
A Framework for Secure Cloud-Empowered
Mobile Biometrics

Aruna Sri Bommagani,⇤ Matthew C. Valenti,⇤ and Arun Ross†
⇤West Virginia University, Morgantown, WV, USA.
†Michigan State University, East Lansing, MI, USA.

Abstract—In this work, we describe how computationally

intensive biometric recognition can be performed on a mobile

device by offloading the actual recognition process to the cloud.

We focus on facial recognition, though the paradigm can be

applied to other modalities. We discuss a systematic approach for

dividing a recognition operation and a bulk enrollment operation

into multiple tasks, which can be executed in parallel on a set of

servers in the cloud, and show how the results from each task

can be combined and post-processed for individual recognition

or template database generation. In the context of biometrics,

preserving the privacy and security of biometric data is also of

paramount interest. Therefore, we further explore the role of

cancelable template generation for providing privacy protection

when biometric data is stored in a cloud environment.

I. INTRODUCTION

In traditional identity management systems, user authenti-
cation is performed using passwords or ID cards. However,
such systems have their disadvantages, as passwords and cards
may be stolen, shared, or forgotten. Biometric recognition [1]
offers an alternate solution to the user authentication problem
as biometric traits cannot be easily lost, shared, or forgotten. A
biometric system measures one or more physical or behavioral
characteristics of an individual, such as fingerprint, face, or
iris information, and attempts to automatically recognize the
individual. The design of a biometric system includes enroll-
ment and recognition phases. During the enrollment phase,
biometric data is acquired from a user and stored in a database
along with each subject’s identity. During the recognition
phase, biometric data is acquired and compared against the
stored biometric data in order to establish the user’s identity.

As biometric systems mature, two conflicting challenges
have emerged. On the one hand, surges in enrollment and bulk
matching operations can dramatically increase the computing
requirements. On the other hand, the desire to implement
biometric recognition on mobile, handheld systems will reduce
the amount of local computing power available to the end
users. These two challenges can be simultaneously adddressed
by using cloud-computing resources, which allows computing
to be performed remotely and treated as a utility [2]. However,
it is not yet clear when and how to best leverage cloud
computing for biometric applications. Furthermore, the risks
of cloud-computing based biometric systems have not been
fully characterized, and research needs to be directed towards
mitigating these risks [3]. Paramount among these risks are
security and privacy concerns [4], which are particularly acute
when the biometric database is hosted by or transmitted to a

public cloud service provider [5].
To date, the role of cloud computing within the context

of biometric recognition systems has been considered in the
literature from a variety of perspectives. A Hadoop-based [6]
prototype for using the cloud for biometric identification is
presented in [3]. However, it does not describe how to keep
the biometric database secure. In [7], fingerprints are used to
authenticate cloud users and cancelable biometrics are stored
in the cloud, and [8] uses biometric identification to manage
keys to access cryptographically encoded data stored on the
cloud. While biometrics are an integral part of the security
policies of [7] and [8], they are only used to authenticate the
user and the matching is performed locally rather than in the
cloud. In [9], erasures-coding is used to assure the integrity
of data stored on the cloud and homomorphic tokens are used
to detect intrusions. A privacy-preserving biometric identifi-
cation scheme where the biometric database is encrypted and
outsourced to the cloud servers is proposed in [10]. While
[9] can detect a compromised database, and [10] provides
a detailed security analysis to secure a biometric database,
they offer no solution to minimize the damage resulting from
a compromised biometric database. A conceptual design of
secure mobile cloud platform using biometric encryption for
mobile applications is proposed in [11], and secure authenti-
cation of mobile cloud users to protect cloud resources using
a fingerprint image obtained using a mobile device camera is
proposed in [12]. However, secure storage of templates and
secret keys are not addressed in these works.

This paper investigates the use of cloud-computing tech-
nologies for performing biometric recognition and related
tasks. Using facial recognition as an example, the paper
considers the tradeoffs involved in architecting a system that
can assure the privacy of the biometric database while realizing
the computational advantages of cloud computing. To fully
benefit from the massive parallelism offered by the cloud, a
parallel and distributed algorithm for performing the biometric
matching is developed and analyzed. To address the security
concerns, a strategy for generating cancelable templates is
presented. The concepts related to secure, distributed biometric
recognition are embodied in a proof-of-concept mobile facial
recognition system, whose architecture is fully described in
this paper.

The remainder of this paper is organized as follows. Section
II discusses key components in a typical facial recognition
system and strategies for cancelable template generation. Sec-

tion III derives distributed algorithms for biometric template
generation and parallel matching. Section IV describes the
architecture of the proof-of-concept mobile biometric recog-
nition system, while Section V provides an analysis of the
system. A summary is presented in Section VI.

II. BASELINE BIOMETRIC SYSTEM

In this work, we focus on facial recognition since face
images can be easily acquired using a mobile device. Further, a
number of applications can potentially benefit from performing
face recognition efficiently in a mobile environment.

A. LBP-Based Template Generation

A typical facial recognition system includes three main
components: (1) face detection, (2) feature extraction, and (3)
face matching. Face detection involves preprocessing of the
image followed by a binary classifier to distinguish between
a face and a non-face. In the present work, we perform
face detection using the Viola-Jones detector [13]. Next, the
face image is processed in order to extract features (template
generation) that are necessary for face recognition. In the
present work, we use Local Binary Patterns (LBP) [14], which
is a texture-based face recognition technique. The final step in
the recognition process is matching, where a probe or query is
compared with gallery templates to generate matching scores
and establish an identity. We have not used a commercial face
matcher in this work since our approach requires direct access
to the features extracted by the matcher, and commercial
matchers do not offer this level of access.

The original form of LBP involves using pixels in a 3x3
pixel block and generating a label by comparing the values of
each of the 8 pixels on the edge of the block with the value of
the center pixel. For each of the 8 neighbors, if the value of the
pixel is greater than the center pixel value, then a value of 1 is
assigned, otherwise a value of 0 is assigned. The thresholding
of the neighbors is performed in a circular fashion and the
result is concatenated into a length-8 binary string, which is
generally converted to its decimal value (label) between 0 and
255. Let Ij be the jth grayscale face image, j = {1, ..., T},
where T is the number of images in the database, and let Fj be
the corresponding LBP-labeled image. Ij and Fj are matrices
of the same size. An LBP histogram hj is generated for each
Fj , which counts the number of occurrences of each distinct
decimal label within m regions of the image. hj is stored as
a column vector of length ` = mn, where m is the number of
regions and n is the number of distinct labels. The steps for
computing Fj and hj are disclosed below.

A generalized form of LBP known as multiscale LBP allows
for the use of a variable number of neighborhood pixels
at different radii. The LBP algorithm with radius R and P
neighbors in the circular neighborhood is denoted by LBPP,R.
A variant of multiscale LBP called uniform LBP, which is
denoted by LBPu2

P,R, is used in this work. A label is said to
be uniform if it has at most two bitwise transitions from 0
to 1 (or 1 to 0). In the corresponding histogram, each of the

uniform patterns are assigned a separate label and all the non-
uniform patterns are assigned to a single label. Therefore, the
number of distinct output labels for mapping patterns with P
bits is n = P (P � 1) + 3.

For a given grayscale image I , let gc denote the intensity
of the cth pixel (ac, bc) i.e., gc = I(ac, bc) and gp denote the
the intensity of the pth neighbor of pixel gc, p = 0, ..., P �
1, where the neighbors are the P pixels that are uniformly
spaced on a circle of radius R and centered at (ac, bc). Bilinear
interpolation is used to sample the image when the pixels do
not lie entirely on the circle. The LBP label at pixel (ac, bc)
is given by

F (ac, bc) =
P�1X

p=0

u[gp � gc]2
p (1)

where

u[z] =

(
1, if z � 0

0, otherwise.

The image is divided into m regions, R1, R2, ...Rm, and a
histogram h

(k) is found for the labels of each Rk. The ith

element of the LBP histogram for region Rk, k = 1, ...,m, is
given by

h(k)
i =

X

(a,b)2Rk

�i[F (a, b)] (2)

for i = 0, 1, ..., n� 1, where

�i[z] =

(
1, z = i

0, z 6= i.

The LBP histograms for the m regions are then stacked into a
single column vector h of length ` = mn. Thus, a biometric
template is generated for each image Ij by applying the above
procedure, and in the case of LBPu2

P,R the size of the template
is ` = m (P (P � 1) + 3).

B. Matching
During the matching step, a probe image x, which is itself

represented as a LBP-labeled image, is compared against
the gallery of templates, {h1, ...hT }, and the closest match
is found. Here, we use minimum Euclidian distance as the
selection criteria. The distance dj from the probe to each
gallery template is computed according to:

d2j = ||x� hj || = (x� hj)
>
(x� hj) (3)

The closest image ˆIj is the one that minimizes the distance;
i.e., the Ij with index

j = argmin

j
{dj} (4)

Once the most likely image ˆIj is determined, a final step is to
identify the most likely subject. When there is a single image
associated with each subject, this step is simply a matter of
determining the subject associated with the image. In general,
there are multiple images per subject, and the match will be
on the subject associated with the most likely image. More
generally, a ranked list of subjects can be provided to the user,
listing the closest images in ascending order of distance.

C. Cancelable Template Generation
In order to generate a cancelable template for h, we first

generate an ` ⇥ ` orthonormal matrix A. For additional
security, an ` ⇥ ` secret permutation matrix P and a length-
` blinding vector b can also be applied. Let the product of
the orthonormal matrix A and the random permutation matrix
P be the matrix Q. Then, the transformed template y of
biometric template h can be given by

y = (AP)h+ b = Qh+ b. (5)

The orthonormal matrix A can be generated using a secret
key either by directly applying Gram-Schmidt orthogonaliza-
tion [15] or by using the approach presented in [16], which
is based on Gram-Schmidt orthogonalization. We follow the
approach of [16], which begins by using a secret key to
generate a set ⇥ = {✓1, ✓2, ..., ✓v}, ✓i 2 [0, 2⇡], v = `/2, of
random rotation angles. Define the 2⇥ 2 rotation matrix:

M(✓) =


cos ✓ sin ✓
� sin ✓ cos ✓

�
(6)

The matrix A is a block matrix composed by a v ⇥ v
arrangement of 2 ⇥ 2 submatrices. More specifically, A is
block-diagonal whose diagonal entries are M(✓1), ...M(✓v),

A =

2

664

M(✓1) 0 · · · 0

0 M(✓2) · · · 0

.
0 0 · · · M(✓v)

3

775 (7)

where each 0 in the above is a 2⇥ 2 matrix of zeros.
We can say that y is a cancelable template because if it

is compromised, then the current transformed template can be
revoked, and using a new key, i.e., a new set of ⇥, a new
template can be regenerated. For an identification system, a
single secret key can be used to generate cancelable templates
for the entire gallery database.

During the matching stage, the distance from a transformed
probe template is compared against the transformed gallery
templates. Let z = APx + b be the transformed probe
template. The distance from z to each transformed gallery
template, yj , is

d2j = ||z� yj || = (z� yj)
>
(z� yj) . (8)

In order to maintain the same matching performance, it is
essential that the distance profile be maintained. Thanks to
the use of a unitary transformation matrix, this condition holds
true. To see this, substitute (5) into (8),

||z� yj || = (z� yj)
>
(z� yj)

= (Qx+ b�Qhj � b)

>
(Qx+ b�Qhj � b)

= (x� hj)
>Q>Q(x� hj)

= (x� hj)
>
(x� hj) = ||x� hj || (9)

where the last step follows from Q>Q = I . Thus the
transformation used to generate the cancelable template does
not change the distance profile, and will therefore leave the
matching performance unchanged.

III. PARALLEL COMPUTATION

The two main phases in a biometric system are enrollment
and recognition, which becomes increasingly computationally
intensive as the size of the database grows. The effective
turnaround time for operations in both phases can be greatly
reduced through parallelization. In the context of a biometric
system, parallelization involves breaking jobs, defined to be a
user-requested action such as the enrollment of an individual
or a recognition operation, into tasks, which are independent
subsets of the operations required by a job, for instance a
matching of a probe against just a subset of the biometric
database. This section describes how to parallelize both the
enrollment and recognition phases.

In general, a job involves the processing of T templates.
In the case of gallery generation or key renewal, T images
are transformed into T cancelable templates. In the case of
recognition, a single probe image is compared against the
T templates in the gallery. In each case, the job is easily
parallelized by processing one or more templates per task.
In the following discussion, we let ⌘ be the number of tasks
and �i be the number of templates processed by the ith task.
It follows that

T =

⌘X

i=1

�i. (10)

For ease of exposition, we assume that tasks are equally sized;
i.e., �i = �, 8i, in which case T = ⌘�.

A. Parallel biometric template generation
The complete gallery of templates can be generated in

parallel by dividing the job of computing the T templates
into ⌘ tasks, each involving the generation of � templates.
Let Ik be the images associated with the kth task, and Yk the
corresponding cancelable templates. A job manager will create
Ik by selecting a subset of the gallery containing � images.
The package of images Ik will be sent to the appropriate
computing asset, where it will be processed and the resulting
Yk computed. For each image I 2 Ik, the LBP label F is
generated according to (1), its histogram h computed accord-
ing to (2), and a cancelable template y generated according
to (5). On a parallel architecture, the {Yk} can be processed
in parallel, and then brought together at the server to form the
complete gallery Y = {Y1,Y2, ...,Y⌘} = {y1,y2, ...,yT }.

B. Parallel distance matching
The distance between a transformed probe z and the gallery

Y = {y1,y2, ...,yT } can be computed in parallel by dividing
the job into ⌘ tasks, each involving the matching of z against
some subset of Y . As with template generation, let Yk rep-
resent the cancelable templates associated with the kth task.
Note, however, that the size of the tasks used for template
generation need not be the same as the size used for distance-
based matching. In particular, distance calculation is much less
complex than template generation, and therefore a distance-
matching task will typically handle far more templates than
will a template-generation task.

<User home directory>

Projects

PLBP

JobIn JobRunning JobOut

TaskIn TaskRunning TaskOut

Gallery files:
Cancelable
templates

Tasks

3

6

Job Manager4

12

5

11

node 1
node 2
node 3
node 4
node 5
node 6

cluster

7

9

Task Manager

8

10

server

web server

2

1

13

14

Fig. 1. System architecture and data flow.

For each task, the distance between z and each yj 2 Yk

is found according to (8). The ⌘ tasks are processed in-
dependently and in parallel, and the results returned to the
server, which proceeds to identify the most likely match.
On the one hand, the closest match can be found from the
individual distances by picking the Ij with index given by
(4). Alternatively, the selection can be done in a hierarchical
fashion, where a local most-likely candidate is found for each
task, then the global most-likely candidate is found by picking
the smallest distance among the ⌘ local most-likely candidates.

IV. PARALLEL LBP FACIAL IDENTIFICATION SYSTEM

In this section, we present a complete mobile identification
system that applies the approaches discussed in the previous
sections to perform parallel template generation and matching
on a computing cluster or cloud with a large number of pro-
cessors. Because template generation involves accessing and
modifying the model (gallery template data), only privileged
users (e.g. an administrator) should be permitted to perform
template generation. On the other hand, identification does
not involve modification of data, and since the templates are
cancelable, identification can be performed by a less-privileged
regular user (e.g., an identification officer). More generally, the
access privileges of users can be modified depending on the
system policies.

By accessing the computing infrastructure through a mobile-
friendly web interface, a regular user can take and upload
an input image, view identification results (e.g., the three
closest images to a probe image), and view results of previous
identification jobs. A privileged user can furthermore enroll
new subjects and generate cancelable face templates for either
the entire image gallery (which is required during key renewal)
or for a newly enrolled subject.

A. Components of the System

The main components of the system are the mobile devices
(e.g. cell phones or tablet computers), a system server running
a web server, a system server, and a job manager, and
the computational assets running on the cluster. The system
architecture, its components and the flow of data is shown in
Fig. 1. Each mobile device includes a camera for taking the
probe image, a communications interface (e.g., WiFi or LTE
cellular) for uploading the image, and a mobile web browser
for viewing results. The web server hosts the web application
that can be accessed using the mobile devices. Job requests
are submitted and retrieved by the mobile user via the web
interface. The computing cluster includes a set of networked
computers, which together process the user-submitted jobs
by operating as an integrated computing resource. The job
manager is a process that divides jobs into tasks, manages the
execution of jobs, and monitors user activity and usage. The
task manager is a process that coordinates parallel execution
of tasks on the cluster. Tasks are serviced by workers, which
are agents running on the computing cluster that will execute
the individual tasks.

As mentioned above, a job manager is a process that divides
each job into tasks, tracks the job status by monitoring the
execution of tasks, post-processes the completed tasks (for
instance, by sorting the distances computed by the tasks in
an effort to determine the most-likely subject), and maintains
a record of the computational effort required for each task.
The job manager furthermore keeps track of each user by
monitoring the number of jobs that the user has submitted,
and the amount of computing resources consumed by each
job and user of the system. Usage quotas can be imposed
to prevent a single user from consuming too much of the
computing resource, and a biometrics-as-a-service system can
bill based on the amount of usage.

Each job and task in the system is embodied by a data
file in the filesystem containing the values required to execute
the job. While the architecture is agnostic to the programming
language, our implementation is based on Matlab, and the data
files are stored in the .mat file format. Within the filesystem, a
queue is a directory holding a file that embodies a job or a task.
The job and task manager each maintain its own sets of queues,
and each manager has access to three kinds of queues: Input,
Running, and Output. Multiple algorithms and modalities are
supported through the use of different projects, where a project
is a directory in the filesystem that holds the job queues of
a specific recognition algorithm (and the procedure to gener-
ate cancelable templates). Different recognition algorithms or
biometric modalities can be implemented as different projects.

A recognition job is submitted by uploading an image
through the mobile web interface. The web server will create
the appropriate job file containing the necessary algorithmic
parameters and will place it into the job input queue for
that user. As each user will have its own job queue, the job
manager will sweep through the job input queues of all the
users and will select a job for execution using a scheduling

LBP$
Histogram$

Orthonormal*matrix*(A)*
Cancelable$template$

Random*permuta5on*matrix*(P)*

Blinding*vector*(b)*

Image*database* Face*detec5on* Image*
preprocessing*

Template*genera5on*

Template*(h)*

Feature*extrac5on*

Random*projec5on*

((A*P)$*$h)$+$b$
Key*(K)*

Cancelable*template*
**database*(Model)*

Fig. 2. Parallel enrollment.

policy such as first-in first-out (FIFO), fair, or proportionally
fair. The job will be divided into ⌘ tasks, and each task placed
into the user’s task input queue.

If the time required to process the kth task is tk, which may
vary depending on parameters such as the processing power of
the worker, then the total processor time required to complete
a job, �p =

P⌘
k=1 tk, where ⌘ is the number of tasks required

to complete a job. The duration of a job, �c, is the difference
between the clock time that a job is completed and when it
was submitted. On a uniprocessor machine �c = �p, but on a
massive parallel architecture �c << �p since many tasks may
be run in parallel.

B. Job preprocessing

When the job manager selects a job for execution, the
corresponding job file is moved from the job input queue
to the job running queue. Concurrently, the job manager
performs preprocessing of the job and splits it into ⌘ tasks,
each of which is embodied by a task file placed into the task
input queue. In the case of parallel template generation,
preprocessing includes the validation of key and gallery data.
Depending on the number of enrolled subjects (and images per
subject), an optimal number of tasks is evaluated (dependent
on the number and type of resources available for parallel
execution). For an identification job, preprocessing includes
gathering volume information of gallery template database
(model) to calculate the number of tasks required to establish
identity of a probe image.

The key is an important parameter when using cancelable
template generation, and it should be noted that cancelable
template generation is invertible; i.e., if an adversary has
access to key and algorithmic details to generate cancelable
templates, then the original biometric template can be compro-
mised. To support the validity of the approach in Section II-C,
robustness and diversity properties are discussed in [16]. In
addition to this, since the security, integrity, and confidentiality
of machines on a distributed environment is questionable, care
is taken such that a hash of a key is stored on a secure system
server using Bcrypt [17], and only the information required for
transformation such as matrix Q and vector b are included in
a task.

Feature'
extrac*on'

Apply'Random'
Projec*on'and'
Blinding'Vector'

Parallel'matching:'
compute'distance'
to'each'template'

Decision:'
Pick'closest'matches'
or'verify'iden*ty'

Cancelable'template'
''database'(Model)'

Probe'image'

Fig. 3. Parallel face recognition.

C. Job execution

After preprocessing, based on the number of tasks required
to complete execution of a job, the job manager generates and
queues tasks in task input. Each task is generated such that it
includes all the required information for its execution without
any dependency on other tasks or on the job manager, thus,
preventing data corruption and race conditions.

A template generation task may include parameters such
as the location of the directory hosting the image gallery,
algorithm-specific information such as the radius R and the
number of neighbors within the radius P , and parameters
for generating the cancelable template such as the permuted
projection matrix Q and blinding vector b. In the case of a
matching task, a link to the probe z must be provided in the
task along with the location of the gallery of secure template.

Each task in task input queue is randomly picked up
by a worker and moved to task running queue when the
worker begins executing the task. Parallel template generation
can be seen in Fig. 2, as described in Section III-A. Parallel
matching is performed as described in Section III-B and Fig. 3.
After task execution, a worker moves a task to task output

queue. Job manager picks and consolidates results from all the
completed tasks. After the final task execution of a job, the job
manager updates job results (model or identity), total duration
(�c), and total processor time (�p), and moves the job to job
output queue with all the necessary output data that can be
viewed using the mobile web interface.

V. IDENTIFICATION SYSTEM ANALYSIS

In order to evaluate the system, we ran a test on a cluster
computer comprising 22 servers containing a total of 396 cores
for running workers. The database used is XM2VTSDB [18],
which is designed to support multi-modal biometric research.
It contains face data of 295 subjects recorded on a uniform
blue background taken in controlled lighting conditions. For
each of the 295 identities, a total of eight images were
acquired, and in our evaluation, we use four images per subject
as gallery images and the remaining four images are used as
probes.

LBPu2
P,R has two important parameters: the radius, R, and

the number of neighbors, P , within R. We ran simulations
using different values for R and P in order to determine
optimum parameter values. Fig. 4 represents identification
accuracy rate as a function of number of neighbors, P , and
Fig. 5 represents identification accuracy rate as a function of

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Id

en
tif

ic
at

io
n

R
at

e

P (# of neighbors)

R=1
R=2
R=3

Fig. 4. Identification rate as a function of number of neighbors using LBP
algorithm parameterized by different radii.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Id
en

tif
ic

at
io

n
R

at
e

of features

R=1
R=2
R=3

Fig. 5. Identification rate as a function of the number of features using LBP
algorithm parameterized by different radii.

number of features in an image template. From the figures,
we can observe that highest identification rate of 75.08% is
obtained with P = 4 and R = 2. We can also observe that for
a particular radius in Fig. 4, the identification rate increases
and reaches its optimum at P = 4, and then starts decreasing;
there is only a slight variation in accuracy rate when R = 2

and R = 3. As the template size (i.e., number of features)
is a function of P , we observe a similar phenomenon for
identification rate when it is plotted as a function of number
of features as shown in Fig. 5.

In Section II-C, we emphasized that if the same key is used
for transformation of templates, then the distance between
them is preserved before and after the transformation. Fig.
6 is a set of cumulative match characteristic (CMC) curves
obtained for P = 4 and R = 2, 3 for original and cancelable
templates. We can observe that securing templates using
transformation indeed preserves identification accuracy. Also,
within the top 10 ranks the identity of a test image can be
correctly established with an accuracy rate of 93.47%. Table I

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Id
en

tif
ic

at
io

n
R

at
e

Rank

LBP4,2
u2 , w/o cancelable templates

LBP4,2
u2 , w/ cancelable templates

LBP4,3
u2 , w/o cancelable templates

LBP4,3
u2 , w/ cancelable templates

Fig. 6. CMC curves using LBP with uniform mapping for original and
cancelable templates for P = 4 and R = 2, 3.

TABLE I
IDENTIFICATION RATE CORRESPONDING TO RANK USING LBP FOR P = 4

AND R = 2, 3.

Rank LBPu2
4,2 LBPu2

4,3
1 0.7508 0.7127
2 0.8220 0.7797
4 0.8669 0.8331
6 0.8915 0.8576
8 0.9110 0.8754

10 0.9347 0.8890

shows the identification accuracy rate corresponding to a rank
for P = 4 and R = 2, 3. Fig. 7 shows the receiver operating
characteristic (ROC) curves obtained by using uniform LBP
with P = 4 and R = {2, 3}.

The difference in computational performance when using a
full cluster to a set of different types of nodes can be observed
in Fig. 8. The figure shows the number of comparisons (be-
tween a probe and a gallery template) performed as a function
of time (in seconds), and Table II provides average number of
comparisons performed per second. Nodes in a node type are
categorized based on the computational capability. From Table
II, we can observe 10 to 30 times improvement in throughput
when the full cluster is utilized to process jobs.

VI. CONCLUSION

This paper has presented a framework to perform biometric
face recognition in a cloud environment where the enrollment
and identification operations are divided into multiple tasks,
which can be run in parallel while maintaining the security
of the biometric templates. By using cancelable template
protection, biometric templates are made secure, which is
important when the container holding the templates are not
completely secure, such as in a public cloud setting. The
cancelable templates can be revoked and regenerated whenever
required or according to proactive security policy.

In addition, we have shown how to adapt the LBP face
recognition paradigm to run on a cloud or cluster computing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

LBP4,3
u2

LBP4,2
u2

Fig. 7. ROC curves using uniform-LBP for P = 4 and R = 2, 3.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14 x 105

Time (Seconds)

N
um

be
r o

f C
om

pa
ris

on
s

Full Cluster
Node Type 1
Node Type 2
Node Type 3

Fig. 8. Computational performance.

environment by describing how to parallelize the template-
generation and face-matching algorithms, and showing the key
components of the architecture. An analysis of the system
where tasks are run in parallel on a 396-core cluster using
XM2VTS face database is provided. A 10- to 30-fold improve-
ment in throughput is observed. However, for the XM2VTS
database, there is negligible decrease in latency when com-
pared against a stand-alone system, and we anticipate that
the computational benefits of parallel computing will be more
dramatic when a larger database or more computationally
intensive matching algorithm is used.

The proposed work investigated the feasibility of secure
cloud-empowered mobile biometric identification systems, and
the metrics developed can be used as benchmarks for future
cloud computing based biometric systems. The possible im-
provements to the proposed work include incorporating im-
proved face recognition algorithms and applying the proposed
approaches to use other modalities or multimodal biometrics.
We would also like to research and formulate improved
key management and access policies, and address scalability
issues.

ACKNOWLEDGMENT

This research was funded by the Center for Identification
Technology Research (CITeR), a National Science Founda-

TABLE II
COMPUTATIONAL PERFORMANCE: AVERAGE NUMBER OF TEMPLATE

COMPARISONS PER SECOND

Computational entity type Number of comparisons
Full cluster 1348.4
Node type 1 127.49
Node type 2 80.74
Node type 3 44.75

tion (NSF) Industry/University Cooperative Research Center
(I/UCRC).

REFERENCES

[1] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric
recognition,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 14, pp. 4–20, Jan. 2004.

[2] R. Das, “Biometrics in the cloud,” Keesing Journal of Documents and
Identity, pp. 21–23, Feb. 2013.

[3] E. Kohlwey, A. Sussman, J. Trost, and A. Maurer, “Leveraging the cloud
for big data biometrics: Meeting the performance requirements of the
next generation biometric systems,” in Proc. IEEE World Congress on
Services, (Los Alamitos, CA, USA), pp. 597–601, Jul. 2011.

[4] S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric recognition:
Security and privacy concerns,” IEEE Security & Privacy, vol. 1, pp. 33–
42, Mar. 2003.

[5] X. Zhifeng and X. Yang, “Security and privacy in cloud computing,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 843–
859, 2013.

[6] T. White, Hadoop: The Definitive Guide. O’Reilly Media, third ed.,
May. 2012.

[7] J. Yang, N. Xiong, A. V. Vasilakos, Z. Fang, D. Park, X. Xu, S. Yoon,
S. Xie, and Y. Yang, “A fingerprint recognition scheme based on
assembling invariant moments for cloud computing communications,”
IEEE Systems Journal, vol. 5, pp. 574–583, Dec. 2011.

[8] D. G. Martı́nez, F. J. G. Castaño, E. A. Rúa, J. L. A. Castro, and D. A. R.
Silva, “Secure crypto-biometric system for cloud computing,” in Proc.
1st Int’l Workshop on Securing Services on the Cloud, pp. 38–45, Sep.
2011.

[9] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security
in cloud computing,” in Proc. 17th Int’l Workshop on Quality of Service,
pp. 1–9, Jul. 2009.

[10] J. Yuan and S. Yu, “Efficient privacy-preserving biometric identification
in cloud computing,” in Proc. IEEE INFOCOM, pp. 2652–2660, Apr.
2013.

[11] K. Zhao, H. Jin, D. Zou, G. Chen, and W. Dai, “Feasibility of
deploying biometric encryption in mobile cloud computing,” in Proc.
8th ChinaGrid Annual Conf., pp. 28–33, Aug 2013.

[12] I. A. Rassan and H. AlShaher, “Securing mobile cloud using finger
print authentication,” International Journal of Network Security & Its
Applications, vol. 5, Nov. 2013.

[13] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Computer Society Conf. on Computer
Vision and Pattern Recognition, vol. 1, pp. 511–518, 2001.

[14] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 28, pp. 2037–2041, Dec. 2006.

[15] G. B. Arfken, “Gram-schmidt orthogonalization,” in Mathematical Meth-
ods for Physicists, pp. 516–520, Orlando, FL: Academic Press, 3rd ed.,
1985.

[16] H. Al-Assam, H. Sellahewa, and S. Jassim, “A lightweight approach for
biometric template protection,” in Proc. SPIE, Mobile Multimedia/Image
Processing, Security, and Applications, vol. 7351, May. 2009.

[17] N. Provos and D. Mazières, “A future-adaptable password scheme,” in
Proc. USENIX Annual Technical Conf., (Monterey, California, USA),
pp. 81–92, Jun. 1999.

[18] K. Messer, J. Matas, J. Kittler, J. Lüttin, and G. Maitre, “XM2VTSDB:
the extended M2VTS database,” in Proc. Second Int’l Conf. on Audio
and Video-based Biometric Person Authentication, pp. 72–77, 1999.

