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Abstract

In 1993, a group of researchers from France pre-
sented a new class of error correction codes and an
associated iterative decoding technique. These codes,
termed “turbo codes”, were shown to achieve perfor-
mance within 0.7 decibels of the Shannon capacity
limit. This constituted a significant gain in power
efficiency over other coding techniques known at the
time. In this paper, an overview of the turbo encoding
and decoding process is presented. Implementation
issues are discussed, including an overview of the fac-
tors that influence turbo code performance. Finally,
extensions of the turbo decoding algorithm to other
problems in communications are presented.

1 Introduction

Turbo codes are a new class of error correction
codes that were introduced along with a practical
decoding algorithm in [1]. The importance of turbo
codes is that they enable reliable communications
with power efficiencies close to the theoretical limit
predicted by Claude Shannon in [2]. Since their
introduction, turbo codes have been proposed for low-
power applications such as deep-space and satellite
communications, as well as for interference limited
applications such as third generation cellular and
personal communication services. Turbo codes have
been a “hot topic” in the literature over the past
five years, yet there is a relative lack of basic papers
serving as a starting point for people interested in this
topic'. This paper attempts to serve as an informal
tutorial introduction for those interested in learning
about turbo codes, and as a survey of some of the
important issues related to turbo codes.

This paper begins with a review of the concept of
channel capacity in order to illustrate the minimum
theoretical signal-to-noise ratio required for commu-
nications with arbitrary reliability. Next, a review

ITHowever, good tutorial introductions can be found in [3],
[4], and [5].

of convolutional codes, which form the foundation
of turbo codes, is presented. A description of the
turbo-encoding process is presented, followed by a
discussion of why turbo codes perform so well. Next,
the algorithm used to decode turbo codes is exposed.
Finally, a discussion of other applications of the turbo
decoding algorithm is presented.

2 Channel Capacity

The capacity of a channel, which was first introduced
50 years ago by Claude Shannon [2], is the theoretical
maximum data rate that can be supported by the
channel with vanishing error probability. In this
discussion, we restrict our attention to the additive
white Gaussian noise (AWGN) channel

y = z+z. (1)

Here, z is a modulated symbol modeled by a random
process with zero mean and variance Es (E; is the
energy per symbol). For the specific case of antipodal
signaling?, x = £1/F;. z is a sample from an additive
white Gaussian noise process with zero mean and
variance N, /2. The capacity of the AWGN channel

is given by
1 2F;
Cc = 5 10g2 (1 + NO ) (2)

bits per channel use.

Signaling at rates close to capacity is achieved
in practice by error correction coding. An error
correction code maps data sequences of k bits to
code words of n symbols. Because n > k, the code
word contains structured redundancy. The code rate,
r = k/n is a measure of the spectral efficiency of the
code. In order to achieve reliable communications,
the code rate cannot exceed the channel capacity
(r < C). The minimum theoretical signal to noise
ratio® E,/N, required to achieve arbitrarily reliable

?Binary phase shift keying (BPSK) is a type of antipodal
signaling,.
3Ey = Es/r is the energy per bit.
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Figure 1: Theoretical minimum Fj/N, required to
achieve channel capacity for code rate r in AWGN.

communications* can be found by rearranging equa-
tion (2)

Ey 1 o
N, > o (2 1) . (3)
This is the minimum Ej /N, required for any arbitrary
distribution for the input z. Equation (3) can be
satisfied with equality only if the input is Gaussian
distributed. If the input is antipodal instead of
Gaussian, slightly higher E,/N, is required. Plots
of the minimum Fj/N, required to achieve channel
capacity as a function of code rate r are given in
Figure 1 for both Gaussian distributed inputs and
antipodal inputs.

Shannon’s proof of the Channel Coding Theorem?®
used a random coding argument. He showed that
if one selects a rate r < C code at random, then
the bit error probability approaches zero as the block
length n of the code approaches infinity . However,
random codes are not practically feasible. In order
to be able to encode and decode with reasonable
complexity, codes must possess some sort of structure.
Unfortunately, structured codes perform considerably
worse than random codes. This is the basis of the
coding paradox:

4 Arbitrary reliability means signaling with bit error proba-
bility P, = €, where € > 0 is an arbitrarily small value.

5The Channel Coding Theorem states that it is theoretically
possible to signal with arbitrary reliability at rates up to
channel capacity.
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Figure 2: FExample rate r = 1/2 convolutional
encoder with constraint length K = 3.

Almost all codes are good, except those we
can think of.
J. Wolfowitz

As will become apparent in the following sections,
the reason that turbo codes perform so well is that
they attack the coding paradox head on. On the
one hand, they have structure and therefore can be
efficiently encoded and decoded. But on the other
hand they appear to be random and thus emulate
the good performance of random codes.

3 Convolutional Codes

Before the introduction of turbo codes, power efficient
communications was achieved by either a strong
convolutional code or the serial concatenation of a
convolutional code with a block code®. A convolu-
tional code adds redundancy to a continuous stream
of input data by using a linear shift register. For a
rate r = k/n convolutional encoder, each set of n
output symbols is a linear combination of the current
set of k input bits and m bits stored in the shift
register. The total number of bits that each output
depends on is called the constraint length, and is
denoted by K. An example convolutional encoder
is shown in Figure 2. The rate of this code is r = 1/2
and the constraint length is K = 3.

A convolutional code can be made systematic”
without affecting its minimum distance properties by
feeding back one of the outputs to the input. Such a
code is called a Recursive Systematic Convolutional
(RSC) code, and is the basic building block for turbo
codes. An example RSC encoder derived from the
nonsystematic encode of Figure 2 is shown in Figure
3.

SFor example, the 1S-95 CDMA cellular standard uses a
constraint length K = 9 convolutional code, while the deep
space communication standard uses a constraint length K =7
convolutional code concatenated with a Reed Solomon code.

7A systematic code is one for which each n symbol code
word contains the k data bits. The remaining n — k bits are
called parity bits.
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Figure 3: Example recursive systematic convolutional
(RSC) encoder.

The decoder for a convolutional code finds the
most probable sequence of data bits m given the
received sequence y

m = arg {mnéi,XP[m\y]}, 4)

where y is the set of code symbols x observed
through noise. Equation (4) can be solved using
the Viterbi algorithm®, in which case the solution
is termed the “maximal likelihood” or ML solution.
The complexity of the Viterbi algorithm when used
to decode convolutional codes is O(25).

4 Turbo Codes: Encoding

A turbo code is the parallel concatenation of two RSC
codes separated by an interleaver. An example turbo
encoder is shown in Figure 4. Here, the two encoders
are identical rate 1/2 RSC encoders. The upper
encoder receives the data directly, while the lower
encoder receives the data after it has been interleaved
by a permutation function a. The interleaver « is
in general a pseudo-random interleaver — that is it
maps bits in position i to position «(i) according to
a prescribed, but randomly generated rule. The in-
terleaver operates in a blockwise fashion, interleaving
L bits at a time, and thus turbo codes are actually
block codes. Since both encoders are systematic and
receive the same set of data (although in permuted
order), only one of the systematic outputs needs to
be sent. By convention, the systematic output of
the top encoder is sent while the systematic output
of the lower encoder is not transmitted. However,
the parity outputs of both encoders are transmitted.
The overall code rate of a turbo code composed from
the parallel concatenation of two rate 1/2 systematic
codes is 7 = 1/3. This code rate can be made higher

8The Viterbi algorithm goes beyond the scope of this paper,
but an excellent tutorial can be found in [6].
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Figure 4: Example turbo encoder.

by puncturing’. The code rate of a turbo code is
typically increased to r = 1/2 by only transmitting
the odd indexed parity bits from the upper encoder
and the even indexed parity bits from the lower
encoder (along with all the systematic bits from the
top encoder).

5 Turbo Codes: Decoding

As with convolutional codes, an ML solution can
be obtained by using Equation (4) and the Viterbi
algorithm. However, due to the presence of the
interleaver, the complexity of Viterbi algorithm when
used to decode turbo codes is O(2%), where L is the
size of the data frame (and interleaver). Due to the
prohibitive complexity of the ML solution to decoding
turbo codes, we seek a reduced complexity, albeit
suboptimal, solution. In particular, a good estimate
of the data can be found by solving the following
system of equations:

Plm; = 1]y(®, y(1) 22

A Z g [m; = 1y, yV, 2] 5)
l mewwmwwmn

- Pl = 1[0, y@ 7D

A(Q) _ log [7?1 |y Y Z ]7 (6)
‘ Plm; = 0|3, y(2), 7]

where y(©) is the observed systematic bits, y(*) is the
observed parity bits from encoder one, and y(?) is the
observed parity bits from encoder two. A tilde over a
variable represents its interleaved value, i.e. y is the
interleaved version of y. A is the a posteriori Log-
likelihood ratio (LLR), and z is the so-called extrinsic

9Puncturing is the process of deleting (i.e. not transmitting)
a subset of the parity bits.
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Figure 5: Turbo decoder

information which is related to the LLR by

R
PRI (O O] (8)

The system of Equations (5) to (8) can be solved
iteratively using the structure shown in Figure 5.
Here Decoder One determines the solution to (5)
and Decoder Two determines the solution to (6).
Each decoder passes information to the other decoder,
which in turn refines the estimated a posteriori
probabilities using information derived by the other
decoder. The final estimate of the data is obtained
by hard limiting the output of one of the decoders
(by convention the second decoder’s output is used)

{ 1if A
my =

0 if A
Turbo codes get their name from the feedback
structure of Figure 5 and its analogy to a turbo
engine. In fact, there is nothing “turbo” about turbo
codes, rather the turbo effect comes from the decoder
implementation.

The a posteriori LLR’s of (5) and (6) are computed
using a derivation of the symbol-by-symbol maximum
a posteriori (MAP) algorithm of [7]. Although the
algorithm of [7] can be used directly to compute the
LLR’s, the algorithm is computationally complex and
sensitive to finite-precision numerical representations.
These problems are alleviated by performing the
algorithm in the log-arithmetic domain, as presented
in [8] and [9]. The resulting algorithm is termed the
Log-MAP algorithm. The algorithm consists of two
instances of the Viterbi algorithm — one performing
a forward recursion and the other performing a
backwards recursion. Thus the complexity of the Log-
MAP algorithm is twice that of the Viterbi algorithm.
The details of the log-MAP algorithm go beyond the
scope of this paper, although a thorough explanation
can be found in [10].
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Figure 6: Performance of turbo code with r = 1/2,
K =5, L = 65,536 for various numbers of decoder
iterations.

The simulated performance of a turbo code with
BPSK modulation is shown in Figure 6. This is
the rate r = 1/2 turbo code created by the parallel
concatenation of two K = 5 RSC encoders that was
originally reported in [1]. The interleaver size of this
code is L = 65,536 bits. The performance after
various numbers of decoder iterations is shown —
note that performance improves as the number of
decoder iteration increases. After 18 iterations a bit
error rate of 107° is reached at just slightly below 0.7
dB. Comparing this to Figure 1, we see that the per-
formance is within 0.7 dB of the unconstrained-input
channel capacity limit, or within 0.5 dB of capacity
when the input is constrained to be antipodal'®. Also
note the presence of an error floor'' as the signal-
to-noise ratio increases. This phenomenon will be
discussed more in the next section.

6 Turbo Codes:
Factors

Performance

There are many factors that affect the performance
of turbo codes. The most influential parameter is
the interleaver size. As the frame/interleaver size
increases, performance improves. In Figure 7, the

108ince BPSK modulation is assumed, the input is indeed
antipodal.

11This is not a true error floor, rather it is a severe shallowing
of the BER curve.
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Figure 7: Performance of turbo code with r =
1/2, K = 5, and 18 decoder iterations for various
interleaver sizes.

performance of the r = 1/2, K = 5 turbo code
is shown for various interleaver sizes. Note that as
the interleaver gets smaller, performance degrades.
This would imply that one would select the largest
possible interleaver size. However, as the interleaver
size increases so does decoder latency, since the entire
code word must be received before decoding can be
completed. Thus turbo codes possess an inherent
tradeoff between performance and latency. In [11],
it is shown that this tradeoff can be exploited for
wireless multimedia communication systems.

Another parameter affecting performance is the
overall code rate. Just like other codes, performance
improves as the code rate becomes lower. When
code rates higher than 1/3 are used, then the par-
ticular puncturing pattern that is used impacts the
performance. Like convolutional codes, the constraint
length also influences performance. However, the
impact that constraint length has on performance
is weak, and thus only the short constraint lengths
of K=3, 4, or 5 are considered for practical turbo
codes. The interleaver design plays a significant role
in the performance of a turbo code, particularly for
higher signal-to-noise ratios. In general, a randomly
chosen interleaver design will give good performance,
while highly structured interleavers such as the “block
interleaver” should be avoided.

The choice of decoding algorithm and number of
decoder iterations also influences performance. As
can be seen in Figure 5, performance improves as the

number of iterations increases. This improvement
follows a law of diminishing returns. Also, the
number of iterations required is a function of the
interleavers size — bigger interleavers require more
iterations.  For example, a turbo code with an
interleaver size of 16,384 bits only needs about 9
iterations of decoding in practice. The question of
whether or not the iterative decoding technique used
by turbo codes converges to the ML solution is still
an open ended question.

While turbo codes offer extraordinary perfor-
mance for bit error rates down to about 1072, the
performance for very small bit error rates is not very
impressive. Note the bit error floors that appear for
low bit error rates in Figures 6 and 7. For high
signal-to-noise ratios, it may in fact be better to
use a convolutional code. This phenomenon can be
explained in terms of the Hamming distance spectrum
of turbo codes. For high signal-to-noise ratios, the
performance of a code is approximated by its free
distance asymptote [4]

2rE
Pb = wefo ( dfreeTb> ) (10)

where dfyc. is the free distance'? of the code, and
wers is the effective multiplicity of code words of
weight dfrc.. The slope of the free distance asymp-
tote is determined by the argument of the @ function,
and thus by the free distance. Bit error performance
can be improved in two ways: (1) By increasing
the free distance, and thus making the asymptote
steeper, or (2) Decreasing the effective multiplicity,
thereby lowering the entire BER curve. The design
of convolutional codes focuses on maximizing free
distance, but the design of turbo codes focuses on
minimizing the effective multiplicity.

The constraint length K = 15 convolutional
code'® has dfree of 18, while for the K = 5
turbo code, dfye. is only 6. Thus the free distance
asymptote of the convolutional code is much steeper
than the free distance asymptote of the turbo code.
However, wesy of the convolutional code is 187 while
weyps for the turbo code is only 6/N. For N =
65,536 this translates to wes; =~ .0001, and thus the
coefficient of the turbo code’s free distance asymptote
is much lower than the convolutional code’s.

The number of free distance code words in a turbo
code is very small due to the combination of pseudo-
random interleaving, recursive encoding, and parallel
code concatenation. Due to their recursive nature,

12The free distance is the minimum Hamming weight of
all non-zero code words. The Hamming weight is found by
counting the number of ones in the code word.

13The K = 15 was chosen for comparison purposes because
its decoder has roughly the same complexity as the K = 5
turbo code with 18 iterations.
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Figure 8: Performance two r = 1/2 codes of compa-
rable complexity: (1) Turbo code with K = 5 and
L = 65,536; (2) Convolutional code with K = 15.

the impulse response of RSC encoders is infinite.
Thus, most input sequences cause large weight output
sequences. However there are a few input sequences
that cause small weight outputs. But because of
interleaving, the two RSC encoders in a turbo code
do not receive their inputs in the same order. Thus
the probability that both encoders produce small
weight outputs is very small, accounting for the small
effective multiplicity. For more information about the
performance of turbo codes, please review the work
of Benedetto [12], [13].

The free distance asymptotes are shown in Figure
8. Note that for BER of 107°, the turbo code is about
2 decibels more power efficient than the convolutional
code. However, at a BER of 1078 the asymptotes
of the turbo code and convolutional code intersect,
implying that for signal-to-noise ratios greater than
about 4 dB the turbo code would actually perform
worse than the convolutional code. Recent work has
shown that with serially concatenated turbo codes,
the bit error floor disappears [14].

7 Other Applications of Itera-
tive Processing

Modern communication receivers typically consist of
a cascade of signal processing intensive subsystems,
each optimized to perform a single task. Examples
of subsystems include adaptive antennas, equalizers,

multiuser detectors, and channel decoders. In a “con-
ventional” receiver, the interface between subsystems
involves the passing of bits, or hard-decisions, down
the stages of the chain. Whenever hard-decisions are
made, information is lost and becomes unavailable
to subsequent stages. Additionally, stages at the
beginning of the processing chain do not benefit from
information derived by stages further down the chain.
The interface between stages can be greatly improved
by using the same strategy used to decode turbo
codes. In [15] the term “turbo processing” was coined
to describe the general strategy of iterative feedback
decoding or detection.

With turbo processing, each subsystem is im-
plemented with a Soft-Input, Soft-Output (SISO)
algorithm, such as log-MAP. Soft-decision values,
typically in the form of log-likelihood ratios, are
passed down the chain and refined by subsequent
stages. The soft-output of the final stage is then
fed back to the first stage and a second iteration
of processing is initiated.  Several iterations of
turbo processing can be executed, although as with
turbo codes, a law of diminishing returns limits the
maximum processing gain. Turbo processing can
be used to combine channel decoding with source
decoding [16], symbol detection [15], equalization
[17], or multiuser detection [18].

An interesting example of turbo processing is
“turbo equalization”, which is a method of combining
equalization with channel decoding [17]. An equalizer
is a signal processing subsystem that compensates
for the intersymbol interference (ISI) created by
frequency selective channels. A frequency selective
channel can be described as a rate r = 1 convolutional
code defined over the field of real numbers. Following
this analogy, the optimal decoding algorithm is a
form of the Viterbi algorithm known as the Maximum
Likelihood Sequence Estimator (MLSE) [19]. Thus
the combination of a convolutional channel code with
a frequency selective channel can be viewed as a serial
concatenation of two convolutional codes, which can
be decoded with a turbo decoder.

The notion of “turbo equalization” can be modi-
fied for use with coded multiple access channels. In
a multiple access channel, several users transmit at
the same time and frequency. The multiplicity of
users gives rise to multiple access interference (MAT),
which can be described as a form of time varying
intersymbol interference. Thus the multiple access
channel can be viewed as a rate » = 1 convolutional
code with time varying coefficients taken over the
field of real numbers. In keeping with the analogy,
the optimal decoder is implemented using the Viterbi
algorithm and is called the optimal multiuser detector
(MUD) [20]. The combination of convolutional chan-
nel coding and multiple access channel is analogous
to the serial concatenation of two convolutional codes,



and is suitable for turbo decoding. For examples of
turbo multiuser detection, see [21], [18].

8 Summary

Turbo codes represent an important advancement in
the area of power efficient communications. The
extraordinary performance of turbo codes is due to
the combination of parallel concatenated coding, re-
cursive encoders, pseudo-random interleaving, and an
iterative decoder structure. However, the small free
distance of turbo codes limits the usefulness of turbo
codes to bit error probabilities in the range of 10~ to
108, Also, turbo coded systems typically experience
significant latency due to interleaving and interative
decoding. The iterative decoding technique used by
turbo codes can also be applied to other problems in
communications such as joint equalization/decoding
and joint multiuser-detection/decoding.

For more information about turbo codes and
iterative processing, see the following web page:

http://www.ee.vt.edu/valenti/turbo.html
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