
Channel Coding for
IEEE 802.16e Mobile WiMAX

Matthew C. Valenti

Lane Department of Computer Science and Electrical Engineering
West Virginia University

U.S.A.

June 2009

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 1 / 94

Outline

1 Overview of (Mobile) WiMAX

2 Convolutional Codes

3 Turbo Codes

4 Low-density Parity-check Codes

5 Conclusion

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 2 / 94

Overview of (Mobile) WiMAX

Outline

1 Overview of (Mobile) WiMAX

2 Convolutional Codes

3 Turbo Codes

4 Low-density Parity-check Codes

5 Conclusion

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 3 / 94

Overview of (Mobile) WiMAX WiMAX and IEEE 802.16

IEEE 802.16

IEEE 802.16 is a family of standards for Wireless MAN’s.

Metropolitan area networks.

Wireless at broadband speeds.

Applications of IEEE 802.16

Wireless backhaul.

Residential broadband.

Cellular-like service.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 4 / 94

Overview of (Mobile) WiMAX WiMAX and IEEE 802.16

Progression of standards

802.16

→ December 2001.
→ 10-66 GHz.
→ Line-of-sight (LOS) only.
→ Up to 134.4 Mbps operation using 28 MHz bandwidth.

802.16-2004

→ June 2004.
→ Added 2-11 GHz non-LOS operation.
→ Up to 75 Mbps operation using 15 MHz bandwidth.

802.16e-2005

→ December 2005.
→ Added support for mobility.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 5 / 94

Overview of (Mobile) WiMAX WiMAX and IEEE 802.16

Key Technologies

Advanced technologies supported by IEEE 802.16

OFDM and OFDMA.

Adaptive modulation: QPSK, 16-QAM, or 64-QAM.

Adaptive turbo and LDPC codes.

Hybrid-ARQ

MIMO: Space-time codes and spatial multiplexing.

Time-division duplexing.

Multiuser diversity.

Partial frequency reuse.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 6 / 94

Overview of (Mobile) WiMAX WiMAX and IEEE 802.16

WiMAX Forum

The WiMAX forum is an consortium of over 500 companies whose purpose
is to commercialize systems based on IEEE 802.16 technology.

The activities of the WiMAX forum include:

Development of WiMAX system profiles.

Certification of equipment.

Standardization of higher-layer functionality.,

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 7 / 94

Overview of (Mobile) WiMAX WiMAX and IEEE 802.16

WiMAX vs. mobile WiMAX

WiMAX

fixed system profile.

OFDM PHY from IEEE 802.16-2004.

256 OFDM subcarriers (fixed).

3.5 MHz bandwidth.

mobile WiMAX

mobility system profile.

OFDMA PHY from IEEE 802.16e-2004.

128 to 2,048 subcarriers (scalable).

1.25 to 20 MHz bandwidths

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 8 / 94

Overview of (Mobile) WiMAX Channel Coding

Channel Codes Specified in IEEE 802.16e

Four codes are specified in IEEE 802.16e.

1 Tailbiting convolutional code.

2 Block turbo code (BTC).

3 Convolutional turbo code (CTC).

4 Low-density Parity-check (LDPC) code.

The goal of the remainder of this tutorial is to describe each of these
codes in detail.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 9 / 94

Convolutional Codes

Outline

1 Overview of (Mobile) WiMAX

2 Convolutional Codes

3 Turbo Codes

4 Low-density Parity-check Codes

5 Conclusion

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 10 / 94

Convolutional Codes Binary Linear Codes

Code and Message Vectors

A binary code C is a set of 2k codewords ci, 0 ≤ i < 2k.

Each codeword is represented by a length n binary vector.

Each codeword is associated with a unique message ui, 0 ≤ i < 2k,
which is a length k binary vector.

The code must define the mapping from messages to codewords
u→ c.

Encoder
 u c

message codeword

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 11 / 94

Convolutional Codes Binary Linear Codes

Linear codes.

A code is linear if the modulo-2 sum of any two codewords is also a
codeword.

Mathematically, if ci ∈ C and cj ∈ C, then ci + cj ∈ C.
Note that the addition is modulo-2.

Because ci + ci = 0, it follows that all linear codes must contain the
all-zeros codeword.

All codes considered in this tutorial are linear.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 12 / 94

Convolutional Codes Convolutional Encoding

Encoding

A convolutional encoder is a device with kc inputs and nc outputs,
where nc ≥ kc.

The input message u is split into kc input streams
u(i), 0 ≤ i ≤ kc − 1 each of length k/kc.

Similarly, the output codeword c is assembled from nc output streams
c(j), 0 ≤ j ≤ nc − 1 each of length n/nc.

In this tutorial, 1 ≤ kc ≤ 2 and 1 ≤ nc ≤ 4.

Separate

Streams

Convolutional

Encoder

Combine

Streams

u c

u
(0)

u
(k

c
-1)

c
(0)

.

.

.

.

.

.

c
(n

c
-1)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 13 / 94

Convolutional Codes Convolutional Encoding

Convolutional Encoding when kc = 1

Suppose there is one input stream, u(0) = u.

Output stream c(j) is found by convolving the input stream with a
generator sequence g(j) as follows:

c(j) = u ∗ g(j)

where the `th element of the output vector is

c
(j)
` =

m∑
k=0

u`−kg
(j)
k

and the addition is modulo-2.

m is the memory of the encoder.

ν = m+ 1 is the constraint length.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 14 / 94

Convolutional Codes Convolutional Encoding

Encoder Diagram

Let g(0) = [101] and g(1) = [111].
The encoder may be realized with the following structure:

u

c(0)

c(1)

DD

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 15 / 94

Convolutional Codes Convolutional Encoding

State diagram representation

A convolutional encoder is a finite state machine, and can be represented
in terms of a state diagram.

S3 = 11

S2 = 01

S1 = 10

S3 = 11S0 = 00

1/11 1/10

0/11 0/10

1/01

0/00

0/011/00

Input data bit

Corresponding

output code bits

2m = 4 total states

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 16 / 94

Convolutional Codes Convolutional Encoding

Initial and Terminating States

The system needs a policy for choosing the initial and terminating
states of the encoder.

The usual convention is to start in the all-zeros state and then force
the encoder to terminate in the all-zeros state.

Termination in the all-zeros state requires a tail of m zeros.

The tail results in a fractional-rate loss.

Tailbiting convolutional codes operate such that the initial and
terminating states are the same (but not necessarily all-zeros).

Tailbiting codes don’t require a tail and have no fractional-rate loss.
More on tailbiting codes later...

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 17 / 94

Convolutional Codes Convolutional Encoding

Trellis representation

A trellis is an expansion of the state diagram which explicitly shows the
passage of time.

S0

S3

S2

S1

0/00

1/1
1

1/
10

0/0
1

1/01

0/10

1/000/11

i = 0 i = 6i = 3i = 2i = 1 i = 4 i = 5

initial

state

Every branch

corresponds to

a particular data bit

and 2-bits of the

code word

new state after

first bit is encoded

final state
m = 2

tail bits

1/
10

1/
10

1/1
1

1/1
1

1/1
1

0/00 0/00 0/00 0/00 0/00

0/11

0/11

0/11

1/00

0/0
1 0/0

1
0/0

1

0/10 0/10

every sequence of

input data bits

corresponds to

a unique path

through the trellis1/01

input and

output bits

for time L = 4

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 18 / 94

Convolutional Codes Convolutional Encoding

Encoding Using the Trellis

The trellis can be used to encode the message.
Use message bits to determine path, then read off the code bits.

S0

S3

S2

S1

0/00

1/1
1

1/
10

0/0
1

1/01

0/10

1/000/11

i = 0 i = 6i = 3i = 2i = 1 i = 4 i = 5

1/
10

1/
10

1/1
1

1/1
1

1/1
1

0/00 0/00 0/00 0/00 0/00

0/11

0/11

0/11

1/00

0/0
1 0/0

1
0/0

1

0/10 0/10

u = [1 1 0 1]

c = [1 1 1 0 1 0 0 0 0 1 1 1]

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 19 / 94

Convolutional Codes Decoding

The Viterbi Algorithm

S
0

S
3

S
2

S
1

0/00

1/
11

1
/1

0

0/10

1/
11

0
/1

1

1/00

0/
01 0/

01

The Viterbi algorithm is used for ML Decoding.

Exploiting the recursive structure of the trellis minimizes complexity.

Steps:

A forward sweep through the trellis is performed.
Each node holds a partial path metric.
A branch metric is computed for each branch in the trellis.
At each node, an add-compare-select operation is performed.
Once the end of the trellis is reached, a traceback operation determines
the value of the data bits.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 20 / 94

Convolutional Codes Decoding

Viterbi Algorithm: Example

Suppose that the input to the convolutional encoder is:

u =
[

1 1 0 1 0 0
]

Then the ouput of the encoder is:

c =
[

1 1 1 0 1 0 0 0 0 1 1 1
]

Suppose every fourth bit is received in error:

r =
[

1 1 1 1 1 0 0 1 0 1 1 0
]

Determine the most likely u given r.

For clarity, we will assume hard-decision decoding.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 21 / 94

Convolutional Codes Decoding

10

01

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

11

00

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

01

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

11

000

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

01

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

000

0

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

01

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0 2

0

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

01

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

0

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

01

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

0

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

0

2

10

01

11

00

1

1

0

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

10

11

00

1

1

0

2

0

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

012

2

0

0

1

1

1

1

0

2

10

11

00

1

1

0

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

012

2

0

0

1

1

1

1

2

1

2

2

0

2

10

11

00

1

1

0

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

2

1

2

2

0

0

2

2

1

1

1

1

0

2

10

11

00

1

1

0

2

10

10

01

00

11

11

00

012

2

0

0

1

1

1

1

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

2

1

2

2

0

0

2

2

1

1

1

1

2

2

0

2

10

11

00

1

1

0

2

10

10

01

00

11

11

00

012

2

0

0

1

1

1

1

2

2

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

2

1

2

2

0

0

2

2

1

1

1

1

2

2

0

2

10

11

00

1

1

0

2

10

10

01

00

11

11

00

012

2

0

0

1

1

1

1

2

2

2

0

1

1

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

2

1

2

2

0

0

2

2

1

1

1

1

2

2

0

2

10

11

00

1

1

0

2

10

10

01

00

11

11

00

012

2

0

0

1

1

1

1

2

2

2

0

1

1

2

3

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

2

1

2

2

0

0

2

2

1

1

1

1

2

2

0

2

10

11

00

1

1

0

2

10

10

01

00

11

11

00

012

2

0

0

1

1

1

1

2

2

2

0

1

1

2

3 1

1

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

01

10

10

01

00

11

11

00

10

01

11

00

11

00

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

2

1

1

2

4

1 20

2

1

2

2

0

0

2

2

1

1

1

1

2

2

0

2

10

11

00

1

1

0

2

10

10

01

00

11

11

00

012

2

0

0

1

1

1

1

2

2

2

0

1

1

2

3 1

1

3

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

1

1 20

1

2

2

3

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

r = [1 1 1 1 1 0 0 1 0 1 1 0]

0

0

1

1 20

1

2

2

3

0

01

0

1

1

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 22 / 94

Convolutional Codes Decoding

Soft-decision Decoding

Instead of using hard-decisions on the bits, soft-decisions could be
used.
Requires that the input to the decoder be a log-likelihood ratio (LLR)
in the form:

λi = log
P [ci = 1|ri]
P [ci = 0|ri]

For BPSK modulation in AWGN, the LLR is

λi =
2
σ2
ri

The branch metric for a particular state transition Sj → S` is:

γj,` =
nc−1∑
i=0

ciλi

Goal is to maximize the metric, rather than minimize it.
Thus, the ACS will select the larger branch instead of the smaller one.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 23 / 94

Convolutional Codes CML

The Coded Modulation Library

CML is a software library for simulating coding and modulation.

Developed by me and my students.

Runs in matlab, though much is written in C.

Supports all four codes decribed in this tutorial.

Open source under the lesser GPL license.

Download at www.iterativesolutions.com

Extract files, open matlab, cd to ./cml, and type CmlStartup

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 24 / 94

Convolutional Codes CML

Encoding a Convolutional Code in CML

>> help ConvEncode

ConvEncode encodes a NSC or RSC convolutional code with a tail.

The calling syntax is:

[output] = ConvEncode(input, g_encoder, [code_type])

output = code word

Required inputs:

input = data word

g_encoder = generator matrix for convolutional code

(If RSC, then feedback polynomial is first)

Optional inputs:

code_type = 0 for recursive systematic convolutional (RSC) code (default)

= 1 for non-systematic convolutional (NSC) code

= 2 for tail-biting NSC code

Copyright (C) 2005-2008, Matthew C. Valenti

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 25 / 94

Convolutional Codes CML

Encoding a Convolutional Code in CML

u

c(0)

c(1)

DD

>> g = [1 0 1

1 1 1]; % enter the generators

>> data = [1 1 0 1]; % enter the data sequence

>> c = ConvEncode(data, g, 1) % command to encode

c =

1 1 1 0 1 0 0 0 0 1 1 1

Note that the ‘1’ is required as a third argument to specify that this is a nonsystematic

convolutional code and that the trellis is terminated with a tail.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 26 / 94

Convolutional Codes CML

Decoding a Convolutional Code in CML

>> help ViterbiDecode

ViterbiDecode performs soft-in/hard-out decoding for a convolutional code using the Viterbi algorithm

The calling syntax is:

[output_u] = ViterbiDecode(input_c, g_encoder, [code_type], [depth])

output_u = hard decisions on the data bits (0 or 1)

Required inputs:

input_c = LLR of the code bits (based on channel observations)

g_encoder = generator matrix for convolutional code

(If RSC, then feedback polynomial is first)

Optional inputs:

code_type = 0 for recursive systematic convolutional (RSC) code (default)

= 1 for non-systematic convolutional (NSC) code

= 2 for tail-biting NSC code

depth = wrap depth used for tail-biting decoding

default is 6 times the constraint length

Copyright (C) 2005-2008, Matthew C. Valenti

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 27 / 94

Convolutional Codes CML

Decoding a Convolutional Code in CML

>> s = 2*c-1; % BPSK modulate

>> variance = 1/2; % noise variance for Es/No = 0 dB or Eb/No = 3 dB

>> noise = sqrt(variance)*randn(size(s)); % generate noise

>> r = s + noise; % add noise to signal

>> [s’ r’]’ % compare transmitted and received signals

ans

1.0000 1.0000 1.0000 -1.0000 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000

-0.5349 0.9581 0.2854 -0.5655 1.3590 0.1967 -0.5819 -1.4551 -0.7311 0.2864 0.9862 0.9659

>> llr = 2*r/variance; % compute the LLR

>> dataout = ViterbiDecode(llr, g, 1) % pass through Viterbi decoder

dataout =

1 1 0 1

The ‘1’ is again required as a third argument to specify that this is a nonsystematic

convolutional code and that the trellis is terminated with a tail.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 28 / 94

Convolutional Codes Tailbiting Convolutional Codes

The Tailbiting Concept

The idea behind a tailbiting convolutional code is to equate the initial and
terminating states

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

The benefit is that there is no tail or fractional rate loss.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 29 / 94

Convolutional Codes Tailbiting Convolutional Codes

Encoding of Tailbiting Codes

Example u = [1101].

u

c(0)

c(1)

DD

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

Since the last two bits are 01, the final state is 10.

To encode, determine final state from the last m bits, then set the
initial state.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 30 / 94

Convolutional Codes Tailbiting Convolutional Codes

Encoding Using a Cyclic Prefix

To encode, copy the last m data bits to the beginning of the message.

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

0 1 1 1 0 1

The bits were used only to determine the initial state, so don’t transmit
the associated code bits.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 31 / 94

Convolutional Codes Tailbiting Convolutional Codes

Decoding of Tailbiting Codes

A tailbiting trellis can be visualized as a cylinder by connecting the
starting and ending states.

The Viterbi algorithm can be run on the cylinder.

In theory, the algorithm would have to run forever by cycling around
the cylinder.

In practice, it is sufficient to limit the cycling around the cylinder.

The wrap depth is the amount of trellis on the cylinder that is
traversed more than once.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 32 / 94

Convolutional Codes Tailbiting Convolutional Codes

Wrap Depth

Here, the wrap depth is ν = 3 trellis stages.

c = [01 10 00 10 01 10 00 10 01 10]

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

01

10

10

01

00

11

11

00

Expand trellis by 3 sections before and after code sequence

Append first 3 received pairs to end of sequence.

Prepend last 3 received pairs to start of sequence.

Assume all starting and ending states are equally likely.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 33 / 94

Convolutional Codes Tailbiting Convolutional Codes

Tailbiting Convolutional Code in CML

Setting the third argument of ConvEncode and ViterbiDecode to 2 indicates a tailbiting
NSC code.

>> g = [1 0 1

1 1 1]; % enter the generators

>> data = [1 1 0 1]; % enter the data sequence

>> c = ConvEncode(data, g, 2)

c =

1 0 0 1 1 0 0 0

>> s = 2*c-1; % BPSK modulate

>> variance = 1/2; % noise variance for Es/No = 0 dB or Eb/No = 3 dB

>> noise = sqrt(variance)*randn(size(s)); % generate noise

>> r = s + noise; % add noise to signal

>> [s’ r’]’ % compare transmitted and received signals

ans

1.0000 -1.0000 -1.0000 1.0000 1.0000 -1.0000 -1.0000 -1.0000

1.0000 -1.2248 -0.2257 -0.3251 1.3028 -0.3667 -0.4831 -0.5914

>> llr = 2*r/variance; % compute the LLR

>> dataout = ViterbiDecode(llr, g, 2, 6) % pass through Viterbi decoder

dataout =

1 1 0 1

The fourth argument to ViterbiDecode is the wrap depth (in multiples of ν).

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 34 / 94

Convolutional Codes Tailbiting Convolutional Codes

The 802.16e Standard Tailbiting CC

The generators are g(0) = [1111001] and g(1) = [1011011]

IEEE Std 802.16-2004 IEEE STANDARD FOR LOCAL AND METROPOLITAN AREA NETWORKS—PART 16:

590 Copyright © 2004 IEEE. All rights reserved.

8.4.9.2.1 Convolutional coding (CC)

Each FEC block is encoded by the binary convolutional encoder, which shall have native rate of 1/2, a
constraint length equal to K = 7, and shall use the following generator polynomials codes to derive its two
code bits:

(125)

The generator is depicted in Figure 255.

Table 318—Encoding Subchannel concatenation for different allocations and modulations

Modulation
and rate j

QPSK 1/2 j = 6

QPSK 3/4 j = 4

16-QAM 1/2 j = 3

16-QAM 3/4 j = 2

64-QAM 1/2 j = 2

64-QAM 2/3 j = 1

64-QAM 3/4 j = 1

G1 171OCT FOR X=

G2 133OCT FOR Y=

1 bit
delay

1 bit
delay

1 bit
delay

1 bit
delay

1 bit
delay

Data in 1 bit
delay

X output

Y output

Figure 255—Convolutional encoder of rate 1/2

Message length is 6 to 36 bytes, depending on mode of operation.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 35 / 94

Convolutional Codes Tailbiting Convolutional Codes

Puncturing

The data rate can be increased above 1/2 by puncturing.

Puncturing: Periodically deleting code bits.

At the decoder, insert an erasure in the place of the punctured bit.

For soft-decision decoding, an erasure is λi = 0.

AIR INTERFACE FOR FIXED BROADBAND WIRELESS ACCESS SYSTEMS IEEE Std 802.16-2004

Copyright © 2004 IEEE. All rights reserved. 591

The puncturing patterns and serialization order that shall be used to realize different code rates are defined in
Table 319. In the table, “1” means a transmitted bit and “0” denotes a removed bit, whereas X and Y are in
reference to Figure 255.

Each FEC block is encoded by a tail-biting convolutional encoder, which is achieved by initializing the
encoders memory with the last data bits of the FEC block being encoded (the packet data bits numbered bn-

5...bn).

Table 320 defines the basic sizes of the useful data payloads to be encoded in relation with the selected
modulation type and encoding rate and concatenation rule.

8.4.9.2.2 Block Turbo Coding (optional)

The BTC is based on the product of two simple component codes, which are binary extended Hamming
codes or parity check codes from the set depicted in Table 321.

Table 319—The inner convolutional code with puncturing configuration

Code Rates

Rate 1/2 2/3 3/4 5/6

dfree 10 6 5 4

X 1 10 101 10101

Y 1 11 110 11010

XY X1Y1 X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

Table 320—Useful data payload for a subchannel

QPSK 16 QAM 64 QAM

Encoding rate R=1/2 R=3/4 R=1/2 R=3/4 R=1/2 R=2/3 R=3/4

Data payload
(bytes)

6

9

12 12

18 18 18 18

24 24 24

27 27

30

36 36 36 36 36

In the above table, ‘1’ means transmit and ‘0’ means delete.
Puncturing is implemented in CML with the Puncture and Depuncture
functions.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 36 / 94

Convolutional Codes Tailbiting Convolutional Codes

Payload Sizes

Depending on the modulation and rate, different size payloads may be
accommodated.

AIR INTERFACE FOR FIXED BROADBAND WIRELESS ACCESS SYSTEMS IEEE Std 802.16-2004

Copyright © 2004 IEEE. All rights reserved. 591

The puncturing patterns and serialization order that shall be used to realize different code rates are defined in
Table 319. In the table, “1” means a transmitted bit and “0” denotes a removed bit, whereas X and Y are in
reference to Figure 255.

Each FEC block is encoded by a tail-biting convolutional encoder, which is achieved by initializing the
encoders memory with the last data bits of the FEC block being encoded (the packet data bits numbered bn-

5...bn).

Table 320 defines the basic sizes of the useful data payloads to be encoded in relation with the selected
modulation type and encoding rate and concatenation rule.

8.4.9.2.2 Block Turbo Coding (optional)

The BTC is based on the product of two simple component codes, which are binary extended Hamming
codes or parity check codes from the set depicted in Table 321.

Table 319—The inner convolutional code with puncturing configuration

Code Rates

Rate 1/2 2/3 3/4 5/6

dfree 10 6 5 4

X 1 10 101 10101

Y 1 11 110 11010

XY X1Y1 X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

Table 320—Useful data payload for a subchannel

QPSK 16 QAM 64 QAM

Encoding rate R=1/2 R=3/4 R=1/2 R=3/4 R=1/2 R=2/3 R=3/4

Data payload
(bytes)

6

9

12 12

18 18 18 18

24 24 24

27 27

30

36 36 36 36 36

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 37 / 94

Convolutional Codes Tailbiting Convolutional Codes

Influence of Wrap Depth (QPSK, r=1/2, 6 byte payload)

Deepthi Ancha Chapter 5. Results and Conclusion 33

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
E

R
Rate 1/2, QPSK, 6 Bytes, depth 0
Rate 1/2, QPSK, 6 Bytes, depth 1

Rate 1/2, QPSK, 6 Bytes, depth 2

Rate 1/2, QPSK, 6 Bytes, depth 3

Rate 1/2, QPSK, 6 Bytes, depth 4
Rate 1/2, QPSK, 6 Bytes, depth 5

Rate 1/2, QPSK, 6 Bytes, depth 6

Rate 1/2, QPSK, 6 Bytes, depth 7
Rate 1/2, QPSK, 6 Bytes, depth 8

Figure 5.2: Bit Error Rate of QPSK for varying depths

CmlPlot(’TailbitingScenarios’, 1:9)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 38 / 94

Convolutional Codes Tailbiting Convolutional Codes

Performance with QPSK (wrap depth 6ν)

Deepthi Ancha Chapter 5. Results and Conclusion 35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
E

R
Rate 1/2, QPSK, 12 Bytes, depth 6

Rate 1/2, QPSK, 18 Bytes, depth 6

Rate 1/2, QPSK, 24 Bytes, depth 6
Rate 1/2, QPSK, 30 Bytes, depth 6

Rate 1/2, QPSK, 36 Bytes, depth 6

Figure 5.4: Bit Error Rate of QPSK for varying frame size

CmlPlot(’TailbitingScenarios’, 10:14)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 39 / 94

Convolutional Codes Tailbiting Convolutional Codes

Performance with QAM (wrap depth 6ν)

Deepthi Ancha Chapter 5. Results and Conclusion 37

0 2 4 6 8 10 12 14
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
E

R
Rate 1/2, 16-QAM, 12 Bytes, depth 6
Rate 1/2, 16-QAM, 24 Bytes, depth 6

Rate 1/2, 16-QAM, 36 Bytes, depth 6

Rate 1/2, 64-QAM, 18 Bytes, depth 6

Rate 1/2, 64-QAM, 36 Bytes, depth 6
Rate 2/3, 64-QAM, 24 Bytes, depth 6

Figure 5.6: Bit Error Rate of QAM for varying frame size

CmlPlot(’TailbitingScenarios’, 15:20)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 40 / 94

Convolutional Codes RSC Codes

RSC Codes

Turbo codes use recursive systematic convolutional (RSC) codes.

An RSC may be constructed from a standard convolutional encoder
by feeding back one of the outputs.

u

D D

c(0)

c(1)

The feedback of one output allows one of the outputs to be the input,
hence it is systematic.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 41 / 94

Convolutional Codes RSC Codes

RSC Codes

Turbo codes use recursive systematic convolutional (RSC) codes.

An RSC may be constructed from a standard convolutional encoder
by feeding back one of the outputs.

u

c(0)

c(1)

D D

The feedback of one output allows one of the outputs to be the input,
hence it is systematic.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 41 / 94

Convolutional Codes RSC Codes

Trellis Termination for RSC Codes

The usual convention is to start and end in the all-zeros state. However,
this cannot necessarily be done with an all-zeros tail.

u

c(0)

c(1)

D D

Throwing the switch down after the k data bits have been encoded creates
a tail that will bring the encoder back into the all-zeros state.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 42 / 94

Convolutional Codes RSC Codes

Trellis Termination for RSC Codes

The usual convention is to start and end in the all-zeros state. However,
this cannot necessarily be done with an all-zeros tail.

u

c(0)

c(1)

D D

Throwing the switch down after the k data bits have been encoded creates
a tail that will bring the encoder back into the all-zeros state.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 42 / 94

Convolutional Codes RSC Codes

Trellis of an RSC code

The trellis is identical to that of an NSC code, except that some input
labels have been reversed.

S0

S3

S2

S1

0/00

1/1
1

1/
10

0/0
1

0/01

1/10

0/001/11

i = 0 i = 6i = 3i = 2i = 1 i = 4 i = 5

m = 2 tail bits

no longer all-zeros

must be calculated by the encoder

1/
10

1/
10

1/1
1

1/1
1

1/1
1

0/00 0/00 0/00 0/00 0/00

1/11

1/11

1/11

0/00

0/0
1 0/0

1
0/0

1

1/10 1/10

0/01

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 43 / 94

Convolutional Codes RSC Codes

RSC Codes in CML

Setting the third argument of ConvEncode and ViterbiDecode to 0
indicates an RSC code with terminated trellis.

>> g = [1 0 1

1 1 1]; % enter the generators

>> data = [1 1 0 1]; % enter the data sequence

>> c = ConvEncode(data, g, 0)

c =

1 1 1 0 0 1 1 0 1 1 0 0

>> s = 2*c-1; % BPSK modulate

>> variance = 1/2; % noise variance for Es/No = 0 dB or Eb/No = 3 dB

>> noise = sqrt(variance)*randn(size(s)); % generate noise

>> r = s + noise; % add noise to signal

>> [s’ r’]’ % compare transmitted and received signals

ans

1.0000 1.0000 1.0000 -1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000 -1.0000 -1.0000

0.7331 0.7908 -0.0431 -1.1655 -0.9162 1.2226 2.0207 -1.2482 1.4407 1.5650 -0.3347 -1.7015

>> llr = 2*r/variance; % compute the LLR

>> dataout = ViterbiDecode(llr, g, 0) % pass through Viterbi decoder

dataout =

1 1 0 1

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 44 / 94

Convolutional Codes Soft-output Decoding

SISO Decoding

The Viterbi algorithm provides a hard output.

With turbo codes, multiple decoders exchange soft information.

Therefore, turbo decoders require the ability to obtain soft outputs
from the constituent decoders.

SISO
Decoder

(ui)

(ci)

’(ui)

’(ci)

A soft-input, soft-output (SISO) decoder updates the LLR’s of the
code bits and/or message bits by using knowledge of the underlying
code structure.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 45 / 94

Convolutional Codes Soft-output Decoding

SISO Decoding Overview

The SISO Decoder has three main steps:

Forward sweep through trellis.

Backward sweep through trellis.

Update LLR.

Because there are two sweeps, complexity is roughly twice that of Viterbi.

The algorithm has several names:

BCJR.

MAP.

APP.

log-MAP.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 46 / 94

Convolutional Codes Soft-output Decoding

Forward Sweep

i,k

10

i

j

k

j,k

Sweep through the trellis, just as in the Viterbi algorithm.

Instead of the ACS operation at each node, use:

αk = max ∗ [(αi + γi,k) , (αj + γj,k)]

Where

max ∗[x, y] = log(ex + ey)

= max[x, y] + log
(

1 + e−|y−x|
)

︸ ︷︷ ︸
fc(|y−x|)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 47 / 94

Convolutional Codes Soft-output Decoding

The max-log-MAP algorithm

Note that

max ∗[x, y] = max[x, y] + fc (|y − x|)

may be approximated by

max ∗[x, y] ≈ max[x, y]

If this approximation is used, the algorithm is called the max-log-MAP
algorithm.

The forward sweep is identical to the Viterbi algorithm.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 48 / 94

Convolutional Codes Soft-output Decoding

The max-star Operator

0 1 2 3 4 5 6 7 8 9 1 0

- 0 . 1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

The Correction Function

Constant-log-MAP

log-MAP

|y-x|

f c(
|y

-x
|)

dec_type option in SisoDecode

=0 For linear-log-MAP (DEFAULT)

= 1 For max-log-MAP algorithm

= 2 For Constant-log-MAP algorithm

= 3 For log-MAP, correction factor from

 small nonuniform table and interpolation

= 4 For log-MAP, correction factor

 uses C function calls

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 49 / 94

Convolutional Codes Soft-output Decoding

Reverse Sweep

k,i

10k,j

k i

j

Starting from the end of the trellis, sweep backwards to the start of
the trellis.

At each node, compute a metric

βk = max ∗ [(βi + γk,i) , (βj + γk,j)]

If the trellis is terminated with a tail, the initial conditions are:

β0 = 0
βi = −∞, i > 0

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 50 / 94

Convolutional Codes Soft-output Decoding

Updating the LLR’s

The log-likelihood of branch i→ j is

Λ(i→ j) = αi + γi,j + βj

The log-likelihood that a message bit u is a 1

max∗
i→j:u=1

{Λ(i→ j)}

The log-likelihood that a message bit u is a 0

max∗
i→j:u=0

{Λ(i→ j)}

3,3

3,2

2,4

0,0

0,1

2,0

3

2

1

0

3

2

1

0

The output LLR is

λ′(u) = max∗
i→j:u=1

{Λ(i→ j)} − max∗
i→j:u=0

{Λ(i→ j)}

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 51 / 94

Convolutional Codes Soft-output Decoding

SISO Decoding in CML

Use SisoDecode instead of ViterbiDecode.

>> help SisoDecode

SisoDecode performs soft-in/soft-out decoding of a convolutional code.

The calling syntax is:

[output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, [code_type], [dec_type])

output_u = LLR of the data bits

output_c = LLR of the code bits

Required inputs:

input_u = APP of the data bits

input_c = APP of the code bits

g_encoder = generator matrix for convolutional code

(If RSC, then feedback polynomial is first)

Optional inputs:

code_type = 0 for RSC outer code (default)

= 1 for NSC outer code

dec_type = the decoder type:

= 0 For linear approximation to log-MAP (DEFAULT)

= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y))

= 2 For Constant-log-MAP algorithm

= 3 For log-MAP, correction factor from small nonuniform table and interpolation

= 4 For log-MAP, correction factor uses C function calls (slow))

Copyright (C) 2005, Matthew C. Valenti

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 52 / 94

Convolutional Codes Soft-output Decoding

SISO Decoding in CML

>> code_type = 0; % RSC code, set to 1 for NSC code.

>> g = [1 0 1

1 1 1]; % enter the generators

>> data = [1 1 0 1]; % enter the data sequence

>> c = ConvEncode(data, g, code_type)

c =

1 1 1 0 0 1 1 0 1 1 0 0

>> s = 2*c-1; % BPSK modulate

>> variance = 1/2; % noise variance for Es/No = 0 dB or Eb/No = 3 dB

>> noise = sqrt(variance)*randn(size(s)); % generate noise

>> r = s + noise; % add noise to signal

>> llr = 2*r/variance; % compute the LLR

>> input_c = llr; % channel input

>> input_u = zeros(length(data)); % a priori information (used in turbo decoding)

>> dec_type = 4; % this is the most accurate (but slowest) decoder type

>> [output_u, output_c] = SisoDecode(input_u, input_c, g, code_type, dec_type);

>> output_u % now the output is soft

output_u =

18.4795 23.8975 -19.8492 22.1813

>> [output_u > 0] % hard decision on the bits

ans =

1 1 0 1

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 53 / 94

Turbo Codes

Outline

1 Overview of (Mobile) WiMAX

2 Convolutional Codes

3 Turbo Codes

4 Low-density Parity-check Codes

5 Conclusion

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 54 / 94

Turbo Codes Introduction

The Idea Behind Turbo Codes

A turbo code is created by concatenating two or more constituent
codes.

The constituent codes can be convolutional or block codes.
The encoder usually has some sort of interleaver to reorder the data at
the input of the different encoders.
At least one code should be recursive (e.g. RSC).

Decoding is iterative

There is a constituent decoder for each constituent code.
The constituent decoders are SISO.
The decoders exchange information after each iteration.
Iterations proceed until either data is correct or a maximum number of
iterations is reached.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 55 / 94

Turbo Codes Block Turbo Codes

Product Codes

AIR INTERFACE FOR FIXED BROADBAND WIRELESS ACCESS SYSTEMS IEEE Std 802.16-2004

Copyright © 2004 IEEE. All rights reserved. 593

Table 322 gives the block sizes for the optional modulation and coding schemes using BTC. Table 323 gives
the code parameters for each of the possible data and coded block sizes.

Table 322—Useful data payload for a subchannel

QPSK 16-QAM 64-QAM
Coded
BytesEncoding

Rate
R=1/2 R=3/4 R=1/2 R=3/4 R=1/2 R=3/4

Allowed
Data
(Bytes)

6 9 12

16 20 16 20 24

16 25 16 25 36

23 35 23 35 48

31 60

40 40 40 72

Table 323—Optional channel coding per modulation

Data
Bytes

Coded
Bytes Constituent Code

parameters

6 12 (8,7)(32,26) Ix=4, Iy=8, B=0, Q=6

9 12 (16,15)(16,15) Ix=6, Iy=6, B=4, Q=5

16 24 (8,7)(32,26) Ix=2, Iy=0, B=0, Q=2

20 24 (16,15)(16,15) Ix=2, Iy=2, B=4, Q=5

16 36 (32,26)(16,11) Ix=11, Iy=2, B=6, Q=7

Information Bits

Checks

Checks

Checks
on

Checks

kx

ky

nx

ny
Information Bits

Checks

Checks

Checks
on

Checks

kx

ky

nx

ny
QB

Figure 256—BTC and shortened BTC structure

Iy

Ix

Place data into ky by kx matrix.

Encode each row by a (nx, kx) systematic code.

Encode each column by a (ny, ky) systematic code.

Transmit the nxny code bits.

The BTC specified by IEEEE 802.16e is a product code.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 56 / 94

Turbo Codes Block Turbo Codes

Cyclic Codes

Block Turbo Codes use systematic cyclic codes.

A code is cyclic if a cyclic shift of any codeword produces another
valid codeword.

Like convolutional codes, cyclic codes are produced by performing the
discrete-time convolution of the message with a generator.

Cyclic codes are specified by a degree m generator polynomial.

Cyclic codes used in 802.16
Hamming, n = 2m − 1.
Single parity check (SPC), g(X) = 1 +X and n = anything.
Extended Hamming: g(X) = gHamming(X)gSPC(X) and n = 2m.

k = n−m.

Example Hamming code.
g(X) = 1 +X +X3.
g = [1101].
m = 3, n = 2m − 1 = 7, k = n−m = 4.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 57 / 94

Turbo Codes Block Turbo Codes

Encoding Cyclic Codes

Convolving the length k message with the length ν = m+ 1
generator results in a length n = k + ν − 1 = k +m codeword.

The codeword may be generated using a rate-1 convolutional encoder.

The trellis must be terminated with a tail of m zeros.

u

c

D D D

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 58 / 94

Turbo Codes Block Turbo Codes

State Diagram of a Cyclic Code

010

001

100

000

1/1

0/1

0/0

1/0

011

110

111

1/0

0/0

1/1

0/1101

1/0

0/1

0/0

1/1

0/0

0/1

1/1

1/0

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 59 / 94

Turbo Codes Block Turbo Codes

Systematic Cyclic Codes

BTC use systematic cyclic codes.

Just like an RSC, the code can be made systematic by feeding the
output back to the input.

As with an RSC, the trellis is terminated by a tail of m bits, not
necessarily zeros.

u

c

D D D

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 60 / 94

Turbo Codes Block Turbo Codes

Systematic Cyclic Codes

BTC use systematic cyclic codes.

Just like an RSC, the code can be made systematic by feeding the
output back to the input.

As with an RSC, the trellis is terminated by a tail of m bits, not
necessarily zeros.

c

D D D

u

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 60 / 94

Turbo Codes Block Turbo Codes

State Diagram of a Systematic Cyclic Code

010

001

100

000

1/1

1/1

0/0

0/0

011

110

111

0/0

0/0

1/1

1/1101

0/0

1/1

0/0

1/1

0/0

1/1

1/1

0/0

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 61 / 94

Turbo Codes Block Turbo Codes

Encoder Block Diagram

Outer
(Row)

Encoder

Block
Interleaver

 Inner
(Column)
Encoder

 u
o

c
i

 u
ic

o

The outer encoder produces ky row codewords.

Each row codeword written into the rows of the block interleaver.

Information read from each column of the block interleaver.

The inner encoder produces nx column codewords.

The column codewords are transmitted over the channel.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 62 / 94

Turbo Codes Block Turbo Codes

Decoder Block Diagram

Outer
(Row)

Encoder

Block
Interleaver

 Inner
(Column)
Encoder

 u
o

c
i

 u
ic

o

Initially, pass soft outputs from outer decoder to inner decoder.

The deinterleaver reverses the action of the interleaver.

Make a hard decision on λ′(uo).

If data is incorrect, feed back soft-info from inner to outer decoder.

To prevent positive feedback, subtract input from output so that it is
actually extrinsic information that gets fed back.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 63 / 94

Turbo Codes Block Turbo Codes

Decoder Block Diagram

Outer
Siso

Decoder
Deinterl.

 Inner
Siso

Decoder (c
i
)

’(u
o
)

(c
0
)

’(u
i
)

Initially, pass soft outputs from outer decoder to inner decoder.

The deinterleaver reverses the action of the interleaver.

Make a hard decision on λ′(uo).

If data is incorrect, feed back soft-info from inner to outer decoder.

To prevent positive feedback, subtract input from output so that it is
actually extrinsic information that gets fed back.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 63 / 94

Turbo Codes Block Turbo Codes

Decoder Block Diagram

Outer
Siso

Decoder
Deinterl.

 Inner
Siso

Decoder (c
i
)

’(u
o
)

(c
0
)

’(u
i
) (u

i
)

’(c
0
)

Interl.

Initially, pass soft outputs from outer decoder to inner decoder.

The deinterleaver reverses the action of the interleaver.

Make a hard decision on λ′(uo).

If data is incorrect, feed back soft-info from inner to outer decoder.

To prevent positive feedback, subtract input from output so that it is
actually extrinsic information that gets fed back.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 63 / 94

Turbo Codes Block Turbo Codes

Decoder Block Diagram

Outer
Siso

Decoder
Deinterl.

 Inner
Siso

Decoder (c
i
)

’(u
o
)

(c
0
)

’(u
i
)

(u
i
)

’(c
0
)

Interl.

Initially, pass soft outputs from outer decoder to inner decoder.

The deinterleaver reverses the action of the interleaver.

Make a hard decision on λ′(uo).

If data is incorrect, feed back soft-info from inner to outer decoder.

To prevent positive feedback, subtract input from output so that it is
actually extrinsic information that gets fed back.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 63 / 94

Turbo Codes Block Turbo Codes

Constituent Codes Used by 802.16e

The constituent block codes may be generated using the following
polynomials:

Generator polynomial Generator vector Shorthand

1 +X [11] g1
1 +X2 +X4 +X5 [101011] g5

1 +X +X2 +X3 +X5 +X6 [1111011] g6
1 +X2 +X6 +X7 [10100011] g7

Generator 1 +X is a single-parity check (SPC) code.

The other three generators are extended Hamming codes.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 64 / 94

Turbo Codes Block Turbo Codes

Shortened Block Structure

Instead of a standard product code structure, the following structure is
used to match the codeword size to the OFDM symbol size:

AIR INTERFACE FOR FIXED BROADBAND WIRELESS ACCESS SYSTEMS IEEE Std 802.16-2004

Copyright © 2004 IEEE. All rights reserved. 593

Table 322 gives the block sizes for the optional modulation and coding schemes using BTC. Table 323 gives
the code parameters for each of the possible data and coded block sizes.

Table 322—Useful data payload for a subchannel

QPSK 16-QAM 64-QAM
Coded
BytesEncoding

Rate
R=1/2 R=3/4 R=1/2 R=3/4 R=1/2 R=3/4

Allowed
Data
(Bytes)

6 9 12

16 20 16 20 24

16 25 16 25 36

23 35 23 35 48

31 60

40 40 40 72

Table 323—Optional channel coding per modulation

Data
Bytes

Coded
Bytes Constituent Code

parameters

6 12 (8,7)(32,26) Ix=4, Iy=8, B=0, Q=6

9 12 (16,15)(16,15) Ix=6, Iy=6, B=4, Q=5

16 24 (8,7)(32,26) Ix=2, Iy=0, B=0, Q=2

20 24 (16,15)(16,15) Ix=2, Iy=2, B=4, Q=5

16 36 (32,26)(16,11) Ix=11, Iy=2, B=6, Q=7

Information Bits

Checks

Checks

Checks
on

Checks

kx

ky

nx

ny
Information Bits

Checks

Checks

Checks
on

Checks

kx

ky

nx

ny
QB

Figure 256—BTC and shortened BTC structure

Iy

Ix

Data size is
(ky − Iy)(kx − Ix)− (B +Q) bits.

Pre-pad input with (B +Q) zeros.

Delete the B zeros prior to
transmission.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 65 / 94

Turbo Codes Block Turbo Codes

BTC Encoder

>> help BtcEncode

BTCEncode encodes a data sequence using a block turbo encoder.

The calling syntax is:

codeword = BtcEncode(data, grows, gcols, k_per_row, k_per_col, B, Q)

codeword = the codeword generated by the encoder,

data = the row vector of data bits

grows = the generator used to encode the rows

gcols = the generator used to encode the columns

k_per_row = number of data bits per row

k_per_col = number of data bits per column

B = number of zeros padded before data but not transmitted

Q = number of zeros padded before data and transmitted

Copyright (C) 2008, Matthew C. Valenti and Sushma Mamidipaka

k per row = kx − Ix.

k per col = ky − Iy.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 66 / 94

Turbo Codes Block Turbo Codes

BTC Parameters

Code bytes Data bytes grows gcols k per row k per col B Q

12 6 g1 g6 3 18 0 6
12 9 g1 g1 9 9 4 5
24 12 g1 g5 17 6 6 0
24 20 g1 g1 13 13 4 5
36 18 g1 g5 26 6 9 3
36 25 g1 g7 5 41 0 5
48 23 g6 g5 22 9 8 6
48 35 g6 g1 26 11 0 6
60 31 g6 g6 16 16 4 4
72 40 g6 g6 18 18 0 4

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 67 / 94

Turbo Codes Block Turbo Codes

BTC Decoder

>> help BtcDecode

BTCEncode decodes a block turbo code

The calling syntax is:

[detected_data, errors] = BTCDecode(symbol_likelihood, data, grows, gcols, k_per_row, ...

k_per_col, B, Q, max_iterations, decoder_type)

detected_data = a row vector containing hard decisions on the detected data

errors = a column vector containing the number of errors per iteration

symbol_likelihood = the decoder input, in the form of bit LLRs

data = the row vector of data bits (used to count errors and for early halting of iterative decoding)

grows = the generator used to encode the rows

gcols = the generator used to encode the columns

k_per_row = number of data bits per row

k_per_col = number of data bits per column

B = number of zeros padded before data but not transmitted

Q = number of zeros padded before data and transmitted

max_iterations = the number of turbo iterations

decoder_type = the decoder type

= 0 For linear-log-MAP algorithm, i.e. correction function is a straght line.

= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y)), i.e. correction function = 0.

= 2 For Constant-log-MAP algorithm, i.e. correction function is a constant.

= 3 For log-MAP, correction factor from small nonuniform table and interpolation.

= 4 For log-MAP, correction factor uses C function calls.

Copyright (C) 2008, Matthew C. Valenti and Sushma Mamidipaka

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 68 / 94

Turbo Codes Block Turbo Codes

BTC in CML

Code bytes Data bytes grows gcols k per row k per col B Q

36 18 g1 g5 26 6 9 3

>> grows = [1 1];

>> gcols = [1 0 1 0 1 1];

>> k_per_row = 26;

>> k_per_col = 6;

>> B=9;

>> Q=3;

>> data = round(rand(1,144)); % 18 data bytes

>> c = BtcEncode(data, grows, gcols, k_per_row, k_per_col, B, Q);

>> s = 2*c-1;

>> variance = 1;

>> noise = sqrt(variance)*randn(size(c));

>> r = s + noise;

>> llr = 2*r/variance;

>> [out,errors] = BtcDecode(llr, data, grows, gcols, k_per_row, k_per_col, B, Q, 6, 4);

>> errors

errors =

2

2

2

1

0

0

After the fifth iteration, the data is correct.
M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 69 / 94

Turbo Codes Block Turbo Codes

Influence of the Number of Iterations

Sushma Mamidipaka Chapter 5. Results and Conclusion 30

Student Version of MATLAB

Figure 5.4: BER vs. Eb/No for Rayleigh fading channel with max-log-MAP decoding

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
E
R

(72,40) BTC in AWGN, log-MAP

Student Version of MATLAB

Figure 5.5: BER vs. Eb/No for AWGN channel with log-MAP decoding for each of the ten
iterations

CmlPlot(’BtcScenarios’, 10)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 70 / 94

Turbo Codes Block Turbo Codes

Performance of BTC in AWGN

Sushma Mamidipaka Chapter 5. Results and Conclusion 28

0 1 2 3 4 5 6 7 8
10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
E
R

(12,6) BTC in AWGN, log-MAP

(12,9) BTC in AWGN, log-MAP

(24,12) BTC in AWGN, log-MAP

(24,20) BTC in AWGN, log-MAP

(36,18) BTC in AWGN, log-MAP

(36,25) BTC in AWGN, log-MAP

(48,23) BTC in AWGN, log-MAP

(48,35) BTC in AWGN, log-MAP

(60,31) BTC in AWGN, log-MAP

(72,40) BTC in AWGN, log-MAP

Student Version of MATLAB

Figure 5.1: BER vs. Eb/No for AWGN channel with log-MAP decoding

The BER vs Eb/No curve in fig. 5.5 shows the performance of the (72,40) block code for each

of the ten iterations over AWGN channel with log-MAP decoding. The rightmost curve is

the performance after the first iteration, while the leftmost curve is the performance after

the tenth iteration.

The performance of BTCs depends on the code rate, code length, channel type and the

decoding algorithm used. The performance is better when the code rate is lower or if the code

length is longer. For a fixed channel (AWGN or Rayleigh fading channel), BTCs perform

better with log-MAP decoding algorithm compared to max-log-MAP decoding method. The

performance of block turbo codes over an AWGN channel is better when compared to the

performance over a Rayleigh fading channel for both the decoding algorithms.

5.2 Conclusion

Block turbo codes when coupled with iterative soft-decision decoding can achieve near

Shannon limit error correction performance. Implementation of the block turbo code encoder

CmlPlot(’BtcScenarios’, 1:10)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 71 / 94

Turbo Codes Convolutional Turbo Codes

Serially Concatenated Codes

Outer
(Row)

Encoder

Block
Interleaver

 Inner
(Column)
Encoder

 u
o

c
i

 u
ic

o

Inner and outer codes need not be cyclic codes.

For instance, they could be convolutional codes.

Instead of one codeword per row or column, the inner and outer
encoders could each produce one long codeword.

The interleaver need not be a block interleaver.

Instead, a pseudo-random interleaver could be used.

The decoder is identical to the one shown earlier.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 72 / 94

Turbo Codes Convolutional Turbo Codes

Serially Concatenated Codes

Outer

Encoder
Interleaver

 Inner

Encoder

 u
o

c
i

 u
ic

o

Inner and outer codes need not be cyclic codes.

For instance, they could be convolutional codes.

Instead of one codeword per row or column, the inner and outer
encoders could each produce one long codeword.

The interleaver need not be a block interleaver.

Instead, a pseudo-random interleaver could be used.

The decoder is identical to the one shown earlier.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 72 / 94

Turbo Codes Convolutional Turbo Codes

Parallel Concatenated Codes

AIR INTERFACE FOR FIXED BROADBAND WIRELESS ACCESS SYSTEMS IEEE Std 802.16-2004

Copyright © 2004 IEEE. All rights reserved. 593

Table 322 gives the block sizes for the optional modulation and coding schemes using BTC. Table 323 gives
the code parameters for each of the possible data and coded block sizes.

Table 322—Useful data payload for a subchannel

QPSK 16-QAM 64-QAM
Coded
BytesEncoding

Rate
R=1/2 R=3/4 R=1/2 R=3/4 R=1/2 R=3/4

Allowed
Data
(Bytes)

6 9 12

16 20 16 20 24

16 25 16 25 36

23 35 23 35 48

31 60

40 40 40 72

Table 323—Optional channel coding per modulation

Data
Bytes

Coded
Bytes Constituent Code

parameters

6 12 (8,7)(32,26) Ix=4, Iy=8, B=0, Q=6

9 12 (16,15)(16,15) Ix=6, Iy=6, B=4, Q=5

16 24 (8,7)(32,26) Ix=2, Iy=0, B=0, Q=2

20 24 (16,15)(16,15) Ix=2, Iy=2, B=4, Q=5

16 36 (32,26)(16,11) Ix=11, Iy=2, B=6, Q=7

Information Bits

Checks

Checks

Checks
on

Checks

kx

ky

nx

ny
Information Bits

Checks

Checks

Checks
on

Checks

kx

ky

nx

ny
QB

Figure 256—BTC and shortened BTC structure

Iy

Ix

Upper
Encoder

 u
u c

u

Lower
Encoder

Interl.
c

l u
l

 u

Combine
c

If the double-parity (checks on checks) component is punctured, then
encoding could be done in parallel.

Convolutional turbo codes are parallel concatenated codes with
convolutional constituent codes.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 73 / 94

Turbo Codes Convolutional Turbo Codes

CTC Decoder

The serial decoder could be used by setting λ(c) = 0 in the positions
of the double-parity bits.

A more efficient alternative is as follows:

Upper
Decoder

Lower
Decoder

Deinterl.

Separate
(c)

Interl.

(cl)(cu)

(uu)

(ul)

’(ul)’(ul)

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 74 / 94

Turbo Codes Convolutional Turbo Codes

CTC Encoder Used by 802.16e

The CTC specified in IEEE 802.16e uses the following constituent encoder:AIR INTERFACE FOR FIXED BROADBAND WIRELESS ACCESS SYSTEMS IEEE Std 802.16-2004

Copyright © 2004 IEEE. All rights reserved. 595

First, the encoder (after initialization by the circulation state Sc1, see 8.4.9.2.3.3) is fed the sequence in the
natural order (position 1) with the incremental address i = 0 .. N–1. This first encoding is called C1 encoding.
Then the encoder (after initialization by the circulation state Sc2, see 8.4.9.2.3.3) is fed by the interleaved
sequence (switch in position 2) with incremental address j = 0, … N–1. This second encoding is called C2
encoding.

The order in which the encoded bit shall be fed into the subpacket generation block (8.4.9.2.3.4) is:

A, B, Y1, Y2, W1, W2 =

A0, B0,…, AN-1, BN-1, Y1,0, Y1,1,…, Y1,N-1, Y2,0, Y2,1,…, Y2,N-1, W1,0, W1,1,…, W1,N-1, W2,0, W2,1,…, W2,N-1

Note that the interleaver (8.4.9.3) shall not be used when using CTC.

The encoding block size shall depend on the number of subchannels allocated and the modulation specified
for the current transmission. Concatenation of a number of subchannels shall be performed in order to make
larger blocks of coding where it is possible, with the limitation of not passing the largest block under the
same coding rate (the block defined by 64-QAM modulation). Table 325 specifies the concatenation of sub-
channels for different allocations and modulations. The concatenation rule shall not be used when using
H-ARQ.

For any modulation and FEC rate, given an allocation of n subchannels, the following parameters are
defined:

j parameter dependent on the modulation and FEC rate
n number of allocated subchannels
k = floor(n/j)
m = n mod j

CTC
Interleaver 2

1 Constituent
encoder

A

B

C1

C2

Y1W1

Y2W2

+ S1 + S2 + S3

Parity part

Constituent encoder

Figure 257—CTC encoder

switch
Systematic part

+

+

A

B

Key features:

The code is duo-binary
(rate 2/4).

Tailbiting is used to force
starting and ending states to
be the same.

Encoder operation:

With switch up, encode the
data in its natural order.

Throw switch down and
encode the interleaved data.

Puncturing can be used to
increase rate above 1/2.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 75 / 94

Turbo Codes Convolutional Turbo Codes

CTC parameters

QPSK

Rate 1/2 with data block size: 6, 12, 18, 24, 30, 36, 48, 54, 60 bytes

Rate 3/4 with data block size: 9, 18, 27, 36, 45, 54 bytes

16-QAM

Rate 1/2 with data block size: 12, 24, 36, 48, 60 bytes

Rate 3/4 with data block size: 18, 36, 54 bytes

64-QAM

Rate 1/2 with data block size: 36, 54 bytes

Rate 2/3 with data block size: 24, 48 bytes

Rate 3/4 with data block size: 27, 54 bytes

Rate 5/6 with data block size: 30, 60 bytes

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 76 / 94

Turbo Codes Convolutional Turbo Codes

Preliminaries: Creating the Interleaver

>> help CreateWimaxInterleaver

CreateWimaxInterleaver intializes an interleaver for use with the duobinary

tailbiting turbo code (CTC) from the mobile WiMAX (IEEE 802.16e) standard.

The calling syntax is:

code_interleaver = CreateWimaxInterleaver(Nbits)

code_interleaver = a structure with the following members

code_interleaver.subblk_intl = subblock bit-wise interleaver, 1 by Nbits/2 vector

code_interleaver.info_intl = information interleaver over GF(2),

a row vector of length Nbits.

Nbits = number of bits (i.e. twice the number of couples)

valid range = {24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920 2400}

Copyright (C) 2007, Matthew C. Valenti and Shi Cheng

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 77 / 94

Turbo Codes Convolutional Turbo Codes

Preliminaries: Creating the Puncturing Pattern

>> help CreateWimaxPuncturingPattern

CreateWimaxPuncturingPattern creates the puncturing pattern for use with the duobinary

tailbiting turbo code (CTC) from the mobile WiMAX (IEEE 802.16e) standard.

The calling syntax is:

pun_pattern = CreateWimaxPuncturingPattern(Nbits_pun, Nbits_unpun)

pun_pattern = the puncturing pattern (length Nbits_pun vector)

Nbits_pun = the number of bits after puncturing

Nbits_unpun = the number of bits prior to puncturing (not used)

Copyright (C) 2007, Matthew C. Valenti and Shi Cheng

Last updated on Oct. 12, 2007

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 78 / 94

Turbo Codes Convolutional Turbo Codes

CTC Encoder

>> help TurboDuobinaryCRSCEncode

TurboDuobinaryCRSCEncode encodes a data sequence using a duobinary tailbiting

turbo encoder.

The calling syntax is:

codeword = TurboDuobinaryCRSCEncode(data, code_interleaver, pun_pattern)

codeword = the codeword generated by the encoder (a row vector)

data = the row vector of data bits

code_interleaver = the turbo interleaver

pun_pattern = the puncturing pattern

Copyright (C) 2007, Matthew C. Valenti and Shi Cheng

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 79 / 94

Turbo Codes Convolutional Turbo Codes

CTC Decoder

>> help TurboDuobinaryCRSCDecode

TurboDuobinaryCRSCDecode deccodes a data sequence that was encoded by a

duobinary tailbiting turbo encoder.

The calling syntax is:

[detected_data, errors] = TurboDuobinaryCRSCDecode(llr, code_interleaver, pun_pattern, data, ...

max_iterations, decoder_type)

detected_data = a row vector containing the detected data

errors = a column vector containing the number of errors per

iteration for all the codewords.

llr = received LLR of the code bits.

code_interleaver = the turbo interleaver

pun_pattern = the puncturing pattern

data = the row vector of data bits (for early halting)

max_iterations = maximum number of decoder iterations

decoder_type = the decoder type

= 0 For linear-log-MAP algorithm, i.e. correction function is a straght line.

= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y)), i.e. correction function = 0.

= 2 For Constant-log-MAP algorithm, i.e. correction function is a constant.

= 3 For log-MAP, correction factor from small nonuniform table and interpolation.

= 4 For log-MAP, correction factor uses C function calls.

Copyright (C) 2007, Matthew C. Valenti and Shi Cheng

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 80 / 94

Turbo Codes Convolutional Turbo Codes

CTC in CML

>> n = 768; % 96 code bytes

>> k = 384; % 48 data bytes

>> interl = CreateWimaxInterleaver(k); % Create the Interleaver

>> punc = CreateWimaxPuncturingPattern(n); % Create the Puncturing Pattern

>> Sqam = CreateConstellation(’QAM’, 16); % A 16-QAM constellation

>> data = round(rand(1,k)); % random data

>> codeword = TurboDuobinaryCRSCEncode(data, interl, punc); % encode

>> s = Modulate(codeword, Sqam); % 16-QAM modulator

>> EsNo = 10^(8/10); % Es/No = 8 dB

>> variance = 1/(2*EsNo);

>> noise = sqrt(variance)*(randn(size(s))+j*randn(size(s))); % 2-D (complex) noise

>> r = s + noise; % add noise

>> sym_likelihood = Demod2D(r, Sqam, EsNo); % 16-QAM demod ~ front end

>> llr = Somap(sym_likelihood); % back end of demod

>> [out, errors] = TurboDuobinaryCRSCDecode(llr, interl, punc, data, 8, 4);

>> errors

errors =

39

22

9

13

1

0

0

0

After the sixth iteration, the data is correct.

For simulation results, refer to the WiMaxCTCScenarios.m file.
M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 81 / 94

Low-density Parity-check Codes

Outline

1 Overview of (Mobile) WiMAX

2 Convolutional Codes

3 Turbo Codes

4 Low-density Parity-check Codes

5 Conclusion

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 82 / 94

Low-density Parity-check Codes Parity-check Matrices

Parity-check Matrices.

Let H be a rank m = n− k matrix such that for every c ∈ C

cHT = 0

A given C may be represented by more than one H.

H has n columns and (at least) m rows.

Example: Cyclic Hamming code with g(X) = 1 +X +X3

H =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


An equivalent parity check matrix:

H =

 1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1


M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 83 / 94

Low-density Parity-check Codes Decoding

Tanner Graphs and MP Decoding

H =

24 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

35
v-nodes

c-nodes

A Tanner graph is a graphical representation of H.

Each row of H is represented by a check node.

Each column of H is represented by a variable node.

Decoding is via a message passing (MP) algorithm.

Likelihoods passed back and forth between c-nodes and v-nodes.

Iterative process.

Sum-product or min-sum.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 84 / 94

Low-density Parity-check Codes LDPC Codes

LDPC Codes

H =

2666666666666666664

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

3777777777777777775

A low-density parity check code is a code that may be represented by
a sparse H matrix.

LDPC codes may be regular or irregular.

LDPC codes are iteratively decoded using a message-passing decoder.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 85 / 94

Low-density Parity-check Codes Encoding

LDPC Codes and Encoding

Encoding of LDPC codes is not necessarily straightforward.
“Systematic-form” H

Using Gaussian elimination, find H = [P I].
Then c = uG where G =

[
I PT

]
.

However, P is likely to be high-density (complex encoding).

Back-substitution.
If H is in an appropriate form, then c can be encoded using back
substitution
Example, cHT = 0, where

H =

24 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

35
For any LDPC code, it is possible to encode with an H matrix that
permits back-subsitution.

When this is done, a few rows will be high-density and therefore have
higher complexity
The high-density part of the encoding H is called the gap.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 86 / 94

Low-density Parity-check Codes The IEEE 802.16e standard LDPC Codes

The IEEE 802.16e standard LDPC Codes

Code rates:

r = 1/2, 2/3, 3/4, and 5/6
Block sizes:

72 to 288 code bytes.

Increments of 12 bytes for QPSK.

Increments of 24 bytes for 16-QAM

Increments of 36 bytes for 64-QAM.

H matrices specified in standard

H is made up of circulant submatrices.

Encoding via back-substitution with gap of n/24.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 87 / 94

Low-density Parity-check Codes LDPC in CML

Preliminaries: Creating the Parity-check Matrix

>> help InitializeWiMaxLDPC

InitializeWiMaxLDPC initializes the WiMax LDPC encoder/decoder

The calling syntax is:

[H_rows, H_cols, P] = InitializeWiMaxLDPC(rate, size, ind)

Where:

H_rows = a M-row matrix containing the indices of the non-zero rows of H

excluding the dual-diagonal portion of H.

H_cols = a (N-M)+z-row matrix containing the indices of the non-zeros rows of H.

P = a z times z matrix used in encoding

rate = the code rate

size = the size of the code (number of code bits):

= 576:96:2304

ind = Selects either code ’A’ or ’B’ for rates 2/3 and 3/4

= 0 for code rate type ’A’

= 1 for code rate type ’B’

= [empty array] for all other code rates

Copyright (C) 2007-2008, Rohit Iyer Seshadri and Matthew C. Valenti

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 88 / 94

Low-density Parity-check Codes LDPC in CML

LDPC Encoder

>> help LdpcEncode

LdpcEncode encodes an LDPC codeword. Code must be an "eIRA-LDPC" type code, such as the one

in the DVB-S2 standard, or WiMax standard.

The calling syntax is:

codeword = LdpcEncode(data, H_rows, [P])

Where:

codeword = the encoded codeword

data = a row vector containing the data

H_rows = a M-row matrix containing the indices of the non-zero rows of H

excluding the dual-diagonal portion of H.

P = (optional) z times z matrix used to generate the first z check bits

for WiMax (default =[])

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 89 / 94

Low-density Parity-check Codes LDPC in CML

LDPC Decoder

>> help MpDecode

MpDecode decodes a block code (e.g. LDPC) using the message passing algorithm.

The calling syntax is:

[output, errors] = MpDecode(input, H_rows, H_cols, [max_iter], [dec_type], ...

[r_scale_factor], [q_scale_factor], [data])

Outputs:

output = matrix of dimension maxiter by N that has the decoded code bits for each iteration

errors = (optional) column vector showing the number of (code bit) errors after each iteration.

Required inputs:

input = the decoder input in LLR form

H_cols = a N row matrix specifying the locations of the nonzero entries in each column of the H matrix.

The number or columns in the matrix is the max column weight.

OR

a K row matrix specifying locations of the nonzero entries in each coulmn

of an extended IRA type sparse H1 matrix

H_rows = a N-K row matrix specifying the locations of the nonzero entries in each row of the H matrix.

The number or columns in the matrix is the max row weight, unless this is for an H1 matrix,

in which case the last n-k columns of the H matrix are equal to a known H2 matrix.

Optional inputs:

max_iter = the maximum number of decoder iterations (default = 30).

dec_type = the decoder type:

= 0 Sum-product (default)

= 1 Min-sum

r_scale_factor = amount to scale extrinsic output of c-nodes in min-sum decoding (default = 1)

q_scale_factor = amount to scale extrinsic output of v-nodes in min-sum decoding (default = 1)

data = a vector containing the data bits (used for counting errors and for early halting)

(default all zeros)

Copyright (C) 2005-2007, Matthew C. Valenti and Rohit Iyer Seshadri
M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 90 / 94

Low-density Parity-check Codes LDPC in CML

LDPC in CML

>> n = 576; % number of code bits

>> rate = 1/2; % code rate

>> [H_rows, H_cols, P] = InitializeWiMaxLDPC(rate, n);

>> k = length(H_cols) - length(P); % number of data bits

>> Sqam = CreateConstellation(’QAM’, 16); % A 16-QAM constellation

>> data = round(rand(1,k)); % random data

>> codeword = LdpcEncode(data, H_rows, P); % encode

>> s = Modulate(codeword, Sqam); % 16-QAM modulator

>> EsNo = 10^(8/10); % Es/No = 8 dB

>> variance = 1/(2*EsNo);

>> noise = sqrt(variance)*(randn(size(s))+j*randn(size(s))); % 2-D (complex) noise

>> r = s + noise; % add noise

>> sym_likelihood = Demod2D(r, Sqam, EsNo); % 16-QAM demod ~ front end

>> llr = Somap(sym_likelihood); % back end of demod

>> [output, errors] = MpDecode(-llr, H_rows, H_cols, 20, 0, 1, 1, data);

>> errors

errors =

35

34

31 **

20 * For simulation results, *

23 * refer to the WiMaxLDPCScenarios.m file *

24 **

18

17

13

9

5

2

2

0 <-- After the 14th iteration, the data is correct

0

0
M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 91 / 94

Conclusion

Outline

1 Overview of (Mobile) WiMAX

2 Convolutional Codes

3 Turbo Codes

4 Low-density Parity-check Codes

5 Conclusion

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 92 / 94

Conclusion

Conclusion

IEEE 802.16e-2005 contains a wide variety of channel coding options.

The WiMAX profiles help to constrain the channel coding options.

Codeword lengths are small to moderate length, to match the size of
an OFDM symbol.

Use of tailbiting convolutional codes eliminates the overhead of a tail.

Turbo and LDPC codes offer near-capacity performance with iterative
decoding.

Implementations of all codes in the standard are freely available in
CML.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 93 / 94

Conclusion

Thank You.

M.C. Valenti (Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A.)Coding for WiMAX June 2009 94 / 94

	Overview of (Mobile) WiMAX
	WiMAX and IEEE 802.16
	Channel Coding

	Convolutional Codes
	Binary Linear Codes
	Convolutional Encoding
	Decoding
	CML
	Tailbiting Convolutional Codes
	RSC Codes
	Soft-output Decoding

	Turbo Codes
	 Introduction
	Block Turbo Codes
	Convolutional Turbo Codes

	Low-density Parity-check Codes
	Parity-check Matrices
	Decoding
	LDPC Codes
	Encoding
	The IEEE 802.16e standard LDPC Codes
	LDPC in CML

	Conclusion

