

d

w

v

d

x

-

³

, for all
[image: image90.wmf]V

w

v

Î

,

Proof: If
[image: image91.wmf]¥

=

)

,

(

w

v

d

x

 this is certainly true, so suppose
[image: image92.wmf])

,

(

w

v

d

x

 is finite, and consider any shortest
[image: image93.wmf])

,

(

w

v

 dipath in
[image: image94.wmf])

(

x

G

. Adding up the inequality
[image: image95.wmf]1

)

(

)

(

£

-

q

d

p

d

 on the arcs
[image: image96.wmf]pq

 of the dipath gives the result.

 In particular, it follows from Lemma.2 that
[image: image97.wmf])

(

v

d

 is a lower bound on
[image: image98.wmf])

,

(

s

v

d

x

, and
[image: image99.wmf]n

v

d

-

)

(

 is a lower bound on
[image: image100.wmf])

,

(

r

v

d

x

. Notice that if
[image: image101.wmf]n

v

d

³

)

(

, this means that
[image: image102.wmf]¥

=

)

,

(

s

v

d

x

, and excess flow at
[image: image103.wmf]v

 should be moved toward the source
[image: image104.wmf]r

. Whether
[image: image105.wmf])

(

v

d

 is large or small, we try to move flow toward nodes
[image: image106.wmf]w

 having
[image: image107.wmf])

(

)

(

v

d

w

d

<

, since such nodes are estimated to be closer to the ultimate destination. Moreover, by the definition of valid labelling, and
[image: image108.wmf]vw

 an arc of
[image: image109.wmf])

(

x

G

 implies that
[image: image110.wmf]1

)

(

)

(

-

=

v

d

w

d

. Therefore, push is applied only to arcs
[image: image111.wmf]vw

 of
[image: image112.wmf])

(

x

G

 such that
[image: image113.wmf]v

 is active and
[image: image114.wmf]1

)

(

)

(

+

=

w

d

v

d

. Such arcs are called admissible. Notice that
[image: image115.wmf]d

 is still a valid labelling for the new preflow, since the only (possible) new restriction arises if
[image: image116.wmf]wv

 becomes an arc of
[image: image117.wmf])

(

x

G

; this would require
[image: image118.wmf]1

)

(

)

(

-

£

v

d

w

d

, which is already satisfied.

 Now suppose that
[image: image119.wmf]v

 is active but there is no arc
[image: image120.wmf]vw

 of
[image: image121.wmf])

(

x

G

 with
[image: image122.wmf]1

)

(

)

(

+

=

w

d

v

d

. Then we can increase
[image: image123.wmf])

(

v

d

 to
[image: image124.wmf])))

(

(

:

1

)

(

min(

x

G

E

vw

w

d

Î

+

, without violating the validity of the labelling. This is the relable operation.

 Namely, once an active node
[image: image125.wmf]v

 is chosen, we continue to perform push operations on admissible arcs
[image: image126.wmf]vw

 of
[image: image127.wmf])

(

x

G

 until
[image: image128.wmf]v

 either becomes inactive or is relabeled. Notice that this is possible, because if there are no admissible arcs
[image: image129.wmf]vw

 and
[image: image130.wmf]v

 is still active, then
[image: image131.wmf]v

 can be relabeled. To perform this sequence of operations is to process
[image: image132.wmf]v

.

 Process
[image: image133.wmf]v

 While there exists an admissible arc
[image: image134.wmf]vw

 Push on
[image: image135.wmf]vw

;

 If
[image: image136.wmf]v

 is active

 Relabel
[image: image137.wmf]v

.

Now we can state the push-relabel maximum flow algorithm quite simply.

Push-Relabel Algorithm

Initialize x,d;

While x is not a flow

Choose an active node v;

Process v.

 The basic step of the push-relabel algorithm for the maximum flow problem is to choose an active node
[image: image138.wmf]v

, then choose an arc
[image: image139.wmf]vw

 of
[image: image140.wmf])

(

x

G

, and do a push on
[image: image141.wmf]vw

. However, we need to specify more carefully the choice of
[image: image142.wmf]vw

. Otherwise, for example, one could easily have an infinite loop consisting of a push on
[image: image143.wmf]vw

, then a push in
[image: image144.wmf]wv

, then a push on
[image: image145.wmf]vw

,… . The additional restriction comes from the idea that we want, as much as possible, to push flow toward the sink,
[image: image146.wmf]s

. However, it is quite possible that we reach a point where no more flow can be pushed toward the sink, but there are still active nodes. In this case the only way to restore conservation of flow is to push the excess back toward the resource,
[image: image147.wmf]r

. The device that allows us to make decisions about the direction of pushes is an estimate of distance in
[image: image148.wmf])

(

x

G

.

 We can summerize its execution as follows:

1. Set the source label d(r)=n, the sink label to d(s)=0, and the labels on the remaining nodes to 0.

2. Send out as much flow as possible from the source r, saturating its outgoing edge and placing excesses on its neighboring nodes.

3. Calculate the residual edges.

4. Relabel the active nodes, increasing values as much as possible without violating the label constraint.

5. Push as much flow as possible on some admissible edge.

6. Repeat steps 4 and 5 until there are no active nodes left in the graph.

Lemma.3: If
[image: image149.wmf]x

r

 is a preflow and w is an active node, then there is a
[image: image150.wmf])

,

(

r

w

– dipath in
[image: image151.wmf])

(

x

G

.

Proof: Let R denote the set of nodes v for which there is a
[image: image152.wmf])

,

(

r

v

 –dipath in
[image: image153.wmf])

(

x

G

. Then no arc leaves
[image: image154.wmf]R

 in
[image: image155.wmf])

(

x

G

, so x(δ(R)) = 0. But suppose that we add the inequalities fx(v) > 0 for
[image: image156.wmf]R

v

Î

. Then we get x(δ(R)) - x(
[image: image157.wmf])

(

R

d

) > 0. With x(δ(R)) = 0, this implies x(
[image: image158.wmf])

(

R

d

)=0. So the sum of the inequalities holds with equality, which means that each of them does. That is, there is no active node in
[image: image159.wmf]R

, so
[image: image160.wmf]R

w

Î

as required.

3. Analysis of the Algorithm

Lemma.4: At every stage of the push-relabel algorithm, for every
[image: image161.wmf]V

v

Î

, we have
[image: image162.wmf])

(

v

d

< 2n-1. Each node is relabelled at most 2n-1 times, and there are O(n2) relables in all.

Proof: Since each relabel of v increases
[image: image163.wmf])

(

v

d

by at least 1, the second statement follows from the first. Since only active nodes relabelled, it is enough to prove the first statement for v active. By Lemma.3
[image: image164.wmf]1

)

,

(

-

£

n

r

v

d

x

. By lemma.2
[image: image165.wmf]n

v

d

r

v

d

x

-

³

)

(

)

,

(

. Combining these two inequalities gives
[image: image166.wmf]1

2

)

(

-

£

n

v

d

.

 It is useful to divide the push operations into two kinds. A push on
[image: image167.wmf]vw

 is saturating if
[image: image168.wmf]vw

u

~

[image: image169.wmf])

(

v

f

x

£

, so that the value pushed is
[image: image170.wmf]vw

u

~

, and arc
[image: image171.wmf]vw

leaves
[image: image172.wmf])

(

x

G

. Otherwise, the push is nonsaturating, and in this case is no longer active.
Lemma.5 The number of saturating pushes performed by the push-relabel algorithm is at most 2mn.

Proof: Consider a fixed pair
[image: image173.wmf])

,

(

w

v

 of nodes, such that
[image: image174.wmf]E

vw

Î

or
[image: image175.wmf]E

wv

Î

. Between two saturating pushes on
[image: image176.wmf]vw

, there must be a push on
[image: image177.wmf]wv

, since otherwise
[image: image178.wmf]vw

 is not an arc of
[image: image179.wmf])

(

x

G

. But since
[image: image180.wmf]1

)

(

)

(

+

=

w

d

v

d

 for a push on
[image: image181.wmf]vw

, and
[image: image182.wmf]1

)

(

)

(

+

=

v

d

w

d

for a push on
[image: image183.wmf]wv

, and since
[image: image184.wmf])

(

v

d

never decreases, there must be a relabel of w before there can be a push on
[image: image185.wmf]wv

. Hence between any two saturating pushes on
[image: image186.wmf]vw

,
[image: image187.wmf])

(

w

d

 increases by at least 2, and this can happen, by Lemma.4, at most n. Therefore, the total number of saturating pushes associated with an arc
[image: image188.wmf]E

vw

Î

 (that is on
[image: image189.wmf]vw

, or
[image: image190.wmf]wv

) is at most 2n, and the total for all arcs is at most 2mn.

Lemma.6 The number of nonsaturating pushes performed by the push-relabel algorithm is O(mn2).

Proof: Let A be the set of active nodes with respect to the preflow x, and let D=((
[image: image191.wmf])

:

)

(

A

v

v

d

Î

. Observe that D is initially 0 and is never negative.

· Each relabel increases D by 2n-1.

· Saturating push on
[image: image192.wmf]vw

 may increase
[image: image193.wmf])

(

A

d

 by as much as 2n-1(since w could enter A and v could remain in A).

Total increase in D = (n-2)(2n-1) + 2mn(2n-1) = O(mn2)

 If w(A , you could lose D to 2n-1.

 If w(A, you will lose 1.

 Every nonsaturating push decreases D by at least 1, Since the total decrease in D is at most the total increase, there are O(mn2) nonsaturating pushes.

Lemma.7 The maximum distance push-relabel algorithm performs O(n3) nonsaturating pushes.

Proof: Any nonsaturating push from a node v makes v inactive, and v cannot become active again before there is a relabel, since all active nodes w have
[image: image194.wmf])

(

w

d

<
[image: image195.wmf])

(

v

d

. Hence, if there are n nonsaturating pushes is less than n times the number of labels, so by Lemma.4, it is O(n3).

Theorem 1: The push-relabel algorithm performs O(n2) relabels and O(mn2) pushes.

Theorem 2: The maximum distance push-relabel algorithm performs O(n2) relabels and O(n3) pushes.

4. Implementation of Push-Relabel Algorithms

 We have proved quite good bounds on the numbers of basic steps of the push-relabel algorithms. In order to convert these into statements about running times, we need to give some details of implementation. For each node v we keep a list
[image: image196.wmf]v

L

of the pairs
[image: image197.wmf]vw

 or
[image: image198.wmf]wv

 (or both) is an arc of G. We may refer to these as arcs; actually, they are the possible arcs of
[image: image199.wmf])

(

x

G

. With each element
[image: image200.wmf]vw

of
[image: image201.wmf]v

L

 we keep
[image: image202.wmf]vw

u

~

. We also keep links between the pairs
[image: image203.wmf]v

L

vw

Î

 and
[image: image204.wmf]v

L

wv

Î

,so that after a push on
[image: image205.wmf]vw

, we can update fixed. In addition, we keep with each node v the values
[image: image206.wmf])

(

v

d

and
[image: image207.wmf])

(

v

f

x

.
(0,1)

(2,2)

(2,2)

(1,3)

(5,3)

b

a

s

r

(0,1)

(2,2)

(2,2)

(2,3)

(1,3)

b

a

s

r

_1055596202.unknown

_1055597487.unknown

_1055598317.unknown

_1055703572.unknown

_1055710269.unknown

_1055711945.unknown

_1055748780.unknown

_1055748841.unknown

_1055749171.unknown

_1055749187.unknown

_1055749057.unknown

_1055712265.unknown

_1055747479.unknown

_1055748405.unknown

_1055712294.unknown

_1055712070.unknown

_1055711980.unknown

_1055711024.unknown

_1055711897.unknown

_1055711903.unknown

_1055711843.unknown

_1055710621.unknown

_1055710989.unknown

_1055711009.unknown

_1055710935.unknown

_1055710421.unknown

_1055710586.unknown

_1055710365.unknown

_1055703959.unknown

_1055704004.unknown

_1055704049.unknown

_1055705235.unknown

_1055703968.unknown

_1055703669.unknown

_1055703699.unknown

_1055598591.unknown

_1055598793.unknown

_1055703519.unknown

_1055598631.unknown

_1055598651.unknown

_1055598737.unknown

_1055598616.unknown

_1055598439.unknown

_1055598571.unknown

_1055598553.unknown

_1055598403.unknown

_1055598419.unknown

_1055598355.unknown

_1055598335.unknown

_1055597950.unknown

_1055598138.unknown

_1055598226.unknown

_1055598284.unknown

_1055598305.unknown

_1055598266.unknown

_1055598184.unknown

_1055598204.unknown

_1055598158.unknown

_1055598058.unknown

_1055598104.unknown

_1055598118.unknown

_1055598074.unknown

_1055598015.unknown

_1055598031.unknown

_1055597971.unknown

_1055597704.unknown

_1055597805.unknown

_1055597832.unknown

_1055597869.unknown

_1055597822.unknown

_1055597766.unknown

_1055597791.unknown

_1055597743.unknown

_1055597620.unknown

_1055597660.unknown

_1055597673.unknown

_1055597635.unknown

_1055597572.unknown

_1055597596.unknown

_1055597519.unknown

_1055597087.unknown

_1055597283.unknown

_1055597358.unknown

_1055597426.unknown

_1055597458.unknown

_1055597408.unknown

_1055597317.unknown

_1055597326.unknown

_1055597302.unknown

_1055597201.unknown

_1055597243.unknown

_1055597263.unknown

_1055597223.unknown

_1055597149.unknown

_1055597179.unknown

_1055596841.unknown

_1055596977.unknown

_1055597032.unknown

_1055597050.unknown

_1055597067.unknown

_1055597017.unknown

_1055596931.unknown

_1055596945.unknown

_1055596880.unknown

_1055596540.unknown

_1055596607.unknown

_1055596666.unknown

_1055596694.unknown

_1055596712.unknown

_1055596736.unknown

_1055596627.unknown

_1055596620.unknown

_1055596580.unknown

_1055596595.unknown

_1055596563.unknown

_1055596360.unknown

_1055596498.unknown

_1055596511.unknown

_1055596401.unknown

_1055596262.unknown

_1055596321.unknown

_1055596257.unknown

_1055595545.unknown

_1055595942.unknown

_1055596069.unknown

_1055596089.unknown

_1055596110.unknown

_1055596029.unknown

_1055596040.unknown

_1055596056.unknown

_1055596014.unknown

_1055595835.unknown

_1055595877.unknown

_1055595923.unknown

_1055595855.unknown

_1055595579.unknown

_1055595602.unknown

_1055595561.unknown

_1055595294.unknown

_1055595473.unknown

_1055595507.unknown

_1055595531.unknown

_1055595495.unknown

_1055595356.unknown

_1055595385.unknown

_1055595326.unknown

_1055595127.unknown

_1055595219.unknown

_1055595269.unknown

_1055595161.unknown

_1055595091.unknown

_1055595058.unknown

_1055595081.unknown

