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CHAPTER 12
TURBO CODES

Matthew C. Valenti and Jian Sun

This chapter concerns turbo codes, one of the most powerful types of
forward-error-correcting channel codes. Included is not only a discus-
sion of the underlying concepts, but also a description and comparison
of the turbo codes used by the Universal Mobile Telecommunications
System (UMTS) and cdma2000 third-generation cellular systems.

Channel Coding

Forward-error-correcting (FEC) channel codes are commonly used to
improve the energy efficiency of wireless communication systems. On
the transmitter side, an FEC encoder adds redundancy to the data in
the form of parity information. Then at the receiver, a FEC decoder is
able to exploit the redundancy in such a way that a reasonable number
of channel errors can be corrected. Because more channel errors can
be tolerated with than without an FEC code, coded systems can afford
to operate with a lower transmit power, transmit over longer distances,
tolerate more interference, use smaller antennas, and transmit at a higher
data rate.

A binary FEC encoder takes in k bits at a time and produces an output (or
code word) of n bits, where n > k. While there are 2n possible sequences
of n bits, only a small subset of them, 2k to be exact, will be valid
code words. The ratio k/n is called the code rate and is denoted by r .
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Lower rate codes, characterized by small values of r, can generally cor-
rect more channel errors than higher rate codes and are thus more energy
efficient. However, higher rate codes are more bandwidth efficient than
lower rate codes because the amount of overhead (in the form of parity
bits) is lower. Thus the selection of the code rate involves a tradeoff
between energy efficiency and bandwidth efficiency.

For every combination of code rate (r), code word length (n), modulation
format, channel type, and received noise power, there is a theoretical
lower limit on the amount of energy that must be expended to con-
vey one bit of information. This limit is called the channel capacity or
Shannon capacity, named after Claude Shannon, whose 1948 deriva-
tion of channel capacity [1] is considered to have started the applied
mathematical field that has come to be known as information theory.
Since the dawn of information theory, engineers and mathematicians
have tried to construct codes that achieve performance close to Shannon
capacity. Although each new generation of FEC code would perform
incrementally closer to the Shannon capacity than the previous genera-
tion, as recently as the early 1990s the gap between theory and practice
for binary modulation was still about 3 dB in the most benign chan-
nels, those dominated by additive white Gaussian noise (AWGN). In
other words, the practical codes found in cell phones, satellite systems,
and other applications required about twice as much energy (i.e., 3 dB
more) as the theoretical minimum amount predicted by information the-
ory. For fading channels, which are harsher than AWGN, this gap was
even larger.

The Dawn of Turbo Codes

A major advancement in coding theory occurred in 1993, when a group
of researchers working in France developed (or, in the parlance of cod-
ing theorists, “discovered”) turbo codes [2]. The initial results showed
that turbo codes could achieve energy efficiencies within only a half
decibel of the Shannon capacity. This was an extraordinary result that
at first was met with skepticism. But once other researchers began to
validate the results independently, a massive research effort was soon
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underway with the goal of explaining and, better yet, enhancing the
remarkable performance of turbo codes. Much of this research focused
on improving the practicality of turbo codes, which, as will be dis-
cussed shortly, have some peculiarities that make implementation less
than straightforward.

By the end of the 1990s, the virtues of turbo codes were well known, and
they began to be adopted in various systems. Now they are incorporated
into standards used by NASAfor deep space communications (CCSDS),
digital video broadcasting (DVB-T), and both third-generation cellular
standards (UMTS and cdma2000).

Parallel Concatenated Encoding with Interleaving

One of the most interesting characteristics of a turbo code is that it is not
just a single code. It is, in fact, a combination of two codes1 that work
together to achieve a synergy that would not be possible by merely using
one code by itself. In particular, a turbo code is formed from the parallel
concatenation of two constituent codes separated by an interleaver. Each
constituent code may be any type of FEC code used for conventional
data communications. Although the two constituent encoders may be
different, in practice they are normally identical. A generic structure for
generating turbo codes is shown in Figure 12.1. As can be seen, the turbo
code consists of two identical constituent encoders, denoted as ENC #1
and ENC #2. The input data stream and the parity outputs of the two
parallel encoders are then serialized into a single turbo code word.

The interleaver is a critical part of the turbo code. It is a simple device
that rearranges the order of the data bits in a prescribed, but irregular,
manner. Although the same set of data bits is present at the output of
the interleaver, the order of these bits has been changed, much like a

1Turbo codes can also be constructed using three or more constituent codes. Such struc-
tures are called multiple turbo codes. However, they are not used in any standards and
are therefore not discussed here.
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Figure 12.1
A generic turbo encoder.

shuffled deck of cards (although each input word is shuffled in exactly
the same way). Without the interleaver, the two constituent encoders
would receive the data in the exact same order and thus—assuming
identical constituent encoders—their outputs would be the same. This
would not make for a very interesting (or powerful) code. However,
by using an interleaver, the data {Xi} is rearranged so that the second
encoder receives it in a different order, denoted {X′

i}. Thus, the output of
the second encoder will almost surely be different than the output of the
first encoder—except in the rare case that the data looks exactly the same
after it passes through the interleaver. Note that the interleaver used by
a turbo code is quite different than the rectangular interleavers that are
commonly used in wireless systems to help break up deep fades. While
a rectangular channel interleaver tries to space the data out according to
a regular pattern, a turbo code interleaver tries to randomize the ordering
of the data in an irregular manner.

Why Do Turbo Codes Work So Well?

In order to understand why turbo codes work so well, one must first
understand what makes for a good code in general. But first, two terms
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must be defined. A linear code is a code for which the modulo-2 sum
of two valid code words (found by XOR-ing each bit position) is also
a valid code word. Most codes, turbo codes included, are linear. The
Hamming weight (also simply known as weight) of a code word is the
number of ones that it contains. Thus a simple linear code could be
composed of two code words, {000} and {111}, where the Hamming
weight of the first code word is 0 and the Hamming weight of the second
code word is 3. Note that all linear codes must contain the all-zeros code
word, since any code word XOR-ed with itself will produce all zeros.

A “good” linear code is one that has mostly high-weight code words
(except, of course, the mandatory all-zeros code word). High-weight
code words are desirable because it means that they are more distinct,
and thus the decoder will have an easier time distinguishing among them.
While a few low-weight code words can be tolerated, the relative fre-
quency of their occurrence should be minimized. One way to reduce the
number of low-weight code words is by using a turbo encoder. Since
the weight of the turbo code word is simply the sum of the weights of
the input and the parity outputs of the two constituent code words, we
can allow one of these parity outputs to have low weight (as long as the
other has high weight). Because the second encoder’s input has been
scrambled by the interleaver, its parity output is usually quite different
from the first encoder’s. Thus, although it is possible that one of the two
encoders will occasionally produce a low-weight output, the probabil-
ity that both encoders simultaneously produce a low-weight output is
extremely small. This improvement is called the interleaver gain and
is one of the main reasons that turbo codes perform so well. Coding
theorists say that turbo codes have a “thin distance spectrum,” that is
the distance spectrum, which is a function that describes the number of
code words of each possible nonzero weight (from 1 to n), is thin in the
sense that there are not very many low-weight words present [3].

Convolutional Codes

Although almost any type of encoder could be used for the two con-
stituent encoders shown in Figure 12.1, in practice turbo codes almost
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Figure 12.2
A rate 1/2 nonsystematic convolutional (NSC) encoder.

always use recursive systematic convolutional (RSC) encoders. RSC
codes are very similar in nature to conventional convolutional codes, also
called nonsystematic convolutional codes (NSC), which are commonly
used for 2G cellular systems, data modems, satellite communications,
and many other applications. An example of an NSC encoder is shown
in Figure 12.2. Data {Xi} enter from the left and are stored in a linear
shift register (D denotes a D flip-flop). Each time a new data bit arrives,
the data is shifted to the right into the next flip-flop. Each of the two
output bits {Z1,i , Z2,i} is computed by XOR-ing a particular subset of
the three bits stored in the shift register with the bit at the encoder’s
input. Because there are two output bits for each input bit, this is a rate
r = 1/2 encoder. The constraint length, denoted by K, is the maximum
number of input bits (past and current) that either output can depend on.
In this case, since each output depends on up to four bits (the three in the
shift register plus the one at the input), the constraint length is K = 4.

One problem with the encoder shown in Figure 12.2 is that it is nonsys-
tematic; that is, the encoder’s input bits do not appear at its output. Thus,
the code word contains only parity bits and therefore cannot be divided
into the separate data and parity fields desired by the turbo encoder.
Instead, what we want is a systematic encoder, one whose input appears
at the output. Unlike its nonsystematic cousin, a systematic code word
can be divided into data and parity components.As shown in Figure 12.3,
a recursive systematic convolutional code can be created from an NSC
by simply feeding one of the two parity outputs back to the input (it is
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Figure 12.3
The rate 1/2 recursive systematic convolutional (RSC) encoder used by
the UMTS turbo code.

this feedback that makes it recursive). Since one of the parity outputs
is fed into the input, only the other parity output needs to be transmit-
ted. This allows the data input (also called the systematic output) to be
transmitted along with the parity output that was not fed back, while
still maintaining a code rate of r = 1/2. Also, it turns out that the feed-
back within the encoder is necessary for the turbo encoder to obtain the
maximum interleaver gain [3]. Note that, as indicated by Figure 12.1,
only the parity outputs of the two RSC encoders are actually transmitted.
The systematic outputs are not needed because they are identical to each
other (although ordered differently) and to the turbo code input (which
becomes the systematic part of the overall turbo code word).

The UMTS Turbo Code

UMTS, which stands for Universal Mobile Telecommunications
System, is one of the two most widely adopted third-generation cellular
standards (the other being cdma2000). It is standardized by the Third
Generation Partnership Project (3GPP), and the specification is pub-
licly available at the 3GPP website [4]. For FEC, UMTS may use either
convolutional or turbo codes (which one depends on the application
and available technology). The encoder used by the UMTS turbo code
is comprised of a pair of constraint length K = 4 RSC encoders, each
identical to the one shown in Figure 12.3. As shown in Figure 12.4, the
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Figure 12.4
The UMTS turbo encoder.

output of the UMTS turbo encoder is a serialized combination of the
systematic bits {Xi}, the parity output of the first encoder {Zi}, and
the parity output of the second encoder {Z′

i}. Thus, the overall code
rate is approximately r = 1/3. In the following, we discuss why it is not
exactly 1/3 and explain the action of the switches.

The size of the input data word may range from as few as 40 bits to as
many as 5,114 bits. The interleaver, whose size matches that of the input
word, scrambles the input according to a prescribed algorithm. The exact
interleaving procedure is rather complicated and goes beyond the scope
of this chapter (the interested reader is directed to the standard) [4].

Prior to encoding, both constituent encoders start in the all-zeros state,
that is, each shift register is filled with zeros. After encoding its k-bit
input, each encoder could be in any of eight distinct states (each state is
a unique combination of ones and zeros inside the 3-bit shift register).
However, the decoder performs much better if it knows not only the
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initial state of the encoders, but also their final state. Thus, it is desirable
to force the encoders back to a known state after they have encoded
the entire input. An obvious choice is to use the all-zeros state, since
the encoders need to be in the all-zeros state prior to encoding the next
code word.

The NSC encoder shown in Figure 12.2 can be brought back to the
all-zeros state by simply inputting a sequence of three zeros, called
tail bits. RSC codes, however, cannot be brought into the all-zeros
state from some other state merely with a sequence of zeros. How-
ever, if the feedback bit were to be used as the encoder input, then
the XOR of these two bits will be zero, and thus the encoder will
return to the all-zeros state after three clock cycles (i.e., the output
of the leftmost XOR gate in Figure 12.3 will be zero, since the two
inputs are the same). Therefore, the encoder can be brought back to
the all-zeros state by inputting the three feedback bits generated imme-
diately after the k-bit code word has been encoded. In the UMTS
encoder shown in Figure 12.4 this is achieved by moving the switches
from the up position to the down position after the k-bit input has
been encoded. Note that because of the interleaver, the state of the two
encoders are likely to be different, and thus the tails required for each
encoder will also be different. Thus, the transmitted bitstream includes
not only the tail bits {Xk+1, Xk+2, Xk+3} that correspond to the upper
encoder, but also the tail bits {X′

k+1, X
′
k+2, X

′
k+3} that correspond to

the lower encoder. In addition to these six tail bits, the correspond-
ing parity bits from the upper encoder {Zk+1, Zk+2, Zk+3} and lower
encoder {Z′

k+1, Z
′
k+2, Z

′
k+3} are transmitted. Thus, the actual code rate

is slightly less than 1/3. In particular, the code rate is r = k/(3k + 12).
However, for large k the fractional loss in code rate due to the tail bits
is negligible.

The cdma2000 Turbo Code

The other major third-generation cellular standard is cdma2000, which
is standardized by the Third Generation Partnership Project 2 (3GPP2).
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Like 3GPP, 3GPP2 makes its standards publicly available on its web
page [6]. As in UMTS, cdma2000 uses either convolutional or turbo
codes for FEC. While the turbo codes used by these two systems are
very similar, the differences lie in the interleaving algorithm, the range of
allowable input size, and the rate of the constituent RSC encoders. Unlike
UMTS, which allows a range of data input sizes (i.e., 40 ≤ k ≤ 5114), the
size of the data input word (as well as the interleaver) for the cdma2000
turbo code must be one of the following specific values: 378, 570, 762,
1146, 1530, 2398, 3066, 4602, 6138, 9210, 12282, or 20730 bits. Also,
the interleaving process used by cdma2000 is different than that used by
UMTS.As the details of the interleaver are rather involved, the interested
reader is directed to the specification [5].

The constituent RSC encoder used by the cdma2000 turbo code is shown
in Figure 12.5. As can be seen, this encoder has three output bits (one
systematic plus two parity) for each input bit. Thus, the code rate of
this RSC encoder is r = 1/3 (neglecting the tail bits). Note that the first
parity output Z1,i of the cdma2000 encoder is generated exactly the
same way as the parity output Zi of the UMTS encoder. Thus, these two

D D D
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output Z1,i
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output Xi

Data input
Xi

Second parity
output Z2,i

Figure 12.5
The rate 1/3 RSC encoder used by the cdma2000 turbo code.
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encoders only differ by the presence of the second parity output Z2,i

in the cdma2000 encoder. This encoder is used in the parallel concate-
nated coding structure shown in Figure 12.1, although now each of the
two constituent encoders produces two parity outputs. Thus, the overall
code rate for the cdma2000 turbo code is r = 1/5. For many applications,
such a low rate is undesirable, so cdma2000 also includes a mechanism
for transforming the r = 1/5 code into a higher rate code. This mecha-
nism, called puncturing, involves deleting some of the parity bits prior to
transmission. Through puncturing, rates of r = 1/2, 1/3, and 1/4 can be
achieved. For instance, to achieve rate r = 1/3, the encoder deletes the
second parity output of each encoder. Since only the first parity outputs
are transmitted, the r = 1/3 cdma2000 turbo encoder has the same struc-
ture as the UMTS turbo encoder (although with different interleaver and
range of allowable input word sizes). The puncturing mechanism used
to achieve rates r = 1/2 and 1/4 are slightly more complicated, but the
details can be found in the specification. Finally, cdma2000, like UMTS,
uses tail bits to return the encoders back to the all-zeros state.

Turbo Decoding

After encoding, the entire n-bit turbo code word is assembled into a
frame, modulated, transmitted over the channel, and decoded. Let Ui

represent a modulating code bit (which could be either a systematic or
parity bit) and Yi represent the corresponding received signal (i.e., the
output of a correlator or matched filter receiver). Note that while Ui can
only be 0 or 1, Yi can take on any value. In other words, while Ui is a
hard value, Yi is a soft value. The turbo decoder requires its input to be
in the following form:

R(Ui) = ln
P(Yi | Ui = 1)

P (Yi | Ui = 0)
(12-1)

where P(Yi | Ui = j) is the conditional probability of receiving signal Yi

given that the code bit Ui = j was transmitted. Probabilistic expressions
such as the one shown in Equation (12-1) are called log-likelihood ratios
(LLR) and are used throughout the decoding process. Calculation of



[20:22 2003/9/25 DOWLA-CH12.tex] DOWLA: Handbook of RF and Wireless Technologies Page: 386 375–400

386 Handbook of RF and Wireless Technologies

“Upper”
SISO

processor

R(Xi)

R(Z1,i)

“Lower”
SISO

processor

Interleaver
R(Z ′1,i)

Deinterleaver
Λ2(X ′i) Λ2(Xi)

Λ1(Xi)

w(Xi)

V1(Xi)

V2(X ′i)

V2(Xi)R(Z2,i)

R(Z ′2,i)

Xi
ˆ

�
�

�

�
�

Figure 12.6
An architecture for decoding the UMTS and cdma2000 turbo codes.

Equation (12-1) requires not only the received signal sample Yi , but
also some knowledge of the statistics of the channel. For instance, if
binary phase-shift keying (BPSK) modulation is used over an AWGN
channel with noise variance σ 2, then the corresponding decoder input
in LLR form would be R(Ui) = 2Yi/σ

2.

The received values for the systematic and parity bits are put into LLR
form and fed into the input of the turbo decoder shown in Figure 12.6.
This decoder can be used for both UMTS and cdma2000. In the case
of UMTS, the R(Z1,i) and R(Z′

1,i) inputs are the LLR values corre-
sponding to the upper (Zi) and lower (Z′

i) parity outputs, respectively,
of the encoder shown in Figure 12.4. For UMTS, the inputs R(Z2,i) and
R(Z′

2,i) are simply set to zero (since there is no corresponding encoder
output). For cdma2000, each of the five decoder inputs R(Ui) is the LLR
value corresponding to output Ui of the cdma2000 encoder. However,
if puncturing was used to increase the code rate to r > 1/5, then every
bit that was punctured by the encoder must be replaced with a zero at
the decoder input.

For each data bit Xi , the turbo decoder must compute the following LLR:

�(Xi) = ln
P(Xi = 1| Y1 . . . Yn)

P (Xi = 0| Y1 . . . Yn)
(12-2)
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This LLR compares the probability that the particular data bit was a one
versus the probability that it was a zero, given the entire received code
word (Y1 . . . Yn). Once this LLR is computed, a hard decision on Xi

can be performed by simply comparing the LLR to zero, that is, when
�(Xi) > 0 the hard bit estimate is X̂i = 1 and when �(Xi) < 0, X̂i = 0.

The turbo decoder uses the received code word along with knowledge of
the code structure to compute �(Xi). However, because the interleaver
greatly complicates the structure of the code, it is not feasible to compute
�(Xi) simply by using a single probabilistic processor. Instead, the turbo
decoder breaks the job of achieving a global LLR estimate �(Xi) into
two estimation steps. In the first step, the decoder attempts to compute
Equation (12-2) using only the structure of the upper encoder, while
during the second step, the decoder computes it using just the structure
of the lower encoder. The LLR estimate computed using the structure
of the upper encoder is denoted �1(Xi) and that computed using the
structure of the lower encoder is denoted �2(Xi). Each of these two LLR
estimates is computed using a soft-input soft-output (SISO) processor,
the details of which will be discussed shortly.

Because the two SISO processors each produce LLR estimates of same
set of data bits (although in a different order because of the interleaver),
decoder performance can be greatly improved by sharing these LLR
estimates between the processors. Thus, the first SISO processor should
pass its LLR output to the input of the second SISO processor and vice
versa (after appropriate interleaving and deinterleaving). Because of this
exchange of information back and forth between processors, the turbo
decoding algorithm is iterative. After each iteration, the turbo decoder
is better able to estimate the data, although each subsequent iteration
improves performance less than the previous one. It is this iterative
exchange of information from one processor to the other that gives turbo
codes their name. In particular, the feedback operation of a turbo decoder
is reminiscent of the feedback between exhaust and intake compressor
in a turbo engine.

As with all feedback systems, care must be taken to prevent positive
feedback (which would result in an unstable system). Within a turbo



[20:22 2003/9/25 DOWLA-CH12.tex] DOWLA: Handbook of RF and Wireless Technologies Page: 388 375–400

388 Handbook of RF and Wireless Technologies

decoder, it is important that only the information that is unique to a
particular SISO processor be passed to the other processor. While each
of the two SISO processors receives a unique set of parity inputs (i.e.,
the middle and lower inputs into each of the SISO processors shown in
Figure 12.6), the systematic inputs (i.e., the upper inputs) to the two pro-
cessors are essentially the same. Thus, the systematic input of each SISO
processor must be subtracted from its output prior to feeding the informa-
tion to the other processor. The difference between an SISO processor’s
LLR output and its systematic input is called extrinsic information and
is denoted w(Xi).

The SISO Processor

At the heart of a turbo decoder is the algorithm used to implement the
SISO processors. The SISO algorithm uses a trellis diagram to represent
all possible sequences of encoder states. In particular, the trellis shows
the set of states that the RSC encoder may be in at the end of the ith clock
cycle, where i ranges from 1 to k+3 (assuming three tail bits). Since the
RSC encoders used by UMTS and cdma2000 each contain three flip-
flops, the number of distinct encoder states at any particular time instance
is eight. When the encoder is clocked from time i to time i +1, it makes
a state transition from one state to another. The trellis diagram not only
shows the states at each particular time i, but also the set of permissible
state transitions leading to states at time i + 1. An example trellis section
for two consecutive time instances, i and i + 1, is shown in Figure 12.7.
The connections between states, called branches, show which of the
states at time i + 1 can be reached from states at time i. Each state
at time i has two branches leaving it, one corresponding to an input of
Xi = 1 (solid line) and the other to an input of Xi = 0 (dotted line). Every
distinct code word is represented by a particular path through the trellis.

The SISO algorithm labels all the branches in the trellis with a branch
metric. Each branch metric is a function of the processor inputs for the
corresponding time instant, with the functional dependency determined
by the code structure and which pair of states the particular branch
connects. The algorithm is able to obtain LLR estimates of each data bit



[20:22 2003/9/25 DOWLA-CH12.tex] DOWLA: Handbook of RF and Wireless Technologies Page: 389 375–400

Turbo Codes 389

S0�000

S1�001

S2�010

S3�011

S4�100

S5�101

S6�110

S7�111

S0

S1

S2

S3

S4

S5

S6

S7

Figure 12.7
A typical section of the code trellis.

�(Xi) by sweeping through the labeled trellis in a prescribed manner.
This sweep can be implemented using one of two algorithms, the soft
outputViterbi algorithm (SOVA) [6] or the maximum a posteriori (MAP)
algorithm [7] (also called the BCJR algorithm in deference to its inven-
tors). Both of these algorithms are related to the Viterbi algorithm [8],
which is commonly used to decode conventional convolutional codes.
The key distinction is that while the Viterbi algorithm outputs hard bit
decisions, the SOVA and MAP algorithms output soft decisions that can
be cast in the form of an LLR.

In general, the SOVAalgorithm is less complex than the MAP algorithm,
but does not perform as well. However, the complexity of the MAP
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algorithm can be reduced by implementing it in the log domain. The
logarithmic version of the MAP algorithm, called log-MAP [9], has
reduced complexity because multiplication operations are transformed
into additions. However, the logarithmic transformation of addition
yields an operation of the form ln(ex + ey), which is nontrivial to
compute. Fortunately, this operation is closely approximated by the max-
imum operator. In [9], an operator called max-star is defined as follows:

max∗(x, y) = ln(ex + ey)

= max(x, y) + ln(1 + e−|y−x|) (12-3)

= max(x, y) + fc(|y − x|)
that is, the log-add operation can be implemented by simply taking
the maximum of the two arguments and then adding a correction
function whose argument only depends on the magnitude of the dif-
ference between the two arguments of the max-star operator. While
computation of the correction function can still be problematic, it can be
precomputed and stored in a lookup table. Furthermore, the log-MAP
algorithm can be approximated by simply setting the correction term
to zero, that is, using max∗(x, y) = max(x, y). This variation is called
the max-log-MAP algorithm. In [9], it is shown that the max-log-MAP
algorithm can be implemented using a pair of Viterbi algorithms, one
that sweeps through the trellis in the forward direction and a second
that sweeps through it in the reverse direction. For this reason, the MAP
algorithm and its logarithmic variants are sometimes called the forward-
backward algorithm. Other flavors of the log-MAP algorithm include the
constant-log-MAP algorithm, which stores the correction function in a
lookup table with just two entries, and the linear-log-MAP algorithm,
which fits the correction function with a straight line. Details of all four
logarithmic versions of the MAP algorithm, and a description of how
they can be used to decode the UMTS turbo code, can be found in [10].

Performance of 3G Turbo Codes

This section illustrates the performance of the turbo codes used by
the two third-generation cellular standards. Simulations were run to
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determine the performance of these turbo codes in AWGN with BPSK
modulation. In each case, either the log-MAP or linear-log-MAP
algorithm was used (the performance of the two algorithms is indis-
tinguishable [10]). For each simulation, a curve showing the bit-error
rate (BER) versus the per-bit signal-to-noise ratio (SNR) was computed.
The BER is simply the ratio of incorrect data bits divided by the total
number of data bits transmitted. The SNR is computed by dividing the
energy per received data bit Eb by the single-sided noise spectral density
No of the channel.

Figure 12.8 shows the performance of the UMTS turbo code with an
input frame size of k = 1530 bits. This figure shows how performance
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Figure 12.8
Bit-error performance of the UMTS turbo code as the number of
decoder iterations varies from one to ten. The encoder input word
length is k = 1530 bits, modulation is BPSK, and channel is AWGN.
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improves as the number of decoder iterations increases. After one iter-
ation, performance is quite poor, and the decoder is unable to achieve
a BER lower than 10−2 even for an SNR as high as 1.4 dB. However,
as the decoder iterates, performance improves until at the tenth itera-
tion it can achieve a BER of 10−5 at an SNR of only 0.8 dB. Note how
each subsequent iteration improves performance, but that this improve-
ment follows a law of diminishing returns. Thus, although an eleventh
(or higher) iteration would provide slightly improved performance, the
extra complexity and decoding delay is not justified.

Figure 12.9 shows the performance of the UMTS turbo code as a function
of input frame size k. Up to 14 decoder iterations were used, although
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Figure 12.9
Bit-error performance of the UMTS turbo code for various input word
lengths. BPSK modulation is used over an AWGN channel.
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Table 12.1

Minimum Value of Eb/No (in dB) to Achieve a Desired BER Using the UMTS
Turbo Code with BPSK Modulation over an AWGN Channel

Frame Size (k) Target BER = 10−3 Target BER = 10−5

40 2.41 3.93
190 1.34 2.18
530 0.82 1.36
640 0.75 1.24

1060 0.59 0.94
1530 0.48 0.80
2020 0.38 0.68
3460 0.30 0.51
5114 0.24 0.42

for the smaller frame sizes we found that fewer iterations were required
(e.g., for k = 40, we only used 8 iterations). As can be seen in this figure,
the performance improves with increasing k. This is due to an increase
in interleaver gain as the input frame size gets larger. Table 12.1 lists the
minimum Eb/No required to achieve a BER of 10−3 and 10−5 for each
of the nine frame sizes shown in Figure 12.9.

Figure 12.10 shows the performance of the cdma2000 turbo code for an
input frame size of k = 1530 bits using BPSK over an AWGN chan-
nel. Recall that while the UMTS turbo code has a rate of r = 1/3, the
cdma2000 turbo code can achieve a wider range of rates. In Figure 12.10,
the performance for the four permissible code rates (1/5, 1/4, 1/3, and
1/2) are shown. As with any FEC code, performance improves as the
code rate is reduced (since there will be more parity bits to protect the
data). Table 12.2 lists the minimum Eb/No required to achieve a BER
of 10−3 and 10−5 for each of the four code rates shown in Figure 12.10.
Note that the performance of the rate r = 1/3 cdma2000 turbo code is
virtually identical to that of the UMTS turbo code. This is as expected,
since the two encoders are essentially the same when operating at rate 1/3
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Figure 12.10
Bit-error performance of the cdma2000 turbo code for various code
rates. The encoder input word length is k = 1530 bits, modulation is BPSK,
and channel is AWGN.

Table 12.2

Minimum Value of Eb/No (in dB) to Achieve a Desired BER Using the
cdma2000 Turbo Code with an Input Frame Size of k = 1530 Bits and
BPSK Modulation over an AWGN Channel

Code Rate (r) Target BER = 10−3 Target BER = 10−5

1/2 1.13 1.49
1/3 0.47 0.81
1/4 0.24 0.56
1/5 0.06 0.39
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(the only key difference is in the details of interleaving procedure, but
this does not significantly affect performance).

Practical Issues

Although turbo codes have the potential to offer unprecedented energy
efficiencies, they have some peculiarities that should be taken into con-
sideration. First, while the BER curve falls off sharply with increasing
SNR for moderate error rates (e.g., BER > 10−5), the BER curve begins
to flatten at higher SNR. This characteristic can be seen in Figure 12.10,
for which the BER was simulated down to very small values. The region
where the BER curve flattens out is called the error f loor and hinders
the ability of a turbo code to achieve extremely small bit-error rates. The
error floor is due to the presence of a few low-weight code words. At
low SNR, these code words are insignificant, but as SNR increases, they
begin to dominate the performance of the code [3].

The error flooring effect can be combated in several ways. One way is
to use a slightly different RSC encoder with a more favorable distance
spectrum. However, in order to lower the error floor at high SNR, per-
formance at low SNR will suffer. An interesting approach taken in [11]
is to use two different RSC encoders. One RSC encoder is optimized
to perform well at low SNR, while the other is optimized to reduce the
error floor. The resulting asymmetric turbo code provides a reasonable
combination of performance at both a low and high SNR. Unfortunately,
although the error floor has been reduced, it is still present.

Another way to reduce the error floor is to arrange the two constituent
encoders in a serial concatenation, rather than in a parallel concate-
nation [12]. Such serially concatenated convolutional codes (SCCCs)
offer excellent performance at high SNR, as the error floor is virtually
eliminated (actually, it is pushed way down to BER ≈ 10−10). However,
performance at low SNR is considerably worse than it is for parallel con-
catenated codes (also called parallel concatenated convolutional codes,
or PCCCs). An alternative to choosing between SCCCs and PCCCs
is to use hybrid turbo codes, which combine features of each type of
code [13].
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Another problem with turbo codes is that of complexity. As discussed
earlier, if the turbo decoder were implemented using the max-log-MAP
algorithm, then each half-iteration would require that the Viterbi algo-
rithm be executed twice. If 8 full-iterations are executed, then the Viterbi
algorithm will be invoked 32 times. This is in contrast to the decoding
of a conventional convolutional code, which only requires the Viterbi
algorithm to be executed once. This is why the constraint length of a
turbo code’s constituent encoder is typically shorter than that of a con-
ventional code. For instance, the conventional convolutional codes used
by UMTS and cdma2000 each have a constraint length of K = 9.

One easy way to reduce complexity is simply to halt the decoder iter-
ations once the entire frame has been completely corrected. This will
prevent over-iteration, which corresponds to wasted hardware clock
cycles. However, if the decoder is adaptively halted, then the amount of
time required to decode each code word will be highly variable. For a
discussion of decoder halting techniques, see Valenti and Sun [10].

Another option for reducing complexity is to implement the entire
decoder in analog circuitry, rather than in digital hardware [14]. Ana-
log hardware is particularly appealing because log-add operations such
as Equation (12-3) are easily implemented using a Gilbert multiplier.
Using analog circuitry, decoding throughputs on the order of hundreds
of Mbps are possible for simple turbo codes. However, to date an ana-
log implementation of a decoder suitable for the cdma2000 and UMTS
turbo codes has yet to be produced.

Closely related to the issue of complexity are the twin issues of numer-
ical precision and memory management. Because of the forward and
backward recursions required by the MAP algorithm and its logarithmic
variants, path metrics corresponding to the entire code trellis must be
stored in memory. Since a large number of metrics will be stored (e.g.,
each SISO processor must store 8(5114) = 40,912 metrics when the
maximal length UMTS code is used), it is important to represent each
metric with as few bits as possible. However, if an insufficient number
of bits are used to represent each metric, then the decoder performance
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will degrade. Wu, Woerner, and Blankenship [15] analyze the numeri-
cal precision problem and suggest that each metric be represented by a
12-bit value. Of course, if an analog implementation were to be used,
then numerical precision would not be an issue.

A further savings in memory requirements can be achieved by using
a sliding window algorithm to manage memory [9]. With the sliding
window approach, the metrics for only a portion of the code trellis are
saved in memory, say from time i to time i + j . The entire trellis is
then divided into several such windows, with some overlap between
windows. Rather than running the MAP algorithm over the entire trellis,
it is only run over each window. Since the size of the window is much less
than that of the whole trellis, the amount of memory required is greatly
reduced. Although this approach may hurt the BER performance, by
using sufficient overlap between windows the performance degradation
is negligible.

A final practical issue is that of channel estimation and synchroniza-
tion. In order to transform the received signal into LLR form, some
knowledge of the channel statistics is required. For an AWGN channel,
the SNR must be known. For a fading channel with random amplitude
fluctuations, the per-bit gain of the channel must also be known. If the
channel also induces a random phase shift on the signal, then an estimate
of the phase would be necessary for coherent detection. As with any dig-
ital transmission system, the symbol timing must be estimated using a
symbol synchronization algorithm. In addition, it is necessary to syn-
chronize the frame, that is, the decoder needs to know which received bit
in a stream of received data corresponds to the first bit of the turbo code
word. While such carrier, symbol, and frame synchronization problems
are not unique to turbo-coded systems, they are complicated by the fact
that turbo codes typically operate at very low SNR. As the performance
of synchronization algorithms degrades with reduced SNR, it is par-
ticularly challenging to perform these tasks at the low SNRs common
for turbo codes. One solution to these synchronization problems is to
incorporate the synchronization process into the iterative feedback loop
of the turbo decoder itself. In particular, the soft outputs of the SISO
processors could be used to help adjust the synchronization after each
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decoder iteration. For an example of how to use iterative feedback to
improve the process of channel estimation (and, consequently, phase
synchronization), see the work of Valenti and Woener [16].
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