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1. Minimum Spanning Trees

(a)

Problem 2.7 - The following algorithm solves the problem: The algorithm definitely produces a con-

Algorithm 1 Minimum Connector with negative edge weights

Function MINIMUM CONNECTOR (G =< V,E >)
1: {The key idea is that we only throw out the positive weighted edges, since throwing out edges with negative
weight increases the cost of the minimum-connector!}
for (i =1tom) do
if (w(e;) > 0) then

2:
3
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5:
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8:

if ( {G —{e;}} is connected ) then
G=G - {6,’}
end if
end if
end for

()

nected subgraph. Let us call it Ga and denote its weight by w(Ga). Let Gp denote the optimal
weight connector with weight w(Gg). Observe that Gg must have all the negative weight edges which
are present in G and hence Ga. Otherwise we can decrease the weight of Gg by adding such an
edge. So the only way that w(Gg) can be less than w(Ga) is if Ga contains a postive weight edge
not in Gg. However the removal of such an edge from G disconnects it and thus Gg cannot be
connected...[Q.E.D.]

Problem 2.8 - Let |c.| denote the weight of the largest negative weight (in magnitude) edge in the given
graph G 1 Add |c.| + 1 to the weight of every edge in the graph. Let us call the new graph G'.

Claim: 0.1 The edges corresponding to an MST in G' also correspond to and MST in G.

Proof: Identical to the greedy proof of Kruskael’s algorithm! O

Consider the heaviest edge e’ in the MST T of a graph G. Removal of this edge, creates a partition
(cut) of the vertex set V\\S and S. Now from the Blue-Rule, we know that the lightest weight edge of
any cut must be part of the MST; thus e’ is the lightest weight edge crossing S. Consequently, if the
minmax spanning tree solution does not include €', then either it is not connected or the maximum
weight of an edge in it has weight greater than the weight of e’. For the second part, consider a triangle
with weights 2,2,1. The MST solution is {1, 2}, whereas a valid solution to the minmax spanning tree
solution is {2, 2}, which is clearly not an MST.

!In other words c. is the smallest weight of any edge in the graph.



2. Shortest Path Trees

(a)

(b)

Problem 2.23 - We need to consider the following 3 cases:
e Both arcs incident on w are directed out of w. Clearly, d(w) = oo and we can work on the subgraph
G — w;
e Both arcs are directed into w. Solve the shortest path problem on G — w. Let a and b be the 2
vertices which are connected to w. Then d(w) = min{d(a) + g4, d(b) + Wy };

e One arc (say e;) enters w, while the other arc (say e;) leaves w. First delete e2 and solve the
shortest path problem on G — e;. Clearly, we get the correct value of d(w). Now delete e; and
solve the shortest path problem on G — e;. We now get the correct distances to all the other
vertices in the graph.

The key point is that we solved the shortest path problem on a subgraph of G in all three cases.

Problem 2.27 - Proved in class!

3. Max flows and Min-cuts

(a)

Problem 3.3 - Tt is clear that if there is a path P from 7 to s in G such that the capacity of every edge
is 0o, then there cannot be a maximum flow. We now need to argue that the converse, i.e. if for every
path P between r and s, there is at least one graph of finite capacity, then there must exist a finite
maximum flow. To see this, let us use the augmentation path algorithm on G. Observe that in each
iteration one path is lost and the amount of flow is incremented by the smallest residual capacity of
any edge on that path (which is finite). Since the number of paths is finite and in each iteration, the
flow increases by at most a finite amount, the claim follows.

Problem 3.7 - Without loss of generality, we assume that the discussion is about (r, s) mincuts. Let us
restate Corollary 3.8 from the book:

Corollary: 0.1 Let ¥ denote a feasible flow and §(R) denote an (r,s) cut. Then T is a mazimum
flow and 6(R) is a min-cut if and only if:
T = U, Ve € §(R) and z. = 0,Ve € §(R)

In other words, a maximum flow saturates every (r, s) minimum cut. It follows that under any maximum
flow every edge e € §(R1) and every edge e € 0(Rz) is saturated.

e Consider any edge e € §(R; U Ry). Clearly e € §(R;) or e € deta(Ry) or both. It is possible that
not all edges in {§(R1) UJ(Rz)} are in §(R; U Ry), but that is not our concern. It therefore follows
that every edge e € 6(R1 U R») is saturated under any flow and hence §(R; U R») is a min-cut.
.JQED]

e Consider any edge e € §(R1 UR»). e has its tail in both Ry and Rp; it must be one of the following
types: (a) The edge has its head in Rj; clearly it must belong to (Rz); (b)The edge has its head
in Ry; clearly it must belong to d(R1; (c) the edge has its head in V\{R: U Ry}; in this case
e € 8(R1) N6(Ry).

In all three cases, e is saturated. It follows that the cut defined by 6(Ry N R2) is saturated by any
flow and is hence a min-cut.

Problem 3.8 - Form an (r,s) min-cut corresponding to maximum flow x_i; let the cut be represented
by d(R;) for suitably chosen R;. From the hypothesis v € Ry, since there is an (r,v) path in G(z1).

Similarly form an (r,s) min-cut corresponding to maximum flow ib'-é; let the cut be represented by
0(Rz2), for suitable chosen Ry. From the previous problem, we know that z? can be a maximum flow
if and only if it saturate 6(R; U R»); it follows that even under flow z2, v must be reachable from r in

-

G(z?); i.e. there is an z2-incrementing path (r,v).

Problem 3.11 - If there is no Z-augmenting path of width > 0, it means that there is no path from r to
s in G(Z) and it follows that # is a maximum flow. Let us now consider the case when the maximum
width over any Z-augmenting is K. Draw the residual graph G(Z); also associate the residual capacity



with each edge. If the maximum flow in G(Z) is ¥, then the maximum flow in the original graph is
¥+ 7 ? Now in the residual graph the maximum width is K; which means that the smallest weight
min-cut > K.m, since a min-cut could have all m edges. It follows that a max-flow in G(Z) cannot be
larger than K.m, which proves the claim.

2Use a few examples to convince yourself that this is true!



