Interference and Spatial Modeling in Wireless Networks

Matthew C. Valenti

West Virginia University

May 28, 2013

Collaborators:

- Dr. Don Torrieri (Army Research Laboratory).
- Mr. Salvatore Talarico (WVU Ph.D. student).

Sponsors:

- National Science Foundation.
 Award No. CNS-0750821
- Army Research Laboratory.

Award No. W911NF-10-0109

• Office of Naval Research.

Award No. N00014-09-1-1189

The views expressed in this presentation do not necessarily reflect those of the sponsoring agencies.

Outline

Introduction

- 2 Outage Analysis of Interference Networks
- Spatial Modeling
- Transmission Capacity
- 5 Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

7 Conclusions

Outline

Introduction

- 2 Outage Analysis of Interference Networks
- 3 Spatial Modeling
- 4 Transmission Capacity
- 5 Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

Conclusions

Introduction

Introduction

- Sources of randomness in a wireless network:
 - Fading and noise.
 - 2 Random transmitter activity (buffer status).
 - **3** Effect of interference-avoidance protocols.
 - Shadowing.
 - Solution of interfering transmitters (topology).
- The above effects work at different timescales.
 - Suggests a hierarchical approach to analysis.
 - Fix the locations of the interferers and amount of shadowing; determine the corresponding *conditional* outage probability.
 - Then consider the effect of node location and shadowing distribution.
- Averages are more appropriate for faster phenomena (fading).
 - Closed-form expressions can be obtained for the outage probability of a given network topology.
- For slower phenomena (network topology), cdf of performance metrics (outage, rate) are more meaningful.

Outline

Introduction

2 Outage Analysis of Interference Networks

- 3 Spatial Modeling
- 4 Transmission Capacity
- 5 Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

Conclusions

Network Model

- Transmitters are arbitrarily placed in a 2-D finite region.
- A reference receiver is located at the origin.
- X_i represents the i^{th} transmitter and its location.
 - X₀ is location of the reference transmitter.
 - M interfering transmitters, $\{X_1, ..., X_M\}$.
 - $|X_i|$ is distance from i^{th} transmitter to the reference receiver.
- Network may be *cellular* or *ad hoc* (infrastructureless).
- Later, we will consider models governing the placement of the radios.

Channel Model

- Signal from X_i to the reference receiver undergoes fading, shadowing, and path loss.
- At the reference receiver, X_i 's signal is received with power:

$$\rho_i = P_i g_i 10^{\xi_i/10} \left(\frac{|X_i|}{d_0}\right)^{-\alpha}$$

where:

- P_i is the transmitted power.
- g_i is the power gain due to fading.
- ξ_i is the dB shadowing factor.
- α is the path-loss exponent.
- d_0 is a reference distance.

SINR

The performance at the reference receiver is characterized by the signal-to-interference and noise ratio (SINR), given by:

$$\gamma = \frac{\rho_0}{\mathcal{N} + \sum_{i=1}^M I_i \rho_i} = \frac{g_0 \Omega_0}{\Gamma^{-1} + \sum_{i=1}^M I_i g_i \Omega_i}$$
(1)

where:

- $\bullet~\mathcal{N}$ is the noise power.
- I_i is a Bernoulli indicator with $P[I_i] = p_i$.
 - Probability that X_i collides with X_0 .
- $\Gamma = P_0 / \mathcal{N}$ is the SNR.
- $\Omega_i = \frac{P_i}{P_0} 10^{\xi_i/10} |X_i|^{-\alpha}$ is the normalized average received power.
 - Normalized with respect to P_0
 - Accounts for shadowing and path loss, but not fading.

Outage Probability

- An outage occurs when $\gamma \leq \beta$, where β is an SINR threshold.
 - $\bullet\,$ The value of β depends on the choice of modulation and coding.
- From (1), the outage probability is

$$\epsilon = P\left[\underbrace{\frac{g_0\Omega_0}{\Gamma^{-1} + \sum_{i=1}^{M} I_i g_i \Omega_i}}_{\gamma} \leq \beta\right]$$
$$= P\left[\underbrace{\beta^{-1}g_0\Omega_0 - \sum_{i=1}^{M} I_i g_i\Omega_i}_{\mathbf{Z}} \leq \Gamma^{-1}\right]$$
$$= P\left[\mathbf{Z} \leq \Gamma^{-1}\right] = F_{\mathbf{Z}}(\Gamma^{-1}).$$

• The outage probability is the cdf of Z, $F_{Z}(z)$ evaluated at $z = \Gamma^{-1}$.

• Since $\{\Omega_i\}$ are fixed, we can also write as the *conditional* cdf $F_{\mathsf{Z}}(z|\Omega)$.

Rayleigh Fading

• When the g_i are i.i.d. exponential, the outage probability conditioned on the network geometry is:

$$F_{\mathsf{Z}}(z|\mathbf{\Omega}) = 1 - e^{-\beta\Omega_0^{-1}z} \prod_{i=1}^{M} \left[\frac{(1-p_i)\beta\Omega_0^{-1} + \Omega_i^{-1}}{\beta\Omega_0^{-1} + \Omega_i^{-1}} \right]$$
(2)

Example #1:

- $X_0 = 1$.
- M = 50 interferers, with $0.25 \le |X_i| \le 2, \forall i > 0.$
- $\alpha = 3$ and no shadowing.
- $p_i = 0.005$.
- Analytical curves are solid, while

 represents simulated values.

Nakagami Fading¹

If the amplitude gain from the i^{th} transmitter to the receiver is Nakagami-m with parameter m_i , then the outage probability conditioned on the network geometry is:

$$F_{\mathsf{Z}}(z|\mathbf{\Omega}) = 1 - e^{-\beta_0 z} \sum_{j=0}^{m_0 - 1} (\beta_0 z)^j \sum_{k=0}^j \frac{z^{-k}}{(j-k)!} \sum_{\substack{\ell_i \ge 0 \\ \sum_{i=0}^M \ell_i = k}}^M G_{\ell_i}[i]$$
(3)

where m_0 is an integer, $\beta_0 = m_0 \beta / \Omega_0$, the summation in (3) is over all sets of positive indices that sum to k,

$$G_{\ell}[i] = (1-p_i)\delta[\ell] + \frac{p_i\Gamma(\ell+m_i)}{\ell!\Gamma(m_i)} \left(\frac{\Omega_i}{m_i}\right)^{\ell} \left(\frac{m_i}{\beta_0\Omega_i + m_i}\right)^{m_i+\ell} (4)$$

and $\delta[\ell]$ is the Kroneker delta function.

¹D. Torrieri and M.C. Valenti, "The outage probability of a finite ad hoc network in Nakagami fading," *IEEE T. Comm.*, Nov. 2012.

Valenti

Nakagami Fading Example

Figure: Outage probability ϵ_{Ω} conditioned on Ω as a function of SNR Γ . Analytical curves are solid, while • represents simulated values.

Interference Reduction

- Interference may be controlled through signal and protocol design.
- Spread spectrum signaling reduces interference.
 - Direct sequence (DS).
 - Frequency hopping (FH).
 - Hybrid DS/FH.
- Interference avoidance protocols reduce interference.
 - CSMA/CA.

Direct Sequence Spread Spectrum

- Spread bandwidth of each signal by a spreading factor G = B/W.
- Effectively reduces the power of each interferer.
- G is also called the *processing gain* and is the amount of reduction in interference power.
- $\bullet\,$ Can be handled by dividing normalized powers of the interferers by G

$$\Omega_i = \left(\frac{1}{G}\right) \frac{P_i}{P_0} 10^{\xi_i/10} |X_i|^{-\alpha}, \forall i > 0$$

- Interference *averaging*.
- If transmissions are asynchronous a *chip factor* can further reduce the interference power.

Frequency Hopping

- \bullet Transmitters randomly pick from among L frequencies.
- I_i is a Bernoulli random variable with probability $p_i = 1/L$.
- Interference avoidance.

Hybrid DS/FH

- Spread bandwidth of each signal by a factor G.
- Transmit DS-spread signal over randomly selected frequency.
- G > 1 and $p_i < 1$.

Guard Zones²

- Interference-avoidance protocols may be used to prevent close interferers.
 - Carrier-sense multiple access with collision avoidance (CSMA-CA).
- If one transmitter is too close to another, it will deactivate.
 - Each transmitter is surrounded by a circular guard zone of radius r_{\min} .
 - Other nodes in the guard zone are forbidden to transmit $(p_i = 0)$.
- Equivalent to *Matern thinning* of the spatial model.

 $^2\text{D.}$ Torrieri and M.C. Valenti, "Exclusion and guard zones in DS-CDMA ad hoc networks," *IEEE T. Comm.*, to appear.

Valenti

Guard Zones Reduce the Outage Probability

Figure : By using a guard zone with $r_{\min} = 1$, the number of potential interferers decreases to 21.

Figure : Outage probability ϵ over the mixed fading channel of Example #2 when a guard zone of radius r_{min} is imposed.

Outline

1 Introduction

- 2 Outage Analysis of Interference Networks
- Spatial Modeling
 - 4 Transmission Capacity
 - 5 Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

Conclusions

Effect of Spatial Model

- So far, the outage probability has been conditioned on the *network* geometry.
 - The locations of potential interferers and the shadowing realization are fixed.
 - Only the fading and node activity are random.
- May want to remove the conditioning on network geometry.
 - Allow the transmitter locations and shadowing factors to randomly vary.
 - Particularly important for considering guard zones, which cause the locations of potential interferers to change.

• Should take into account the spatial model, which is a point process.

- Binary point process (BPP).
- Poisson point process (PPP).
- Uniform clustering model.
- Matern thinning.

Spatially Averaged Outage Probability

The cdf conditioned on the network geometry, $\boldsymbol{\Omega}$: $\epsilon_{\Omega} = P\left[\gamma \leq \beta | \boldsymbol{\Omega} \right] = F_{\mathsf{Z}}(\Gamma^{-1} | \boldsymbol{\Omega})$

Spatially Averaged Outage Probability

The cdf conditioned on the network geometry, $\mathbf{\Omega}$: $\epsilon_{\Omega} = P \left[\gamma \leq \beta | \mathbf{\Omega} \right] = F_{\mathsf{Z}}(\Gamma^{-1} | \mathbf{\Omega})$

The cdf conditioned on the number of interferers, M: $\epsilon_M = \mathbb{E} [\epsilon_{\Omega}] =$ $F_{Z_M}(\Gamma^{-1}) = \int f_{\Omega}(\boldsymbol{\omega}) F_{Z}(\Gamma^{-1}|\boldsymbol{\omega}) d\boldsymbol{\omega}$

 $f_{oldsymbol{\Omega}}(oldsymbol{\omega}) = \prod_{i=1}^M f_{\Omega_i}(\omega_i)$ is the pdf of $oldsymbol{\Omega}$

Spatially Averaged Outage Probability

Average Outage Probability for a BPP: Results

- In a binomial point process (BPP), a fixed number of interferers are independently placed according to a uniform distribution.
- The cdf with a BPP network with interferers uniformly distributed on an annulus with inner radius r_{ex} and outer radius r_{net} is:

$$F_{\mathsf{Z}_M}(z) = \int f_{\mathbf{\Omega}}(\boldsymbol{\omega}) F_{\mathsf{Z}}(z|\boldsymbol{\omega}) d\boldsymbol{\omega}$$
(5)

where

$$f_{\Omega_i}(\omega) = \frac{2\omega^{\frac{2-\alpha}{\alpha}}}{\alpha \left(r_{\mathsf{net}}^2 - r_{\mathsf{ex}}^2\right)} \quad \text{ for } r_{\mathsf{ex}}^\alpha \le \omega \le r_{\mathsf{net}}^\alpha.$$

Substituting (2) into (5), the cdf of Z_M in Rayleigh fading is

$$F_{\mathsf{Z}_{M}}(z) = 1 - \exp\left\{-\beta\Omega_{0}^{-1}z\right\} \left[\frac{\Psi\left(r_{\mathsf{net}}^{\alpha}\right) - \Psi\left(r_{\mathsf{ex}}^{\alpha}\right)}{r_{\mathsf{net}}^{2} - r_{\mathsf{ex}}^{2}}\right]^{M}$$
(6)

where $p_i = p, \forall i$, and

$$\Psi(x) \quad = \quad x^{\frac{2}{\alpha}} \left[1 - p + \frac{2p}{\alpha+2} \cdot \frac{x^{\frac{2+\alpha}{\alpha}}}{\beta \Omega_0^{-1}} \cdot {}_2F_1\left(\left[1, \frac{\alpha+2}{\alpha}\right]; \frac{2\alpha+2}{\alpha}, -\frac{x}{\beta \Omega_0^{-1}}\right)\right].$$

Average Outage Probability for a BPP: Example

Figure: Outage probability ϵ_M as a function of M for five values of p when the location of the nodes is drawn from a BPP. Analytical curves are solid, while the • were generated by randomly placing interferers and averaging the resulting conditional outage probabilities.

Valenti

Average Outage Probability for a PPP: Results

- In a Poisson point process (PPP), the number of interferers M is a Poisson variable.
- The cdf with a PPP network is:

$$F_{Z}(z) = \sum_{m=0}^{\infty} p_{M}(m) F_{Z_{m}}(z) = \sum_{m=0}^{\infty} \frac{(\lambda A)^{m}}{m!} e^{-\lambda A} F_{Z_{m}}(z)$$
(7)

where

- λ is the density of the interferers per unit area;
- $A = \pi (r_{\text{net}}^2 r_{\text{ex}}^2)$ is the area of the network;

substituting (6) into (7), the average outage probability is:

$$F_{\mathsf{Z}}(z) = 1 - e^{-\beta\Omega_0^{-1}z} e^{-\pi\lambda \cdot \left\{ r_{\mathsf{net}}^2 - r_{\mathsf{ex}}^2 - \left[\Psi(r_{\mathsf{net}}^\alpha) - \Psi(r_{\mathsf{ex}}^\alpha)\right] \right\}}$$
(8)

• When $r_{\text{net}} \rightarrow \infty$, $r_{\text{ex}} = 0$, and p = 1:

$$F_{\mathsf{Z}}(z) = 1 - e^{-\beta_0 z} e^{\frac{-2\pi\lambda}{\alpha}\beta_0^{\frac{2}{\alpha}} \Gamma\left(\frac{2}{\alpha}\right) \Gamma\left(1 - \frac{2}{\alpha}\right)}$$

• Baccelli et al. obtained same expression by using stochastic geometry.

Average Outage Probability for a PPP: Examples³

Figure : Parameters: SINR threshold $\beta = 3.7$ dB, SNR $\Gamma = 10$, inner radius $r_{\rm ex} = 0.25$, and outer radius $r_{\rm net} = 2$.

Figure : Parameters: SINR threshold $\beta = 3.7$ dB, SNR $\Gamma = 10$, inner radius $r_{\rm ex} = 0$, $\alpha = 3$, and p = 1.

³S. Talarico, M.C. Valenti, and D. Torrieri, "Analysis and optimization of a frequency hopping ad hoc network in Rayleigh fading," in *Proc. Virginia Tech Symp. on Wireless Personal Commun.*, (Blacksburg, VA), June 2012

Valenti

Outline

Introduction

- 2 Outage Analysis of Interference Networks
- 3 Spatial Modeling
- Transmission Capacity
 - 5 Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

Conclusions

Transmission Capacity: Definition

- Reducing λ reduces ϵ , which improves the per-link throughput.
 - However, fewer links are supported, so less total data might be transmitted within the network.
- Transmission capacity is a metric that quantifies this tradeoff.
- If there are λ transmitters per unit area, then the number of successful transmissions per unit area is

$$\tau = \lambda(1-\epsilon)$$

• If the outage probability ϵ is constrained to not exceed $\zeta,$ then the transmission capacity is

$$\tau_c(\zeta) = \epsilon^{-1}(\zeta)(1-\zeta) \tag{9}$$

where $\epsilon^{-1}(\zeta)$ is the maximum mobile density such that $\epsilon \leq \zeta$.

Transmission Capacity: Rayleigh Fading Results

• For the BPP case, $\epsilon^{-1}(\zeta)$ is found by solving $\epsilon = F_{\mathsf{Z}_M}(\Gamma^{-1}) = \zeta$ for $\lambda = M/A$ and then substituting into (9):

$$\tau_c(\zeta) = \frac{(1-\zeta) \left[\log \left(1-\zeta\right) + \beta \Omega_0^{-1} \Gamma^{-1} \right]}{A \log \left\{ \left(r_{\mathsf{net}}^2 - r_{\mathsf{ex}}^2 \right)^{-1} \left[\Psi \left(r_{\mathsf{net}}^\alpha \right) - \Psi \left(r_{\mathsf{ex}}^\alpha \right) \right] \right\}}$$

• In the PPP case, $\epsilon^{-1}(\zeta)$ is found by solving $\epsilon = F_{Z}(\Gamma^{-1}) = \zeta$ for λ and then substituting into (9):

$$\tau_c(\zeta) = \frac{(1-\zeta) \left[\log \left(1-\zeta\right)^{-1} - \beta \Omega_0^{-1} \Gamma^{-1} \right]}{\pi \left\{ r_{\mathsf{net}}^2 - r_{\mathsf{ex}}^2 - \left[\Psi \left(r_{\mathsf{net}}^\alpha \right) - \Psi \left(r_{\mathsf{ex}}^\alpha \right) \right] \right\}}.$$

• Asymptotically for a PPP, with $r_{\mathsf{ex}} = 0$ and p = 1, as $r_{\mathsf{net}} \to \infty$:

$$\tau_c(\zeta) = \frac{(1-\zeta) \left[\log \left(1-\zeta\right)^{-1} - \beta \Omega_0^{-1} \Gamma^{-1} \right]}{\pi \beta_0^{\frac{2}{\alpha}} \frac{2\pi}{\alpha} \csc\left(\frac{2\pi}{\alpha}\right)}$$

• Weber et al. obtained the same expression using stochastic geometry.

Transmission Capacity: Examples

Accounting for Modulation

- Until now, we have picked the SINR threshold β arbitrarily.
- However, β depends on the choice of modulation.
 - For *ideal* (input is a complex Gaussian) signaling

$$C(\gamma) = \log_2(1+\gamma)$$

 β is the value of γ for which $C(\gamma)=R$ (the code rate),

$$\beta = 2^R - 1$$

• For other modulations, the *modulation-constrained* capacity $C(\gamma)$ must be used, which can be found by measuring the mutual information between channel input and output.

Area Spectral Efficiency

• The *area spectral efficiency* accounts for not only the number of transmissions per unit area, but also the *rate* of the transmissions.

Define as

$$\tau' = R\eta p\lambda(1-\epsilon)$$

where

- R is the rate of transmission, which is related to β .
 - Units of (information) bits per channel symbol.
- η is the spectral efficiency of the modulation.
 - Units of channel symbols per Hz.
- τ' has units of $bps/Hz/m^2$.

Outline

Introduction

- 2 Outage Analysis of Interference Networks
- 3 Spatial Modeling
- 4 Transmission Capacity
- 5 Optimization of Frequency-Hopping Networks
 - 6 Analysis of Cellular Networks

Conclusions

Frequency-Hopping Networks

- The performance of a FH network depends on:
 - The number of hopping channels L = B/W.
 - The code rate R.
 - The modulation format, and its spectral efficiency $\eta.$
- For a fixed bandwidth *B*, there is a tradeoff among the above parameters.
- The network can be optimized by finding the parameters that maximize the area spectral efficiency⁴.

⁴M.C. Valenti, D. Torrieri, and S. Talarico, "Optimization of a finite frequency-hopping ad hoc network in Nakagami fading," *MILCOM*, 2012.

Noncoherent Binary CPFSK

FH systems often use noncoherent continuous-phase frequency-shift keying, whose capacity & bandwidth depends on the modulation index h.

[9] S. Cheng, R. Iyer Sehshadri, M.C. Valenti, and D. Torrieri, "The capacity of noncoherent continuous-phase frequency shift keying", in *Proc. Conf. on Info. Sci. and Sys. (CISS)*, (Baltimore, MD), Mar. 2007.

Valenti

Interference and Spatial Modeling

Influence of Parameters: BPP

Parameters:

- $r_{\rm ex} = 0.25;$
- $r_{\text{net}} = 2;$
- $\Gamma = 10 \text{ dB}.$
- M = 50.
- Rayleigh fading.

Influence of Parameters: PPP

Parameters:

• $r_{\text{ex}} = 0.25;$ • $r_{\text{net}} = 2;$ • $\Gamma = 10 \text{ dB}.$

•
$$\alpha = 3$$
.

Rayleigh fading.

Adjacent-Channel Interference⁵

- We assumed that all interference is co-channel interference.
 - However, FSK modulation is not completely bandlimited.
 - Some of the spectrum splatters into adjacent channels.
- Typically, the frequency channels are matched to the 99-percent bandwidth of the moduation.
 - The percent of the signal power splatters into adjacent channels.
 - Containing 99-percent of the signal power in the channel is arbitrary.
- There is a tradeoff in the choice of percent power.
 - Let $\psi < 1$ be the fraction of power in the band.
 - Then the fraction of power in each adjacent channel is $(1-\psi)/2$.
- $\bullet\,$ Can determine ψ that maximizes the area spectral efficiency.
 - Redefine I_i to be the fraction of interfering power in the channel.

•
$$I_i = \psi$$
 w.p. $p_i = 1/L$, and $I_i = (1 - \psi)/2$ w.p. $p_i = \frac{2(L-1)}{L^2}$.

⁵M.C. Valenti, D. Torrieri, and S. Talarico, "Adjacent-channel interference in frequency-hopping ad hoc networks," *ICC*, 2013.

ACI Optimization Example

Figure: Maximum achievable area spectral efficiency $\tau'_{opt}(\psi)$ as a function of the fractional in-band power ψ . For each value of ψ , the modulation-index h, the number of frequency channels L, and code rate R are varied to maximize the TC.

Outline

Introduction

- 2 Outage Analysis of Interference Networks
- 3 Spatial Modeling
- 4 Transmission Capacity
- Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

Conclusions

Analysis of Cellular Networks

Extreme Cellular Network Models

• Current approaches form modeling cellular networks use one of two extremes:

Classic approach (regular grid):

• The analysis often focuses on the worst case-locations (cell edge).

Modern approach (stochastic geometry):

- Assumes infinite network;
- Base stations are drawn from a random point process
- No minimum separation.

The minimum spacing between base stations is $r_{\rm bs}$.

Figure : Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

-0.5-0.5-1.5-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5-1-1.5

Figure : Simulated base-station locations when the minimum base-station separation is $r_{\rm bs}=0.25$.

The minimum spacing between base stations is $r_{\rm bs}$.

Figure : Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

Figure : Simulated base-station locations when the minimum base-station separation is $r_{\rm bs}=0.25$. Cell boundaries are indicated.

The minimum spacing between base stations is $r_{\rm bs}$.

Figure : Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

Figure : Simulated base-station locations when the minimum base-station separation is $r_{\rm bs} = 0.25$. Cell boundaries are indicated, and the average cell load is

Figure : Actual base-station locations from a current cellular deployment in a small city with a hilly terrain.

Figure : Simulated base-station locations when the minimum base-station separation is $r_{\rm bs} = 0.25$. Cell and sector boundaries are indicated, and the average cell load is 16 mobiles.

Analysis of Cellular Networks

- Model can be used to analyze the downlink⁶ or the uplink⁷
- Can be used to optimize resource allocation policies:
 - Power control.
 - Rate control.
 - Cell association.
- Fairness can be quantified by cdf of rate.
- The value of $r_{\rm bs}$ can be obtained through statistical analysis of actual base station placements.
- Can use the analysis to develop Cooperative Multipoint (COMP) and Intercell Interference Coordination (ICIC) strategies.

⁶M.C. Valenti, D. Torrieri, and S. Talarico, "A new analysis of the DS-CDMA cellular downlink under spatial constraints," *ICNC*, 2013.

⁷D. Torrieri, M.C. Valenti, and S. Talarico, "A new analysis of the DS-CDMA cellular uplink under spatial constraints," *ICC*, 2013.

Downlink Performance

Figure : Complementary cdf of R with either rate control or power control for a lightly loaded system (K/M = 4) and a moderately-loaded system (K/M = 12).

Example:

- M = 50 base stations;
- K mobile users;

•
$$r_{net} = 2;$$

•
$$r_{bs} = 0.25;$$

•
$$\alpha = 3;$$

- $\Gamma = 10 \text{ dB};$
- Spreading factor G = 16;
- Outage constraint $\hat{\epsilon} = 0.1$;
- Mixed fading:
 - m = 3 inside the cell.
 - m = 1 outside the cell.
- Shadow std. $\sigma_s = 8 \text{ dB}.$

Outline

Introduction

- 2 Outage Analysis of Interference Networks
- 3 Spatial Modeling
- 4 Transmission Capacity
- 5 Optimization of Frequency-Hopping Networks
- 6 Analysis of Cellular Networks

7 Conclusions

Conclusions

Conclusions

- The outage probability for any particular network realization can be found in closed form.
 - Captures the effects of fading, noise, and node activity.
 - No need to simulate the fading coefficients.
- Network topology remains as a source of randomness.
 - Locations of the transmitters.
 - Realization of shadowing.
 - Node deactivation due to interference-avoidance protocols.
- Analysis should focus on effects of topology.
 - Closed-form expressions for spatially averaged outage probability only possible for certain simple scenarios.
 - For more realistic spatial models, network topology needs to be simulated.
 - The cdf of rate is more useful than the average rate.
- Analysis can be used to study many problems related to ad hoc and cellular networks, including multihop routing.

Thank you