
Modern Digital Satellite Television:
How It Works

Matthew C. Valenti

Lane Department of Computer Science and Electrical Engineering
West Virginia University

U.S.A.

Nov, 1, 2011

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 1 / 58



Outline

1 Satellite Television Standards

2 DVB-S2 Modulation

3 LDPC Coding

4 Constellation Shaping

5 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 2 / 58



Satellite Television Standards

Outline

1 Satellite Television Standards

2 DVB-S2 Modulation

3 LDPC Coding

4 Constellation Shaping

5 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 3 / 58



Satellite Television Standards Providers

Digital Satellite Television in the United States

DirecTV

Spinoff of Hughes Network Systems.

Began operations in 1994.

19.2 million U.S. subscribers at end of 2010.

23,000 employees in U.S. and Latin America.

$ 33.6 billion market cap.

Dish Network.

Spinoff of EchoStar.

Began operations in 1996.

14.1 subscribers in 2010.

22,000 employees.

$10.9 Billion market cap.
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Satellite Television Standards Providers

The DVB Family

DVB is a family of open standards for digital video broadcasting.

Maintained by 270-member industry consortium.

Published by ETSI.

Modes of transmission

Satellite: DVB-S, DVB-S2, and DVB-SH

Cable: DVB-C, DVB-C2

Terrestrial: DVB-T, DVB-T2, DVB-H
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Satellite Television Standards Providers

DVB-S

Modulation: QPSK with α = 0.35 rolloff.

Channel coding: Concatenated Reed Solomon and convolutional.
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Satellite Television Standards Providers

DVB-S2

DVB-S2 was introduced in 2003 with the following goals:

Improve spectral efficiency by 30% through better modulation and
coding.

Modulation: QPSK, 8PSK, 16/32 APSK.
Channel coding: LDPC with outer BCH code.

Offer a more diverse range of services.

HDTV broadcast television.
Backhaul applications, e.g., electronic news gathering.
Internet downlink access.
Large-scale data content distribution, e.g., electronic newspapers.

Ratified 2005.
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Satellite Television Standards Providers

Adaptive Internet Downlink
!

!"#$%&'()$("*+),-".$"/01234!

!"#$%&'()*+
#,-,.)*

/01234
#&5'6,(&*

738

7-()*-)(
%)('*-
"9,--)6

%)('*-
"9,--)6

%:$3;.-,6
<',6;(=

>;.9$3?))5
@&*A,*5$/,(,$8,(9

>;.9$3?))5
@&*A,*5$/,(,$8,(9

$

"#$%&'!(()!*+!*,-!./01'2!

56)7"%$,-")7"89-'.":$9"7$%-"'&&;)<'.)$(7"=+."($."7$"+7-:+;":$9"$.6-97>"!#?"
)7"-@.9-%-;A"B-;;"7+).-,".$"&+9-",'.'"'&&;)<'.)$(7"7+<6"'7",)9-<.".$"6$%-"
C(.-9(-."7-9D)<-7>"C(".6-7-".A&-7"$:"'&&;)<'.)$(7E"'<6)-D)(8"%'@)%+%",'.'"
9'.-".9'(7:-9")7"<9).)<';".$".6-"=+7)(-77"%$,-;"B6-9-"'"6)86-9",'.'"9'.-"
.9'(7:-9"';;$B7"'"6)86-9"(+%=-9"$:"+7-97"&-9"?FG"$:"='(,B),.6>""

F$B-D-9".6)7"%$,-"$:"$&-9'.)$(")7"($."D-9A"+7-:+;".$".9',).)$(';"7'.-;;).-"50"
=9$',<'7.-97>"C.")7"6)86;A";)H-;A".6'.",+9)(8"9')(":',-"<$(,).)$(7".6-"
9-,+<.)$(")(",'.'"9'.-"9-I+)9-,".$"H--&".6-";)(H"$&-9'.)$(';"B);;"9-7+;.")("'("
+('<<-&.'=;A";$B"=)."9'.-"';;$<'.-,".$"-'<6"50"<6'((-;".69$+86".$".6-"
-D-(.+';"&$77)=);).A"$:"6'D)(8".$",9$&"7$%-"<6'((-;7":9$%".6-"%+;.)&;-@>"
J$."D-9A",-7)9'=;-K"

!"#"$% &'()'*+,%-./)01%'0/%2./3+'4).0%5%&-2%
0#?"<'("=-"<$(7),-9-,".$"=-"'"7+=7-."$:".6-":+(<.)$(';).A"&9$D),-,")(".6-"
!#?"%$,-E",-7<9)=-,"'=$D->"56-"0#?"%$,-",$-7"($."&9$D),-"'":--,='<H"
&'.6":9$%"9-<-)D-9".$"+&;)(H"7).-"'(,",$-7"($."';;$B":$9"%$,+;'.)$("$9"LM#"
<6'(8-7"$(".6-":;A"'7"B).6"!#?>"0#?",$-7"6$B-D-9"&9$D),-".6-"'=);).A":$9"
7$%-"%$,+;'.-,":9'%-7"$:",'.'".$"=-"9-8+;'9;A".9'(7%)..-,"B).6"'",)::-9-(."
LM#"$9"%$,+;'.)$(":$9%'.>"!7"B).6".6-"!#?"%$,-").")7"&$77)=;-".$",-.-<."
.6-"LM#"'(,"%$,+;'.)$(":$9%'.":9$%",'.'",-7<9)&.$9"6-',-97")(".6-"
.9'(7%)..-,",'.'>"

!7"B).6".6-"!#?"%$,-E").7"+7'8-"B);;"&9$='=;A"=-"%$7."'&&;)<'=;-".$"&+9-"
,'.'".9'(7%)77)$(7"9'.6-9".6'("50"=9$',<'7.7>"56-"'=);).A".$".9'(7%)."7$%-"
,'.'"B).6"'",)::-9-(."LM#"'(,"6-(<-",)::-9-(.",'.'"9'.-"B);;"%$7.";)H-;A":)(,"
'"6$%-")("&9$D),)(8"'";$B-9",'.'"9'.-"7)8(';".$"+7-97"$(".6-"-,8-"$:".6-"
7'.-;;).-":$$.&9)(."'7"'".A&-"$:".69-76$;,"-@.-(7)$(>"56-"&-(';.A"6$B-D-9")7"
.6'."=A"+7)(8"7$%-",'.'":9'%-7".$"7-(,";$B-9"9'.-",'.'".$"-,8-"$:"=-'%"
+7-97".6$7-":9'%-7"'9-"($."=-)(8"-::)<)-(.;A"+7-,":$9".6-"%'N$9).A"$:"(-'92
<-(.9-"=-'%"+7-97"$:".6-"7-9D)<->"

56)7"%$,-"8)D-7"7$%-"-@.9'":;-@)=);).A"B6)<6"%'A"=-"$:"+7-")("7$%-"
'&&;)<'.)$(7"B6-9-"9-<-)D-",)76"7)G-"%'A"=-";)%).-,>"56-"-@'<."D';+-"$:".6)7"
%$,-"B);;",-&-(,"$(")(,)D),+';"=+7)(-77"%$,-;7>"

O'8-"4P"$:"4Q!
!

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 8 / 58



DVB-S2 Modulation

Outline

1 Satellite Television Standards

2 DVB-S2 Modulation

3 LDPC Coding

4 Constellation Shaping

5 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 9 / 58



DVB-S2 Modulation

Why Not Use QAM?

Higher spectral-efficiencies require larger signal constellations.

However, nonlinear satellite channels are not well suited to square
QAM.

Nonlinear !
TWTA !
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DVB-S2 Modulation

The DVB-S2 Signal Constellations

 
A Companion Guide to DVB-S2 

4 DVB-S2 in Detail 

4.1 The Modulation Scheme 
The primary objective of DVB-S2 was to bring 8PSK within reach of 
consumer-sized satellite dishes and the increase in spectrum efficiency 
that 8PSK brings. With this work came the acceptance that real world 
transmission factors should be taken into account for the new system 
design. Rather than considering only the standard linear channel as with 
the previous DVB-S and DVB-DSNG specifications, the DVB-S2 
specification recognises the following effects: 

Phase noise 

Non-linear magnitude and phase characteristics of a saturated transponder 

The fact that the transponder is power limited 

Group delay effects 

This work led to the defined constellations to be optimised for the above 
conditions. The constellations that were chosen are shown below: 

I

I

I

I

Q

Q

Q

Q
QPSK 8PSK

16APSK 32APSK  

Figure 1: DVB-S2 Constellations 

16APSK and 32APSK were chosen over the more familiar QAM 
constellations because their round shape makes them more power efficient 
in the power-limited channel that is a saturated satellite transponder. It is 
interesting to note that the ratio of the radii of the concentric circles for 
16- and 32APSK changes slightly depending upon the FEC that is used in 
order to achieve maximum performance.  

Page 7 of 21 
 

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 11 / 58



DVB-S2 Modulation

Raised-Cosine Rolloff Filtering

DVB-S2 uses a tighter root RC-rolloff filter.

B = Rs(1 + α)
Assuming a 6 MHz
transponder channel...

DVB-S Example:

α = 0.35.
QPSK: Rb = 2Rs

2(6)/(1.35) = 8.9
Mbps

DVB-S2 Example:

α = 0.20.
32-APSK: Rb = 5Rs

5(6)/(1.2) = 25 Mbps 0.75 0.5 0.25 0 0.25 0.5 0.750.75
0

0.25

0.5

0.75

1

1.25

2f/Rs

H
(f)
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 = 0.25
 = 0.35
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DVB-S2 Modulation

BER in AWGN
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LDPC Coding

Capacity

Performance can be
improved by using error
control coding.

Gains are limited by the
modulation-constrained
capacity.

LDPC codes are capable
of approaching capacity.
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LDPC Coding

Available Code Rates

The encoder maps
length-k messages to
length-n codewords.

The code rate is
R = k/n.

Useful bit rate is
Ru = R log2(M).

Two codeword lengths:

16, 200.
64, 800.
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LDPC Coding

DVB-S2 vs. Shannon
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LDPC Coding

Single Parity-Check Codes

Consider the following rate R = 5/6 single parity-check code:

c = [1 0 1 0 1︸ ︷︷ ︸
u

1︸ ︷︷ ︸
parity bit

]

One error in any position may be detected:

c =
[
1 0 X 0 1 1

]

Problem with using an SPC is that it can only detect a single error.
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LDPC Coding

Product Codes

Place data into a k by k rectangular array.
Encode each row with a SPC.
Encode each column with a SPC.
Result is a rate R = k2/(k + 1)2 code.

Example k = 2.

c1 = u1 c2 = u2 c3 = c1 ⊕ c2
c4 = u3 c5 = u4 c6 = c4 ⊕ c5

c7 = c1 ⊕ c4 c8 = c2 ⊕ c5 c9 = c3 ⊕ c6
=

1 0 1
1 1 0
0 1 1

A single error can be corrected by detecting its row and column
location

1 0 1
0 1 0
0 1 1

⇒
1 0 1
1 1 0
0 1 1

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 19 / 58



LDPC Coding

Linear Codes

c1 = u1 c2 = u2 c3 = c1 ⊕ c2
c4 = u3 c5 = u4 c6 = c4 ⊕ c5

c7 = c1 ⊕ c4 c8 = c2 ⊕ c5 c9 = c3 ⊕ c6

The example product code is characterized by the set of five
linearly-independent equations:

c3 = c1 ⊕ c2 ⇒ c1 ⊕ c2 ⊕ c3 = 0
c6 = c4 ⊕ c5 ⇒ c4 ⊕ c5 ⊕ c6 = 0
c7 = c1 ⊕ c4 ⇒ c1 ⊕ c4 ⊕ c7 = 0
c8 = c2 ⊕ c5 ⇒ c2 ⊕ c4 ⊕ c8 = 0
c9 = c3 ⊕ c6 ⇒ c3 ⊕ c6 ⊕ c9 = 0

In general, it takes (n− k) linearly-independent equations to specify a
linear code.
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LDPC Coding

Parity-check Matrices

The system of equations may be expressed in matrix form as:

cHT = 0

where H is a parity-check matrix.

Example:

c1 ⊕ c2 ⊕ c3 = 0
c4 ⊕ c5 ⊕ c6 = 0
c1 ⊕ c4 ⊕ c7 = 0
c2 ⊕ c4 ⊕ c8 = 0
c3 ⊕ c6 ⊕ c9 = 0
System of equations

⇔ H =




1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1




Parity-check matrix
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LDPC Coding

Tanner Graphs

The parity-check matrix may be represented by a Tanner graph.
Bipartite graph:

Check nodes: Represent the n− k parity-check equations.
Variable nodes: Represent the n code bits.

If Hi,j = 1, then ith check node is connected to jth variable node.
Example: For the parity-check matrix:

H =

266664
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1

377775
The Tanner Graph is:
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LDPC Coding

LDPC Codes

Observations:

To achieve capacity, a long code is needed.
The decoder’s complexity depends on the number of edges in the
Tanner graph.
The number of edges is equal to the number of zeros in H.
It is desirable to have a code that is long, yet has a sparse H.

Low-density parity-check codes:

An LDPC code is characterized by a sparse parity-check matrix.
The row/column weights are independent of length.
Decoder complexity grows only linearly with block length.

Historical note:

LDPC codes were the subject of Robert Gallager’s 1960 dissertation.
Were forgotten because the decoder could not be implemented.
Were “rediscovered” in the mid-1990’s after turbo codes were
developed.
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LDPC Coding

Example LDPC Code

A code from MacKay and Neal (1996):

H =




1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1




The code is regular because:
The rows have constant weight (check-nodes constant degree).
The columns have constant weight (variable-nodes constant degree).

This is called a (3, 4) regular LDPC code because the variable nodes
have degree 3 and the check nodes have degree 4.
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LDPC Coding

The Binary Erasure Channel

The binary erasure channel is a conceptual model used to explain the
operation of LDPC codes.

The BEC has two inputs (data 0 and data 1) and three outputs (data
0, data 1, and erasure e).

A bit is erased with probability ε.

A bit is correctly received with probability 1− ε.

0 0
1 − ε

e
ε

1 1
1 − ε

ε
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LDPC Coding

Erasures Decoding of Product Codes

Several erasures may be corrected by iteratively decoding the SPC on
each row and column.

e e 1
1 e 0
0 e e

Received
word

⇒
e e 1
1 1 0
0 e e

Row
decoding

⇒
1 e 1
1 1 0
0 e 1
Column

decoding

⇒
1 0 1
1 1 0
0 1 1

Row
decoding
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LDPC Coding

Erasures Decoding on the Tanner Graph

Decoding can be performed on the Tanner graph.

Load the variable nodes with the observed code bits.

Each check node j sends a message to each of its connected variable
nodes i.

The message is the modulo two sum of the bits associated with the
connected variable nodes other than i (if none are erased).
If a check node touches a single erasure, then it will become corrected.

Iterate until all erasures corrected or no more corrections possible.

e e 1 1 e 0 0 e e
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Erasures Decoding on the Tanner Graph

Decoding can be performed on the Tanner graph.

Load the variable nodes with the observed code bits.

Each check node j sends a message to each of its connected variable
nodes i.
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LDPC Coding

Erasures Decoding on the Tanner Graph

Decoding can be performed on the Tanner graph.

Load the variable nodes with the observed code bits.

Each check node j sends a message to each of its connected variable
nodes i.

The message is the modulo two sum of the bits associated with the
connected variable nodes other than i (if none are erased).
If a check node touches a single erasure, then it will become corrected.

Iterate until all erasures corrected or no more corrections possible.

1 0 1 1 1 0 0 1 1
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LDPC Coding

Stopping sets

A stopping set V is a set of erased variable nodes that
cannot be corrected, regardless of the state of the other variable nodes.

e e 1 e e 0 0 1 1 

Let G be the neighbors of V.
Every check node in G touches at least two variable nodes in V.
The minimimum stopping set Vmin is the stopping set containing the
fewest variable nodes.
Let dmin = |Vmin| be the size of the minimum stopping set.

There exists at least one pattern of dmin erasures that cannot be
corrected.
The erasure correcting capability of the code is dmin − 1, which is the
maximum number of erasures that can always be corrected.
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LDPC Coding Density Evolution

Density Evolution

For a (dv, dc) regular code, the probability that a variable-node
remains erased after the `th iteration is

ε` = ε0

(
1− (1− ε`−1)

dc−1
)dv−1

(1)

where dv is the variable-node degree, dc is the check-node degree,
and the initial condition is ε0 = ε.

The above result assumes independent messages, which is achieved
when the girth of the Tanner graph is sufficiently large.

If ε` → 0 as `→∞ for a particular channel erasure probability ε, then
a code drawn from the ensemble of all such (dv, dc) regular LDPC
codes will be able to correctly decode.

The threshold ε∗ is the maximum ε for which ε` → 0 as `→∞.

For the (3, 6) regular code, the threshold is ε∗ = 0.4294
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LDPC Coding Density Evolution

Proof of (1), Part I/II

Decoding involves the exchange of messages between variable nodes
and check nodes.

Let p↑ denote the probability of an erased message going up from the
variable nodes to the check nodes.
Let p↓ denote the probability of an erased message going down from
the check nodes to the variable nodes.

Consider the degree dc check node.

An outgoing message sent over a particular edge is a function of the
incoming messages arriving over the other dc − 1 edges.
For the outgoing message to be correct, all dc − 1 incoming messages
must be correct.
The outgoing message will be an erasure if any of the dc − 1 incoming
messages is an erasure.
The probability of the check node sending an erasure is:

p↓ = 1− (1− p↑)dc−1 (2)
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LDPC Coding Density Evolution

Proof of (1), Part II/II

Consider the degree dv check node.

An outgoing message sent over a particular edge is a function of the
incoming messages arriving over the other dv − 1 edges.
An outgoing message will be an erasure if the variable node was
initially erased and all of the arriving messages are erasures.
The probability of the variable node sending an erasure is:

p↑ = ε0p
dv−1
↓ (3)

Letting ε` equal the value of p↑ after the `th iteration, and
substituting (2) into (3) yields the recursion given by (1):

ε` = ε0

(
1− (1− ε`−1)

dc−1
)dv−1
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LDPC Coding Density Evolution

DE Example 15
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Fig. 5. Density Evolution result for regular (3,6) LDPC code over BEC

the edges in an irregular Tanner graph gives the average erasure probability of the message:

ql = 1−
∑

i

ρi(1− pl)i−1 (16)

pl = ε
∑

i

λi(ql−1)
(i−1) (17)

Substituting for ql−1:

pl = ε λ(1− ρ(1− pl−1)) (18)

recursion equation (18) is the DE for irregular LDPC codes.

D. Threshold

The object of density evolution is to determine which channel parameters (e.g. ε in BEC)

the message-passing decoder is likely to correct all of the error bits. We can find the maximum

ε for one LDPC ensemble over BEC by Equation (18) with the iteration l approximating ∞,

assuming that the graphs are cycle free.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 32 / 58



LDPC Coding Density Evolution

Code Realization

Density evolution only describes the asymptotic performance of the
ensemble of LDPC codes.

Implementation requires that an H matrix be generated by drawing
from the ensemble of all (dv, dc) LDPC codes.
Goals of good H design:

High girth.
Full rank.
Large minimum stopping set.

If the girth is too low, the short cycles invalidate the iterative decoder.

High girth achieved through girth conditioning algorithms such as
progressive edge growth (PEG).

If H is not full rank, then the rate will be reduced according to the
number of dependent equations.

Small stopping sets give rise to an error floor.

A database of good regular LDPC codes can be found on MacKay’s
website.
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Performance of an Actual Code 23
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Fig. 8. Simulation results for length 8000 regular (3,6) code

Through the results in Fig. 10, irregular code has better threshold while yields more complexity

decode complexity. Generally speaking, regular code has smaller threshold but also smaller gap

between the simulation results and theoretical result. Other algorithms or longer code length

may result in better result for irregular LDPC code.

IX. CONCLUSION

In this report we introduced one kind of error correcting code: LDPC code, and some of

the encoding and decoding algorithms. My work is mainly about finding the optimum degree

distribution code ensembles using the judgement of Density Evolution, then tried to generate the

actual code and test its performance over BEC. The PEG algorithm is a well-known algorithm

which can maximize the girth of the parity-check matrix, but through the simulation result, it

is not the best one. First, the algorithm involves lots of searching computation to find suitable

position of 1’s, so it takes long time to run the program; Second, the PEG algorithm cannot

guarantee the parity check matrix is full rank, so the actual code rate may be smaller than the

designed code rate; PEG only average 1’s in different rows so that it cannot handle other cases
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LDPC Coding Irregular LDPC Codes

Irregular LDPC Codes

Although regular LDPC codes perform well, they are not capable of
achieving capacity.

Properly designed irregular LDPC codes are capable of achieving
capacity.

The degree distribution of the variable nodes is not constant.
The check-node degrees are often still constant (or close to it).
Here “designing” means picking the proper degree distribution.
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LDPC Coding Irregular LDPC Codes

Degree Distribution

Edge-perspective degree distributions:

ρi is the fraction of edges touching degree i check nodes.
λi is the fraction of edges touching degree i variable nodes.

For example, consider the Tanner graph:

15 edges.
All are connected to degree-3 check nodes, so ρ3 = 15/15 = 1.
Four are connected to degree-1 variable nodes, so λ1 = 4/15.
Eight are connected to degree-2 variable nodes, so λ2 = 8/15.
Three are connected to the degree-3 variable node, so λ3 = 3/15.
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LDPC Coding Irregular LDPC Codes

DE for Irregular LDPC

The degree distributions are described in polynomial form:
ρ(x) =

∑
i ρix

i−1 for check nodes.
λ(x) =

∑
i λix

i−1 for variable nodes.

For an irregular code, the probability that a variable-node remains
erased after the `th iteration is

ε` = ε0λ (1− ρ (1− ε`−1))

The proof follows from the Theorem on Total Probability.

Convergence:
Error-free decoding requires that the erasure probability goes down
from one iteration to the next.
Define the related function:

f(ε, x) = ελ (1− ρ (1− x))

Error-free decoding is possible iff f(ε, x) ≤ x for all 0 ≤ x ≤ ε.
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LDPC Coding Irregular LDPC Codes

Convergence
17
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Fig. 6. Recursive of erasure probability in different channel parameter ε

For a regular LDPC code ensemble (dv, dc), the minimum of equation (24) can be solved by

considering the derivative of ε(x). Omitting the algebra process, the threshold is:

ε∗ =
1− s

(1− sdc−1)dv−1
(26)

s is the positive real root of following equation:

[(dv − 1)(dc − 1)− 1]ydc−2 −
dc−3∑

i=0

yi = 0 (27)

The threshold of the (3,6) regular ensemble over BEC is ε∗ = 0.4294, which can be approxi-

mately seen from Figure 5, 6. This code has the rate R = 0.5. The capacity limit for the BEC

is 1− r, which is 0.5 in this case.

The general methodology of density evolution is outlined here again as follows:

Step 1: The channel is specified by a single parameter σ, and the decoding algorithm is

specified.

Step 2: Assume the corresponding code graph is cycle-free; that is, every neighborhood can

be represented by a tree graph, in which case we can assume that the messages are independent
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LDPC Coding Irregular LDPC Codes

Optimization

The threshold is

ε∗ = sup{ε : f(ε, x) < x,∀x, 0 < x ≤ ε}

Solving f(ε, x) = x for ε

x = f(ε, x)
= ελ (1− ρ (1− x))

ε =
x

λ (1− ρ (1− x))

which is a function of x, and henceforth expressed as ε(x).

This allows the threshold to be rewritten as:

ε∗ = min{ε(x) : ε(x) ≥ x}
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LDPC Coding Irregular LDPC Codes

Optimization with Linear Programming

Our goal is to find the degree distribution which yields maximum
threshold

maxε∗ {ε∗ = min(ε(x) : ε(x) ≥ x)};

Several Constraints
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

= 1−R
∑

i≥2

λi = 1;
∑

i≥2

ρi = 1;

x ∈ [0, 1]

Which can be modeled as a optimization problem using linear
programming

Can use Matlab’s Optimization Toolbox.
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Optimization Results (ε∗ = 0.49596) 22

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

average ρ

Th
re

sh
ol

d

DE over BEC with code rate R=0.5

 

 

max_lambda=5
max_lambda=10
max_lambda=15
max_lambda=20
max_lambda=30

Fig. 7. Density Evolution for LDPC codes with code rate 1/2

the independence among each bits, which will achieve a closer value to the theoretically case.

Figure 9 is the decode results for length 2048 irregular LDPC code generated by PEG

algorithms. The maximum column weight or the maximum variable node degree is 15, check

nodes have degrees of 8 or 7. The specific degree distribution is:

λ(x) = 0.218x14 + 0.0312x13 + 0.0871x6 + 0.1587x5 + 0.24x2 + 0.2648x,

ρ(x) = 0.4453x7 + 0.5547x6

The threshold for the code ensemble is 0.47786, and the generated 2048 PEG code in 9 has the

threshold near 0.45. The distance may be decrease with the increasing of code length or using

other methods to generate the parity-check matrix.

The decode results of both regular and irregular LDPC code with the same length are compared

in Fig. 10, the irregular code has the following degree distribution with the theoretical threshold

0.4694:

λ(x) = 0.3793x14 + 0.0156x6 + 0.1215x4 + 0.0347x3 + 0.2104x2 + 0.2385x,

ρ(x) = x7
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LDPC Coding Irregular LDPC Codes

Encoding LDPC Codes

Encoding of LDPC codes is not necessarily straightforward.

“Systematic-form” H

Using Gaussian elimination, find H = [P I].
Then c = uG where G =

[
I PT

]
.

However, P is likely to be high-density (complex encoding).

Back-substitution.

If H is in an appropriate form, then c can be encoded using back
substitution
Example, cHT = 0, where

H =

24 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 1 0 1 1

35
The LDPC code in the DVB-S2 standard allows for back substitution.
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LDPC Coding BICM-ID

Iterative Demodulation and Decoding

Conventional receivers first
demodulation, then decode.

Performance is improved by
iterating between the
demodulator and decoder.

BICM-ID: bit-interleaved
modulation with iterative
decoding.

APSK 
demodulator 
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M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Nov, 1, 2011 43 / 58



LDPC Coding BICM-ID

AWGN Performance of 16APSK with BICM-ID
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LDPC Coding BICM-ID

AWGN Performance of 32APSK with BICM-ID
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Constellation Shaping
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Constellation Shaping

Constellation Shaping

Capacity curves assume equiprobable signaling.
It is possible to increase capacity by transmitting higher-energy
signals less frequently than lower-energy signals.
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Figure: The capacity of shaped 32APSK is
about 0.3 dB better than uniform 32APSK.
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Constellation Shaping

Sub-constellations

The 32APSK is partitioned into two equal-sized sub-constellations.

A shaping bit selects the sub-constellation, while the remaining bits
select a symbol from the chosen sub-constellation.

The lower-energy sub-constellation is selected more frequently.

Figure: 32APSK w/ 2 sub-constellations
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Figure: 32APSK symbol-labeling map
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Constellation Shaping

Shaping Encoder

The shaping encoder should produce more zeros than ones.

Example: (ns, ks) = (5, 3)
3 input data bits 5 output codeword bits
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0
0 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 1 1 1 0 1 0 0

p0 = 31/40: fraction of zeros.
p1 = 9/40: fraction of ones.
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Constellation Shaping

Receiver Implementation

Demodulator    +    Shaping Decoder
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Additional complexity relative to BICM-ID due to shaping decoder.

MAP shaping decoder compares against all 2ks shaping codewords.
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Constellation Shaping

BER of Shaping in AWGN

BER of 32-APSK in AWGN at rate R=3 bits/symbol
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Conclusion

Conclusion

DVB-S2 is a highly efficient system, thanks to

APSK modulation.
Tight RC-rolloff filtering.
Capacity-approaching LDPC codes.

The performance of DVB-S2 can be improved by

BICM-ID.
Constellation shaping.

Future work:

Using density evolution to optimize degree distribution of LDPC-coded
APSK with shaping.
Extension to 64APSK and beyond.
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Conclusion

Thank You.
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