
1. INTRODUCTION

Due to their near Shannon-capacity performance,
turbo codes have received a considerable amount of at-
tention since their introduction [1]. They are particularly
attractive for cellular communication systems and have
been included in the specifications for both the WCDMA
(UMTS) and cdma2000 third-generation cellular stan-
dards. At this time, the reasons for the superior perform-
ance of turbo codes [2,3] and the associated decoding al-
gorithm [4,5] are, for the most part, understood. In
addition, several textbooks [6–8] and tutorial papers

[9–11] are now available to provide the interested reader
with an understanding of the theoretical underpinnings of
turbo codes.

The purpose of this paper is neither to explain the
phenomenal performance of turbo codes nor to rigor-
ously derive the decoding algorithm. Rather, the purpose
is to clearly explain an efficient decoding algorithm suit-
able for immediate implementation in a software radio
receiver. In order to provide a concrete example, the dis-
cussion is limited to the turbo code used by the Univer-
sal Mobile Telecommunications System (UMTS) speci-
fication, as standardized by the Third-Generation
Partnership Project (3GPP) [12]. The decoding algorithm
is based on the log-MAP algorithm [13], although many
parts of the algorithm have been simplified without any
loss in performance. In particular, the branch metrics
used in the proposed algorithm are much simpler to com-
pute, and the amount of storage is reduced by 12.5%
by an appropriate normalization process. Some critical
implementation issues are discussed, in particular the

The UMTS Turbo Code and an Efficient Decoder
Implementation Suitable for Software-Defined Radios

M. C. Valenti 1 and J. Sun

This paper provides a description of the turbo code used by the UMTS third-generation cellular
standard, as standardized by the Third-Generation Partnership Project (3GPP), and proposes an
efficient decoder suitable for insertion into software-defined radio architectures or for use in com-
puter simulations. Because the decoder is implemented in software, rather than hardware, single-
precision floating-point arithmetic is assumed and a variable number of decoder iterations is not
only possible but desirable. Three twists on the well-known log-MAP decoding algorithm are pro-
posed: (1) a linear approximation of the correction function used by the max* operator, which
reduces complexity with only a negligible loss in BER performance; (2) a method for normalizing
the backward recursion that yields a 12.5% savings in memory usage; and (3) a simple method for
halting the decoder iterations based only on the log-likelihood ratios.

KEY WORDS: Coding; turbo codes; WCDMA (UMTS); 3GPP; software-defined radio (SDR).

International Journal of Wireless Information Networks, Vol. 8, No. 4, October 2001 (© 2002)

203
1068-9605/01/1000-0203/0 © 2002 Plenum Publishing Corporation

Note: Portions of this paper were presented at the IEEE International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC),San Diego, California, Oct. 2001. This work was supported
by the Office of Naval Research under grant N00014-00-0655.
1 Lane Department of Computer Science and Electrical Engineering,

West Virginia University, Morgantown, West Virginia, USA 26506-
6109. Tel: (304) 293-0405, ext. 2508. Fax: (304) 293-8602. E-mail:
mvalenti@wvu.edu

computation of the max* operator and the dynamic halt-
ing of the decoder iterations. Simple, but effective, solu-
tions to both of these problems are proposed and illus-
trated through simulation.

In the description of the algorithm, we have assumed
that the reader has a working knowledge of the Viterbi
algorithm [14]. Information on the Viterbi algorithm can
be found in a tutorial paper by Forney [15] or in most
books on coding theory (e.g., [16]) and communications
theory (e.g., [17]).

We recommend that the decoder described in this
paper be implemented using single-precision floating-
point arithmetic on an architecture with approximately
200 kilobytes of memory available for use by the turbo
codec. Because mobile handsets tend to be memory lim-
ited and cannot tolerate the power inefficiencies of float-
ing-point arithmetic, this may limit the direct application
of the proposed algorithm to only base stations. Readers
interested in fixed-point implementation issues are re-
ferred to [18], while those interested in minimizing
memory usage should consider the sliding-windowalgo-
rithm described in [19] and [20].

The remainder of this paper is organized as follows:
Section 2 provides an overview of the UMTS turbo code,
and Section 3 discusses the channel model and how to
normalize the inputs to the decoder. The next three sec-
tions describe the decoder, with Section 4 describing the
algorithm at the highest hierarchical level, Section 5 dis-
cussing the so-called max* operator, and Section 6 de-
scribing the proposed log-domain implementation of the
MAP algorithm. Simulation results are given in Section
7 for two representative frame sizes (640 and 5114 bits)
in both additive white Gaussian noise (AWGN) and fully
interleaved Rayleigh flat-fading. Section 8 describes a
simple, but effective, method for halting the decoder
iterations early, and Section 9 concludes the paper.

2. THE UMTS TURBO CODE

As shown in Fig. 1, the UMTS turbo encoder is
composed of two constraint length 4 recursive system-
atic convolutional (RSC) encoders concatenated in par-
allel [12]. The feedforward generator is 15 and the feed-
back generator is 13, both in octal. The number of data
bits at the input of the turbo encoder is K, where 40 #
K # 5114. Data is encoded by the first (i.e., upper) en-
coder in its natural order and by the second (i.e., lower)
encoder after being interleaved. At first, the two
switches are in the up position.

The interleaver is a matrix with 5, 10, or 20 rows and
between 8 and 256 columns (inclusive), depending on the

size of the input word. Data is read into the interleaver in
a rowwise fashion (with the first data bit placed in the
upper-left position of the matrix). Intrarow permutations
are performed on each row of the matrix in accordance
with a rather complicated algorithm, which is fully de-
scribed in the specification [12]. Next, interrow permuta-
tions are performed to change the ordering of rows (with-
out changing the ordering of elements within, . . . , each
row). When there are 5 or 10 rows, the interrow permu-
tation is simply a reflection about the center row (e.g., for
the 5-row case, the rows {1, 2, 3, 4, 5} become rows {5,
4, 3, 2, 1}, respectively). When there are 20 rows, rows
{1, . . . , 20} become rows {20, 10, 15, 5, 1, 3, 6, 8, 13,
19, 17, 14, 18, 16, 4, 2, 7, 12, 9, 11}, respectively, when
the number of input bits satisfies either 2281 # K # 2480
or 3161 # K # 3210. Otherwise, they become rows {20,
10, 15, 5, 1, 3, 6, 8, 13, 19, 11, 9, 14, 18, 4, 2, 17, 7, 16,
12}, respectively. After the intrarow and interrow permu-
tations, data is read from the interleaver in a columnwise
fashion (with the first output bit being the one in the
upper-left position of the transformed matrix).

The data bits are transmitted together with the parity
bits generated by the two encoders (the systematic output
of the lower encoder is not used and thus not shown in
the diagram). Thus, the overall code rate of the encoder
is r 5 1/3, not including the tail bits (discussed below).
The first 3K output bits of the encoder are in the form:
X1, Z1, Z1*, X2, Z2, Z29, . . . , XK, ZK, ZK9, where Xk is the
kth systematic (i.e., data) bit, Zk is the parity output from
the upper (uninterleaved) encoder, and Zk9 is the parity
output from the lower (interleaved) encoder.

After the K data bits have been encoded, the trel-
lises of both encoders are forced back to the all-zeros
state by the proper selection of tail bits. Unlike conven-
tional convolutional codes, which can always be termi-
nated with a tail of zeros, the tail bits of an RSC will de-

204 Valenti and Sun

Fig. 1. UMTS turbo encoder.

pend on the state of the encoder. Because the states of the
two RSC encoders will usually be different after the data
has been encoded, the tails for each encoder must be sep-
arately calculated and transmitted. The tail bits are gen-
erated for each encoder by throwing the two switches
into the down position, thus causing the inputs to the two
encoders to be indicated by the dotted lines. The tail bits
are then transmitted at the end of the encoded frame ac-
cording to XK11, ZK11, XK12, ZK12, XK13, ZK13, XK911,
ZK911, XK912, ZK912, XK913, ZK913, where X represents the
tail bits of the upper encoder, Z represents the parity bits
corresponding to the upper encoder’s tail, X8 represents
the tail bits of the lower encoder, and Z8 represents the
parity bits corresponding to the lower encoder’s tail.
Thus, when tail bits are taken into account, the number
of coded bits is 3K 1 12, and the code rate is K/(3K 1
12).

3. CHANNEL MODEL

BPSK modulation is assumed, along with either
an AWGN or flat-fading channel. The output of the
receiver’s matched filter is Yk 5 akSk 1 nk, where Sk 5 2Xk

2 1 for the systematic bits, Sk 5 2Zk 2 1 for the upper en-
coder’s parity bits, Sk 5 2 Zk9 2 1 for the lower encoder’s
parity bits, ak is the channel gain (ak 5 1 for AWGN and
is a Rayleigh random variable for Rayleigh flat-fading), nk

is Gaussian noise with variance j2 5 1/(2Es/No) 5 (3K 1
12)/(2K(Eb/No)), Es is the energy per code bit, Eb is the en-
ergy per data bit, and No is the one-sided noise spectral
density.

The input to the decoder is assumed to be in log-
likelihood ratio (LLR) form, which assures that the chan-
nel gain and noise variance have been properly taken into
account. Thus, the input to the decoder is in the form

(1)

By applying Bayes rule and assuming that P[S5 11] 5
P[S 5 21]

(2)

where fY(Yk|Sk) is the conditional probability density
function (pdf) of Yk given Sk, which is Gaussian with
mean akSk and variance j2. Substituting the expression
for the Gaussian pdf and simplifying yields

(3)R a Yk
k

k5
2

2s

R
f Y S
f Y Sk
Y k k

Y k k

5
51

52
ln

()
()

u
u

1
1







R
P S Y
P S Yk

k k

k k

5
51

52
ln

[]
[]

1
1
u
u







The UMTS Turbo Code and an Efficient Decoder Implementation 205

Thus, the matched filter coefficients must be scaled by a
factor 2ak/j2 before being sent to the decoder. For the re-
mainder of the discussion, the notation R(Xk) denotes the
received LLR corresponding to systematic bit Xk, R(Zk)
denotes the received LLR for the upper parity bit Zk, and
R(Zk*) denotes the received LLR corresponding to the
lower parity bit Zk*.

4. DECODER ARCHITECTURE

The architecture of the decoder is as shown in
Fig. 2. As indicated by the presence of a feedback path,
the decoder operates in an iterative manner. Each full it-
eration consists of two half-iterations, one for each con-
stituent RSC code. The timing of the decoder is such that
RSC decoder #1 operates during the first half-iteration,
and RSC decoder #2 operates during the second half-
iteration. The operation of the RSC decoders is described
in Section 6.

The value w(Xk), 1 # k # K, is the extrinsic infor-
mation produced by decoder #2 and introduced to the
input of decoder #1. Prior to the first iteration, w(Xk) is
initialized to all zeros (since decoder #2 has not yet acted
on the data). After each complete iteration, the values of
w(Xk) will be updated to reflect beliefsregarding the data
propagated from decoder #2 back to decoder #1. Note
that because the two encoders have independent tails,
only information regarding the actual data bits is passed
between decoders. Thus, w(Xk) is not defined for K 1 1
k # K 1 3 (if it were defined it would simply be equal
to zero after every iteration).

The extrinsic information must be taken into ac-
count by decoder #1. However, because of the way that
the branch metrics are derived, it is sufficient to simply
add w(Xk) to the received systematic LLR, R(Xk), which
forms a new variable, denoted V1(Xk). For 1 # k # K, the
input to RSC decoder #1 is both the combined system-
atic data and extrinsic information, V1(Xk), and the re-
ceived parity bits in LLR form, R(Zk). For K 1 1 # k #
K 1 3 no extrinsic information is available, and thus the

Fig. 2. Proposed turbo decoder architecture.

input to RSC decoder #1 is the received and scaled upper
encoder’s tail bits, V1(Xk) 5 R(Xk), and the correspon-
ding received and scaled parity bits, R(Zk). The output of
RSC decoder #1 is the LLR L1(Xk), where 1 # k # K
since the LLR of the tail bits is not shared with the other
decoder.

By subtracting w(Xk) from L1(Xk), a new variable,
denoted V2(Xk), is formed. Similar to V1(Xk), V2(Xk)
contains the sum of the systematic channel LLR and the
extrinsic information produced by decoder #1 (note,
however, that the extrinsic information for RSC de-
coder #1 never has to be explicitly computed). For 1 #
k # K, the input to decoder #2 is V2(Xk9), which is the
interleaved version of V2(Xk), and R(Zk9), which is the
channel LLR corresponding to the second encoder’s
parity bits. For K 1 1 # k # K 1 3, the input to RSC
decoder #2 is the received and scaled lower encoder’s
tail bits, V2(Xk9) 5 R(Xk9), and the corresponding re-
ceived and scaled parity bits, R(Zk9). The output of RSC
decoder #2 is the LLR L2(Xk9), 1 # k # K, which is
deinterleaved to form L2(Xk). The extrinsic information
w(Xk) is then formed by subtracting V2(Xk) from L2(Xk)
and is fed back to use during the next iteration by
decoder #1.

Once the iterations have been completed, a hard bit
decision is taken using L2(Xk), 1 # k # K, whereX̂k 5 1
when L2(Xk) . 0 and ̂Xk 5 0 when L2(Xk) # 0.

5. THE MAX * OPERATOR

The RSC decoders in Fig. 2 are each executed using
a version of the classic MAP algorithm [21] implemented
in the log-domain [13]. As will be discussed in Section 6,
the algorithm is based on the Viterbi algorithm [14] with
two key modifications: First, the trellis must be swept
through not only in the forward direction but also in the
reverse direction, and second, the add-compare-select
(ACS) operation of the Viterbi algorithm is replaced with
the Jacobi logarithm, also known as the max* operator
[19]. Because the max* operator must be executed twice
for each node in the trellis during each half-iteration
(once for the forward sweep, and a second time for the re-
verse sweep), it constitutes a significant, and sometimes
dominant, portion of the overall decoder complexity. The
manner that max* is implemented is critical to the per-
formance and complexity of the decoder, and several
methods have been proposed for its computation. Below,
we consider four versions of the algorithm: log-MAP,
max-log-MAP, constant-log-MAP, and linear-log-MAP.
The only difference among these algorithms is the man-
ner in which the max* operation is performed.

5.1. Log-MAP Algorithm

With the log-MAP algorithm, the Jacobi logarithm
is computed exactly using

(4)

which is the maximum of the function’s two arguments
plus a nonlinear correction function that is only a func-
tion of the absolute difference between the two argu-
ments. The correction function fc(|y 2 x|) can be imple-
mented using the log and exp functions in C (or the
equivalent in other languages) or by using a large look-
up table. The log-MAP algorithm is the most complex of
the four algorithms when implemented in software, but
as will be shown later, generally offers the best bit error
rate (BER) performance. The correction function used by
the log-MAP algorithm is illustrated in Fig. 3, along with
the correction functions used by the constant-log-MAP
and linear-log-MAP algorithms.

5.2. Max-log-MAP Algorithm

With the max-log-MAP algorithm, the Jacobi loga-
rithm is loosely approximated using

(5)

i.e., the correction function in (4) is not used at all. The
max-log-MAP algorithm is the least complex of the four
algorithms (it has twice the complexity of the Viterbi al-
gorithm for each half-iteration) but offers the worst BER
performance. The max-log-MAP algorithm has the addi-

max* () max()x y x y, ,≈

max* () ()
max() ()
max() ()

x y e e
x y e
x y f y x

x y

y x

c

,
,
,

| |

=
=
= −

− −
ln

ln
1

1 1
1

1
Z Z

206 Valenti and Sun

Fig. 3. Correction functions used by log-MAP, linear-log-MAP, and
constant-log-MAP algorithms.

tional benefit of being tolerant of imperfect noise vari-
ance estimates when operating on an AWGN channel.

5.3. Constant-log-MAP Algorithm

The constant-log-MAP algorithm, first introduced
in [22], approximates the Jacobi logarithm using

(6)

where it is shown in [23] that the best values for the
UMTS turbo code are C 5 0.5 and T 5 1.5. This algo-
rithm is equivalent to the log-MAP algorithm with the
correction function implemented by a 2-element look-up
table. The performance and complexity is between that
of the log-MAP and max-log-MAP algorithms.

5.4. Linear-log-MAP Algorithm

The linear-log-MAP algorithm, first introduced in
[24], uses the following linear approximation to the Ja-
cobi logarithm:

(7)

In [24], the values of the parameters a and T were picked
for convenient fixed-point implementation. We are as-
suming a floating-point processor is available, so a better
solution would be to find these parameters by minimizing
the total squared error between the exact correction func-
tion and its linear approximation. Performing this mini-
mization, which is detailed in the Appendix, yields a 5
20.24904 and T 5 2.5068. The linear-log-MAP algo-
rithm offers performance and complexity between that of
the log-MAP and constant-log-MAP algorithms. As will
be shown in the simulation results, a key advantage of the
linear-log-MAP algorithm is that it converges faster than
constant-log-MAP.

6. MAP ALGORITHM IN THE LOG DOMAIN

Each of the two RSC decoders in Fig. 2 operates by
sweeping through the code trellis twice, once in each of
the forward and reverse directions. Each sweep uses a
modified version of the Viterbi algorithm to compute
partial path metrics, where the modifications is that the
ACS operations are replaced with the max* operator.

max* () max()

()

x y x y

a y x T
y x T
y x T

, ,≈

− −


−
−1

.
#

0
Z Z

Z Z
Z Z

if
if

max* () max()x y x y

C
y x T
y x T

, ,
| |
| |

≈ 
−
−1

.
#

0 if
if

During the second sweep, an LLR value is computed for
each stage of the trellis and its corresponding data bit.

Two key observations should be pointed out before
going into the details of the algorithm: (1) It does not
matter whether the forward sweep or the reverse sweep
is performed first; and (2) while the partial path metrics
for the entire first sweep (forward or backward) must be
stored in memory, they do not need to be stored for the
entire second sweep. This is because the LLR values can
be computed during the second sweep, and thus partial
path metrics for only two stages of the trellis (the current
and previous stages) must be maintained during the sec-
ond sweep.

Because of these observations, we recommend
sweeping through the trellis in the reverse direction first.
While performing this sweep, the partial path metric at
each node in the trellis must be saved in memory (with
an exception noted below). After completing the reverse
sweep, the forward sweep can proceed. As the forward
sweep is performed, LLR estimates of the data can be
produced. Because the LLR estimates are produced dur-
ing the forward sweep, they are output in the correct
ordering (if the forward sweep was completed first, then
the LLRs would be produced during the reverse sweep
and would therefore be in reversed order).

6.1. Trellis Structure and Branch Metrics

The trellis of the RSC encoder used by the UMTS
turbo code is shown in Fig. 4. Solid lines indicate data
Xk 5 1 and dotted lines indicate data Xk 5 0. The branch
metric associated with the branch connecting states Si

(on the left) and Sj (on the right) is gij 5 V(Xk)X(i, j) 1
R(Zk)Z(i, j), where X(i, j) is the data bit associated with
the branch and Z(i, j) is the parity bit associated with the
branch. Because the RSC encoder is rate 1/2, there are
only four distinct branch metrics:

(8)

where for decoder #1 V(Xk) 5 V1(Xk) and for decoder #2
V(Xk) 5 V2(Xk*) and R(Zk) 5 R(Zk*).

6.2. Backward Recursion

The proposed decoder begins with the backward
recursion, saving normalized partial path metrics at all
the nodes in the trellis (with an exception noted below),

g

g

g

g

0

1

2

3

05
5
5
5

V X
R Z
V X R Z

k

k

k k

()
()
() ()+

The UMTS Turbo Code and an Efficient Decoder Implementation 207

which will later be used to calculate the LLRs during the
forward recursion. The backward partial path metric for
state Si at trellis stage k is denoted bk(Si), with 2 # k #
K 1 3 and 0 # i # 7. The backward recursion is initial-
ized with bK13(S0) 5 0 and bK13(Si) 5 2` ;i . 0.

Beginning with stage k 5 K 1 2 and proceeding
through the trellis in the backward direction until stage2

k 5 2, the partial path metrics are found according to

(9)

where the tilde above bk(Si) indicates that the metric has
not yet been normalized and Sj1

and Sj2
are the two states

at stage k 1 1 in the trellis that are connected to state Si

at stage k. After the calculation of
~
bk(S0), the partial path

metrics are normalized according to

(10)

Because after normalizationbk(S0) 5 0 ;k, only the
other seven normalized partial path metrics bk(Si), 1 # i
7, need to be stored. This constitutes a 12.5% savings
in memory relative to either no normalization or other
common normalization techniques (such as subtracting
by the largest metric).

6.3. Forward Recursion and LLR Calculation

During the forward recursion, the trellis is swept
through in the forward direction in a manner similar to

b b bk i k i kS S S() ˜ () ˜ ()5 2 0

˜ () * () , ()b b g b gk i k j ij k j ijS S S= +() +(){ }+ +max 1 11 1 2 2

the Viterbi algorithm. Unlike the backward recursion,
only the partial path metrics for two stages of the trellis
must be maintained: the current stage k and the previous
stage k 2 1. The forward partial path metric for state Si

at trellis stage k is denoted ak(Si), with 0 # k # K 2 1
and 0 # i # 7. The forward recursion is initialized by
setting a0(S0) 5 0 and a0(Si) 5 2` ;i . 0.

Beginning with stage k 5 1 and proceeding through
the trellis in the forward direction until stage3 k 5 K, the
unnormalized partial path metrics are found according to

(11)

where Si1 and Si2 are the two states at stage k 2 1 that are
connected to state Sj at stage k. After the calculation of
ãk(S0), the partial path metrics are normalized using

(12)

As the as are computed for stage k, the algorithm
can simultaneously obtain an LLR estimate for data bit
Xk. This LLR is found by first noting that the likelihood
of the branch connecting state Si at time k 2 1 to state Sj

at time k is

(13)

The likelihood of data 1 (or 0) is then the Jacobi loga-
rithm of the likelihood of all branches corresponding to
data 1 (or 0), and thus:

(14)

where the max* operator is computed recursively over the
likelihoods of all data 1 branches {(Si → Sj):Xi 5 1} or
data 0 branches {(Si → Sj):Xi 5 0}. Once L(Xk) is calcu-
lated, ak21(Si) is no longer needed and may be discarded.

7. SIMULATION RESULTS

Simulations were run to illustrate the performance
of all four variants of the decoding algorithm. Two rep-
resentative frame/interleaver sizes were used, K 5 640
and K 5 5114 bits. For the smaller interleaver, up to
10 decoder iterations were performed, while for the
larger interleaver, up to 14 decoder iterations were per-
formed. To speed up the simulations, the decoder was
halted once all of the errors were corrected (the next sec-
tion discusses practical ways to halt the decoder). Results

Λ() max* { (,)} max* { ()}
(): ():

X i j i jk S S X k S S X k
i j i i j i

5 2
→ = → =1 0

l l ,

 l a gk k i ij k ji j S S() () (), = + +−1 b

a a ak i k i kS S S() ˜ () ˜ ()5 2 0

˜ () max*{(()),

(())}

a a g

a g

k j k i i

k i i

S S

S
j

j

= −

−

1

1

1 1

2 2

1

1

208 Valenti and Sun

Fig. 4. Trellis section for the RSC code used by the UMTS turbo code.
Solid lines indicate data 1 and dotted lines indicate data 0. Branch met-
rics are indicated.

3 Note that ak does not need to be computed for k 5 K (it is never used),
although the LLR L(Xk) must still be found.

2 The backward metrics bk(Si) at stage k 5 1 are never used and there-
fore do not need to be computed.

for both AWGN and fully interleaved Rayleigh flat-
fading channels were produced. All four algorithms were
implemented in C, with the log-MAP algorithm imple-
menting (3) using log and exp function calls. In order to
present a fair comparison, all four algorithms decoded
the same received code words, and thus the data, noise,
and fading were the same for each family of four curves.
Enough trials were run to generate 100 frame errors for
the best algorithm (usually log-MAP) at each value of
Eb/No (more errors were logged for the other algorithms
because the same received frames were processed by all
four algorithms). This translates to a 95% confidence in-
terval of (1.25p̂, 0.8p̂) for the worst-case estimate of the
frame error rate (FER) (the confidence interval will be
slightly tighter for the BER) [25]. Because the same re-
ceived code word was decoded by all four algorithms,
and because such a large number of independent error
events were logged, any difference in performance
among algorithms is due primarily to the different cor-
rection functions that were used, rather than to the va-
garies of the Monte Carlo simulation.

7.1. BER and FER Performance

The bit error rate (BER) is shown for the K 5 640
bit UMTS turbo code in Fig. 5 and for the K 5 5114 bit
code in Fig. 6. Likewise, the frame error rate (FER) is
shown in Figs. 7 and 8 for the 640 and 5114 bit codes,
respectively. The Eb/No required to achieve a BER of
1025 is tabulated in Table I. In each case, the perform-
ance of max-log-MAP is significantly worse than the
other algorithms, requiring between 0.3 to 0.54 dB
higher Eb/No than the log-MAP algorithm. The gap be-
tween max-log-MAP and log-MAP is about 0.13 dB
wider for fading than it is for AWGN, and about 0.1 dB
wider for the K 5 5114 bit code than it is for the K 5
640 bit code. The performance of both constant-log-
MAP and linear-log-MAP are close to that of the exact
computation of the log-MAP algorithm. The constant-
log-MAP algorithm is between 0.02 and 0.03 dB worse
than log-MAP, regardless of channel or frame size. The
linear-log-MAP shows performance that is almost indis-
tinguishable from log-MAP, with performance ranging
from 0.01 dB worse to 0.01 dB better than log-MAP.

The fact that linear-log-MAP can sometimes be
slightly better than log-MAP is an interesting and unex-
pected result. At first, one might infer that because this
discrepancy is within the confidence intervals, then it is
simply due to the random fluctuations of the Monte
Carlo simulation. However, the simulation was carefully
constructed such that the same received frames were de-

coded by all four algorithms. Thus, there must be a dif-
ferent reason for this phenomenon. We believe the rea-
son for this discrepancy is as follows: although each of
the two MAP decoders shown in Fig. 2 is optimal in
terms of minimizing the “local” BER, the overall turbo
decoder is not guaranteed to minimize the “global”
BER. Thus, a slight random perturbation in the com-
puted partial path metrics and corresponding LLR val-
ues could result in a perturbation in the BER. The error
caused by the linear-log-MAP approximation to the Ja-
cobi algorithm induces such a random perturbation both
within the algorithm and into the BER curve. Note that
this perturbation is very minor and the performance of

The UMTS Turbo Code and an Efficient Decoder Implementation 209

Fig. 5. BER of K 5 640 UMTS turbo code after 10 decoder
iterations.

Fig. 6. BER of K 5 5114 UMTS turbo code after 14 decoder
iterations.

210 Valenti and Sun

linear-log-MAP is always within 0.1 dB of the log-MAP
algorithm.

If the simulations were run to a much lower BER,
an error floor would begin to appear [3]. The beginning
of a floor can be seen in the simulation of the K 5 640
bit code in AWGN. In the floor region, all four algo-
rithms will perform roughly the same. It can be seen in
Figs. 5 and 7 that the algorithms are beginning to con-
verge as the BER and FER curves begin to flare into a
floor. Thus, while the choice of algorithm has a critical
influence on performance at low signal-to-noise ratio
(SNR), the choice becomes irrelevant at high SNR.

This suggests that in a software implementation, per-
haps the algorithm choice should be made adaptive
(e.g., choose linear-log-MAP at low SNR and max-log-
MAP at high SNR).

7.2. Average Number of Iterations

The average number of iterations required for each
algorithm to converge (i.e., correct all the errors in a
frame) is shown in Fig. 9 for the 640-bit code and Fig.
10 for the 5114-bit code. A value of 11 iterations for the
smaller code and 15 iterations for the larger code indi-
cates that the algorithm does not converge. In all cases,
the max-log-MAP algorithm requires more decoder iter-
ations than the other algorithms at any particular value
of Eb/No. The other three algorithms require roughly the
same number of iterations, with the constant-log-MAP
algorithm requiring slightly more iterations than the
linear-log-MAP or log-MAP algorithms. As with the
BER and FER curves, the distinction among algorithms
becomes less pronounced at higher SNR as the error

Fig. 7. FER of K 5 640 UMTS turbo code after 10 decoder
iterations.

Fig. 8. FER of K 5 5114 UMTS turbo code after 14 decoder
iterations.

Table I. Eb/No Required for the UMTS Turbo Code to Achieve
a BER of 1025

AWGN Fading

Algorithm K 5 640 K 5 5114 K 5 640 K 5 5114

max-log-MAP 1.532 dB 0.819 dB 2.916 dB 2.073 dB
constant-log-MAP 1.269 dB 0.440 dB 2.505 dB 1.557 dB
linear-log-MAP 1.220 dB 0.414 dB 2.500 dB 1.547 dB
log-MAP 1.235 dB 0.417 dB 2.488 dB 1.533 dB

Fig. 9. Average number of decoder iterations required for the
K 5 640 UMTS turbo code to converge.

curves begin to reach the error-floor region. However,
for sufficiently low SNR, we found that in AWGN the
max-log-MAP takes about two more iterations to con-
verge for the smaller code and about six more iterations
for the larger code (with even more iterations required
in Rayleigh fading). The constant-log-MAP algorithm
typically requires about more iterations than log-MAP,
while linear-log-MAP requires the same number of iter-
ations as log-MAP.

7.3. Processing Rate

The simulations were run on a PC with a 933-MHz
Pentium III and the Windows 2000 operating system.
The average throughput, measured in bits per second
(bps) per iteration is listed in Table II. Clearly, the log-
MAP algorithm is the least-efficient algorithm, requiring
more than seven times the processing power of the max-
log-MAP algorithm, which is the fastest algorithm per
iteration. As the only difference between log-MAP and
max-log-MAP is the calculation of the correction func-
tion, it stands to reason that calculating the correction
function using the log and exp function calls accounts for
over 7/8 5 85% of the complexity of the log-MAP de-
coder. The other three algorithms required roughly the
same complexity, with max-log-MAP offering the high-
est throughput per iteration.

Note that the algorithm with the highest throughput
per iteration will not necessarily be the algorithm with
the highest overall throughput. For instance, at Eb/No 5
0.5 dB, the K 5 5114 code received over an AWGN

channel requires an average of 10.8 iterations of the
max-log-MAP algorithm, 5.2 iterations of the constant-
log-MAP algorithm, and 4.85 iterations of each of the
log-MAP and linear-log-MAP algorithm. This implies
that the overall throughput of the max-log-MAP algo-
rithm will only be about 34 kbps, while the constant-log-
MAP and linear-log-MAP algorithms will offer an over-
all throughput of 57 and 54 kbps, respectively. Thus, it
appears that the constant-log-MAP and linear-log-MAP
algorithms offer the best tradeoff in terms of complexity
and performance, with the linear-log-MAP algorithm of-
fering slightly better error rate performance at the cost of
slightly lower overall throughput.

7.4. Sensitivity to Noise Variance Estimation Errors

With the exception of the max-log-MAP algorithm,
the log-MAP algorithm and its approximations require
knowledge of the noise variance j2. In [23], it is shown
that one of the disadvantages of the constant-log-MAP
algorithm is that it is rather sensitive to errors in the
noise variance estimate. We tested the sensitivity of the
proposed algorithm to noise variance estimate errors by
giving the decoder an estimate of ˆj2 5 ej2 of the true
variance j2. We varied e from 0.1 to 2.0 (with 1.0 indi-
cating a perfect estimate of the noise variance), and plot-
ted the results for the K 5 5114 bit turbo code operating
in AWGN in Fig. 11 for two values of Eb/No and all four
algorithms. This figure indicates that, at least for the
5114-bit UMTS turbo code, all three algorithms behave
similarly in the presence of noise variance estimate er-
rors, with the constant-log-MAP consistently worse than
the log-MAP and linear-log-MAP algorithms (which had
similar performance to one another).

8. DYNAMIC HALTING CONDITION

The simulation results from the previous section as-
sumed that the decoder halted as soon as it converged,
i.e., when all the errors in the frame were corrected. This
requires knowledge of the data, which is available when

The UMTS Turbo Code and an Efficient Decoder Implementation 211

Fig. 10. Average number of decoder iterations required for the
K 5 5114 UMTS turbo code to converge.

Table II. Processing Rate of the Algorithms Running
on a 933-MHz P3

Algorithm Throughput

max-log-MAP 366 kbps/iteration
constant-log-MAP 296 kbps/iteration
linear-log-MAP 262 kbps/iteration
log-MAP 51 kbps/iteration

running a computer simulation. However, in practice, the
decoder will not have knowledge of the data, and thus a
blind method for halting the iterations must be em-
ployed. Because the decoder rarely requires the maxi-
mum number of iterations to converge, using an early
stopping criterion will allow a much greater throughput
in a software radio implementation.

Several early stopping criteria have been proposed
based on the cross entropy between iterations or on the
sign-difference ratio [26]. The decoder considered here
uses a simpler, but still effective, stopping criteria based
only on the log-likelihood ratio. The decoder stops once
the absolute value of all of the LLRs are above a thresh-
old, LT; i.e., the decoder halts once

(15)

The performance of the stopping condition is
highly dependent on the choice of LT. If it is too small,
then the decoder will tend to not perform enough itera-
tions and BER performance will suffer. If, however, it
is too large, then the decoder will tend to overiterate,
and the throughput will suffer.

The K 5 640-bit UMTS turbo code was simulated
in AWGN using both ideal halting (i.e., halt once the de-
coder converges) and halting using various values for
LT. The decoder used a maximum of 10 iterations of the
constant-log-MAP algorithm, and each curve was gener-
ated using the same received code words. BER results
are shown in Fig. 12, FER results are shown in Fig. 13,
and the average number of decoder iterations is shown in

min ()
1 2≤ ≤ { }

k K k TXu uΛ Λ.

Fig. 14. As can be seen, LT 5 1 and LT 5 5 are too small
and raise the BER floors, while LT 5 10 raises the FER
floor only slightly and has only a negligible effect on the
BER floor. Using the threshold LT 5 10 requires, on av-
erage, less than one extra iteration compared to ideal
halting.

It is interesting to note that the BER is sometimes
lower with LT 5 10 than with ideal halting. The reason
for this is as follows: The number of errors at the output
of a turbo decoder will sometimes oscillate from one it-
eration to the next [6]. If the received code word is too
corrupted to successfully decode, “ideal halting” will al-

212 Valenti and Sun

Fig. 11. Sensitivity of the K 5 5114 UMTS turbo code to noise
variance estimation errors in AWGN.

Fig. 12. BER of K 5 640 UMTS turbo code with constant-log-MAP
decoding in AWGN with various halting thresholds.

Fig. 13. FER of K 5 640 UMTS turbo code with constant-log-MAP
decoding in AWGN with various halting thresholds.

ways run the full number of iterations; thus, the number
of bit errors will be dictated by the performance at
the last iteration, which due to the oscillatory nature of
the decoder, could be quite high. On the other hand, the
early-halting decoder will stop the iterations when the
LLRs are high, even if the BER is not identically zero.
Thus, although early halting cannot lower the FER, it can
lower the BER by having fewer bit errors when there is
a frame error.

9. CONCLUSIONS

This paper has discussed a complete turbo decoding
algorithm that can be implemented directly in software.
To provide a concrete example, the discussion focused
on the turbo code in the UMTS specification. However,
the same algorithm can be used for any BPSK- or QPSK-
modulated turbo code, including that used by cdma2000
and by the CCSDS deep-space telemetry standard. Note,
however, that if the modulation does not have a constant
phase (e.g., QAM modulation), the input LLR normal-
ization process and branch metrics discussed in this
paper must be modified.

In addition to providing an overview of the UMTS
turbo code and a generic decoder implementation, three
aspects regarding turbo codec implementation have been
studied in this paper. First, a simple, but effective, linear
approximation to the Jacobi logarithm was proposed.
Simulation results that this approximation offers better
performance and faster convergence than the constant-
log-MAP algorithm at the expense of only a modest in-

crease in complexity. Second, a method for normalizing
the partial path metrics was proposed that eliminates the
need to store the metrics for state S0. Finally, a method
for halting the decoder iterations based only on the cur-
rent value of the LLRs was proposed and shown through
simulation to require only one more decoding iteration
compared to ideal halting.

APPENDIX

The parameters used by the linear approximation to the
Jacobi logarithm are chosen to minimize the total
squared error between the true function (3) and its
approximation (7):

(16)

This function is minimized by setting the partial deriva-
tives with respect to a and T equal to zero. First, take the
partial with respect to a:

(17)

where K1 and K2 are constants:

Next, take the partial derivative of (16) with respect to T:

(18)

∂
∂

= − − +[] −

+ − − +
− +

= − − +[] −

∫

∫

−

−
=

−
=

−

Φ() () () ()

[() ()]
[()]

() () ()

a T
T

a x T e a dx

a x T e
e

a x T e a dx

T
x

x
x T

x
x T

T
x

, 2 1

1
1

2 1

0

2

2

0

ln

ln
ln

ln

K
n

K
n

n

n

n

n

1

1

2
1

2

2

1

3
1

1
12

1

= − =

= −

+

=

∞

+

=

∞

∑

∑

()

()

p

5 1 2 1
2 1

5

22
3

2 2 2
1 1

3
1 2 31

aT K T K
n

e
n

n

nT()∞
∑

­F

­

5 2 2 1 2 2

5 2 2 2 1

5 2 2 2
2

5 2
2

2

2
1

5

()

() () ()

() () ()

() ()
()

(

a T
a

a x T e x x T dx

a x T dx x T e dx

a x T x T
n

e dx

aT

T

T xT

T T nx
n

n

,

2 1

2 2 1
2
3

2
1

2
3

2

0

0
2

3

0
0

3

0
1

1

∫
∫ ∫

∑∫

[]

∞

ln

ln

11

2
3

2
1 1 1

1

1 0

3
1

21

)
()

()

n

n

nxT

n

n

nT

n
x T e dx

aT
n

T
n

e

1

5

2

1

5

2

2

5 1
2

1 2

∞

∞

∑ ∫

∑ ()()[]

Φ() () ()

()

a T a x T e dx

e dx

x
T

x
T

, 5 2 2 1

1

2ln

ln

1

1

2

0

2

[]
+ []

∫
∫ −

∞

The UMTS Turbo Code and an Efficient Decoder Implementation 213

Fig. 14. Average number of decoder iterations required for the K 5

640 UMTS turbo code to converge in AWGN using constant-log-MAP
decoding and various halting thresholds.

Because the above expression is being set to zero, it can
be divided by 22a:

(19)

Multiply (17) by 3/2 and add to 2T times (19) to obtain

(20)

By setting the above monotonically increasing function of
T to zero, we arrive at the optimal value for T. However,
because T is embedded in a sum of exponentials, an iter-
ative approach to solving for T must be taken. The itera-
tive solution is found by first choosing two values T1 and
T2 that satisfy g(T1) , 0 and g(T2) . 0. Let T0 be the mid-
point between T1 and T2. If g(T0) , 0, then set T1 5 T0;
otherwise set T2 5 T0 and repeat the iteration until T1 and
T2 are very close. Although the upper limit of the sum-
mations is infinity, an error of less than 10210 results if the
upper limit is truncated to 30. By iteratively solving (20)
with the upper limit of the summations set to 30, we find

(21)

Once the optimal value of T has been found, a can eas-
ily be found by setting either (17) or (19) equal to zero
and solving for a, which results in

(22)

REFERENCES

1. C. Berrou, A. Glavieux, and P. Thitimasjshima, Near Shannon
limit error-correcting coding and decoding: Turbo-codes(1), Proc.
IEEE Int. Conf. on Commun.(Geneva, Switzerland), pp. 1064–
1070, May 1993.

2. S. Benedetto and G. Montorsi, Unveiling turbo codes: Some re-
sults on parallel concatenated coding schemes, IEEE Trans. In-
form. Theory,Vol. 42, pp. 409–428, Mar. 1996.

3. L. C. Perez, J. Seghers, and D. J. Costello, A distance spectrum in-

a 520 24904181891710.

T 5 2 50681640022001.

g T K T K
n

e

T
n

e

n

n

nT

n

n

nT

() ()

()

5 2 1
2

1

1

5

2

1

5

2

1 2

1

31
1

21

3 3 1

2 1

∞

∞

∑
−∑

[())]

())

()
()

()

()

a x T e dx

a x T dx e dx

a x T
n

e dx

a T
n

e dx

a T
n

T
x

T
x

T

T n

n

T
nx

n

n

nx
T

n

n

0

0 0

2
0

1

10

2
1

1 0

2
1

2

2
1

2
1

2
1

∫
∫ ∫

∑∫

∑ ∫
=

∞

=

∞

2 2 1

5 2 2 1

5 2 2
2

52 2
2

52 2
2

2

2

1
2

1
2

1

ln(1

ln(1

==

∞

=

∞

∑

∑
1

2
1

1

2
1

1

2
1

[]

()

e

a T K
n

e

nT

n

n

nT

2

1
2

2

52 2 1
2

terpretation of turbo codes, IEEE Trans. Inform. Theory,Vol. 42,
pp. 1698–1708, Nov. 1996.

4. D. Divsalar, S. Dolinar, and F. Pollara, Iterative turbo decoder
analysis based on density evolution, IEEE J. Select. Areas Com-
mun.,Vol. 19, pp. 891–907, May 2001.

5. S. ten Brink, Convergence behavior of iteratively decoded parallel
concatenated codes, IEEE Trans. Commun.,Vol. 49, pp. 1727–
1737, Oct. 2001.

6. C. Heegard and S. B. Wicker, Turbo Coding,Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1999.

7. B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications,
Kluwer Academic Publishers, Dordrecht, the Netherlands, 2000.

8. K. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection:
Adaptivity, Complexity Reduction, and Applications,Kluwer Aca-
demic Publishers, Dordrecht, the Netherlands, 2001.

9. J. Hagenauer, The turbo principle: Tutorial introduction and state
of the art, Proc., Int. Symp. on Turbo Codes and Related Topics
(Brest, France), pp. 1–11, Sept. 1997.

10. B. Sklar, A primer on turbo code concepts, IEEE Commun. Mag-
azine,Vol. 35, pp. 94–102, Dec. 1997.

11. M. C. Valenti, Turbo codes and iterative processing, IEEE New
Zealand Wireless Communications Symposium(Auckland, New
Zealand), Nov. 1998.

12. European Telecommunications Standards Institute, Universal
mobile telecommunications system (UMTS): Multiplexing and
channel coding (FDD), 3GPP TS 125.212 version 3.4.0,pp. 14–20,
Sept. 23, 2000.

13. P. Robertson, P. Hoeher, and E. Villebrun, Optimal and sub-opti-
mal maximum a posteriori algorithms suitable for turbo decoding,
European Trans. on Telecommun.,Vol. 8, pp. 119–125, Mar./Apr.
1997.

14. A. J. Viterbi, Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm, IEEE Trans. Inform. The-
ory, Vol. 13, pp. 260–269, Apr. 1967.

15. G. D. Forney, The Viterbi algorithm, Proc. IEEE, Vol. 61, pp.
268–278, Mar. 1973.

16. S. Wicker, Error Control Systems for Digital Communications and
Storage,Prentice Hall, Englewood Cliffs, NJ, 1995.

17. J. Proakis, Digital Communications,4th ed., McGraw-Hill, New
York, 2001.

18. T. Blankenship and B. Classon, Fixed-point performance of low-
complexity turbo decoding algorithms, Proc. IEEE Veh. Tech.
Conf. (VTC)(Rhodes, Greece), May 2001.

19. A. J. Viterbi, An intuitive justification and a simplified implemen-
tation of the MAP decoder for convolutional codes, IEEE J. Select.
Areas Commun.,Vol. 16, pp. 260–264, Feb. 1998.

20. M. Marandian, M. Salehi, J. Fridman, and Z. Zvonar, Performance
analysis of turbo decoder for 3GPP standard using the sliding win-
dow algorithm, Proc. IEEE Personal Indoor and Mobile Radio
Commun. Conf.(San Diego, CA), Oct. 2001.

21. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of
linear codes for minimizing symbol error rate, IEEE Trans. Inform.
Theory,Vol. 20, pp. 284–287, Mar. 1974.

22. W. J. Gross and P. G. Gulak, Simplified MAP algorithm suitable
for implementation of turbo decoders, Electronics Letters,Vol. 34,
pp. 1577–1578, Aug. 6, 1998.

23. B. Classon, K. Blankenship, and V. Desai, Turbo decoding with the
constant-log-MAP algorithm, in Proc., Second Int. Symp. Turbo
Codes and Related Appl.(Brest, France), pp. 467–470, Sept. 2000.

24. J.-F. Cheng and T. Ottosson, Linearly approximated log-MAP al-
gorithms for turbo coding, Proc. IEEE Veh. Tech. Conf. (VTC)
(Houston, TX), May 2000.

25. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of
Communication Systems: Modeling, Methodology, and Tech-
niques, 2nd ed., Kluwer Academic Publishers, Dordrecht, the
Netherlands, 2001.

26. Y. Wu, B. D. Woerner, and W. J. Ebel, A simple stopping criterion
for turbo decoding, IEEE Commun. Letters,Vol. 4, pp. 258–260,
Aug. 2000.

214 Valenti and Sun

The UMTS Turbo Code and an Efficient Decoder Implementation 215

to attending graduate school at Virginia Tech, he was an electronics en-
gineer at the United States Naval Research Laboratory, Washington,
DC, where he was engaged in the design and development of a space-
borne adaptive antenna array and a system for the collection and cor-
relation of maritime ELINT signals.

Jian Sun received his B.S.E.E. in 1997 and M.S.E.E. in 2000, both
from Shanghai Jiaotong University (Shanghai, China). He is currently
pursuing a Ph.D. in the Lane Department of Computer Science and
Electrical Engineering at West Virginia University (Morgantown,
WV). His research interests are in wireless communications, wireless
networks, and DSP applications.

Matthew C. Valenti received a B.S.E.E. in 1992 from Virginia Tech
(Blacksburg, VA), a M.S.E.E. in 1995 from the Johns Hopkins Uni-
versity (Baltimore, MD), and a Ph.D. in electrical engineering in 1999
from Virginia Tech, where he was a Bradley Fellow.

He is currently an assistant professor in the Lane Department of
Computer Science and Electrical Engineering at West Virginia Uni-
versity (Morgantown, WV). His research interests are in the areas of
communication theory, error correction coding, applied information
theory, and wireless multiple-access networks. He also acts as a con-
sultant to several companies engaged in various aspects of turbo codec
design, including software radio, FPGA, and ASIC implementations
for military, satellite, and third-generation cellular applications. Prior

