
2015 WVU Tech High School Programming Competition

Department of Computer Science and Information Systems
West Virginia University Institute of Technology

April 25, 2015

Instructions
1. There are ten (10) problems in the packet, using letters A-J. These problems are NOT sorted by

difficulty.

2. All solutions must read from standard/console input and write to standard/console output.

3. Solutions for problems submitted for judging are called runs. Each run will be judged. Runs for each
particular problem will be judged in the order in which they are received. However, it is possible
that runs for different problems may be judged out of order. For example, you may submit a run for
B followed by a run for C, but receive the response for C first. DO NOT request clarifications on
when a response will be returned. If you have not received a response for a run within 10 minutes of
submitting it, you may ask the lab monitor to send a runner to the judge to determine the cause
of the delay. Under no circumstances should you ever submit a clarification request about a
submission for which you have not received a judgment.
The judges will respond to your submission with one of the following responses. In the event that
more than one response is applicable, the judges may respond with any of the applicable responses.

Response Explanation
YES Your submission has been judged correct.
NO - Compile Error Your submission didn’t compile correctly.
NO - Time Limit Exceeded Your submission ran for longer than 60 seconds without

terminating.
NO - Wrong Answer Your submission produced an incorrect answer for at least one

of the test cases.
NO - Runtime Error Your submission terminated abnormally.
NO - Output Format Error The output of your program does not match the correct output.
NO - Other (Please see staff) Your submission produced an error that is not classified from

above.
The judge will provide additional information if this happens.

4. A team’s score is based on the number of problems they solve and penalty points. The penalty points
reflect the time required to solve a problem correctly and the number of incorrect submissions made
before the problem is solved. For each problem solved correctly, penalty points are charged equal to
the time at which the problem was solved plus 20 minutes for each incorrect submission. No penalty

2015 WVU Tech High School Programming Competition 1



points are added for problems that are never solved. Teams are ranked by the number of problems
solved. Ties are resolved in favor of the team with the fewest penalty points.

5. Each problem contains sample input and output. However, you may be assured that the judges
will test your submission against several other more complex data sets, which will not be revealed.
Before submitting your run, you should design other input sets to fully test your program. Should
you receive an incorrect judgment, you are advised to consider what other data sets you could design
to further evaluate your program.

6. In the event that you think a problem is ambiguous, you may request a clarification. Read the
problem carefully before submitting a clarification. If the judges believe that the problem statement
is sufficiently clear, you will receive the response, “The problem statement is sufficient. No clarification
is necessary.” If you receive this response, you should read the problem description more carefully.
If you still think there is an ambiguity, you will have to be more specific or descriptive of the
ambiguity you have found. If the problem statement is ambiguous in specifying the correct output
for a particular input, please include that input data in the clarification request.

7. The submission of abusive programs or clarification requests to the judges will be considered grounds
for immediate disqualification.

8. Good luck and have fun!

2015 WVU Tech High School Programming Competition 2



Problem A
Roman Numerals

A student wants to perform simple arithmetic calculations using Roman numerals. The decimal values
of the Roman numerals are:

M 1000
D 500
C 100
L 50
X 10
V 5
I 1

The student wants to find the sum, difference, product, or quotient of two Roman numerals. All
operands and answers will be numbers between I and MMMCMXCIX.

Input
Each test case is described by one line of input having the format: number operator number.
Each of these fields will be separated by a space. The operators will be one of the four basic operators:
+, -, *, and /. A test case of 0 means there are no more test cases.

Output
For each case, display the case number followed by the Roman numeral result.

Sample Input Sample Output
XCIII - XLVI Case 1: XLVII
CXLVIII + MMMI Case 2: MMMCXLIX
0

2015 WVU Tech High School Programming Competition Problem A: Roman Numerals 3



Problem B
Slope of a Tangent

You are asked to find the slope of the tangent line of a curve at a particular point. You are given a point
and the equation of a polynomial. Your task is to find the slope of the tangent line of the polynomial at
the point x, where x is the x-coordinate.

For example, if x = 4.5, and the polynomial is 3.4x3 + 5.2x2 + 6, the output would be 253.35.

Input
Each test case is described by one line of input consisting of five numbers. The first number of the line
is the point x. The remaining four numbers are the coefficients of a polynomial in decreasing degree.
In other words, the second number is the coefficient for x3, the third number is the coefficient for x2,
the fourth number is the coefficient for x1, and the fifth number is the coefficient for x0. Each number
in a row is separated by a space. A test case of 0 0 0 0 0 indicates the end of input.

Output
For each case, display the case number followed by the slope of the tangent at the specified point
rounded to two decimal places.

Sample Input Sample Output
4.5 3.4 5.2 0 6 Case 1: 253.35
56.8 0 1 -5 6 Case 2: 108.60
0 0 0 0 0

2015 WVU Tech High School Programming Competition Problem B: Slope of a Tangent 4



Problem C
Caesear’s Cipher

Caesar’s cipher is a cryptography technique known as a shift cipher. It is one of the easiest encryption
techniques (and possibly one of the oldest). Encryption takes each letter from the original message and
shifts each letter by a set amount to a different letter. Note that the letter Z wraps around to the beginning
of the alphabet in terms of shifting. A blank space will not be shifted and is simply transferred as is to
the output.

For example:

• A shifted by 4 is E.

• A shifted by 2 is C.

• S shifted by 3 is V.

• Z shifted by 1 is A.

Your are asked to write a program that will convert any message by any shift value.

Input
Each line entered will contain an integer shift value (between 1 and 26), followed by a semicolon (’;’),
followed by a message that needs to be converted. The message will contain only uppercase letters. If
the message contains any lowercase letters, then the program should terminate.

Output
The output should display the encrypted message on a single line with blank spaces replicated from the
original input.

Sample Input Sample Output
4;MAY THE FORCE BE WITH YOU QEC XLI JSVGI FI AMXL CSY
1;ZEBRAS ARE FUN AFCSBT BSF GTO
exit

2015 WVU Tech High School Programming Competition Problem C: Caesar’s Cipher 5



Problem D
Modular Equation

You are asked to write a program that computes (an) mod d, where a, n, and d are very large positive
integers. The following theorem will be beneficial:

Theorem. Let a, b, and d be positive integers and let p = a mod d and q = b mod d. Then,

(ab) mod d = (pq) mod d.

Input
Each line of input contains three numbers. The first number represents the value of a (1 ≤ a ≤
5000000000000). The second number represents the value of n (1 ≤ n ≤ 10000000). The third
number represents the value of d (1 ≤ d ≤ 100000000). An input of 0 0 0 indicates the end of the
input.

Output
Output consists of a single value which is the result of (an) mod d.

Sample Input Sample Output
5 2 3 1
1232345656901 56483 23542289 10113541
2378902783120 1233879 100000000 0
1111111111111 1111111 11111111 6474909
0 0 0

2015 WVU Tech High School Programming Competition Problem D: Modular Equation 6



Problem E
Sorting

Sorting a list of items is commonly needed in various programs. There are many defined algorithms
for sorting a list. You need to create a sorting algorithm for words. The final list should be in reverse
alphabetical order, and any duplicates from the input should be removed. The words provided can be
uppercase, lowercase, or mixed case (i.e., both upper and lower). For example, the following words are
considered to be equivalent (i.e., duplicates): APPLE, apple, Apple, aPple, ApPle, aPPle, ApplE.

Input
Each line will represent a single list. Each word is separated by a semicolon (’;’). The very first thing
in the list is the size of the list, and it is separated from the rest of the list with a semicolon (’;’). If
the line contains a 99, the program should exit.

Output
The output should display the correctly ordered list in reverse alphabetical order and all duplicates
should be removed. Each word should be separated with a single comma (’,’) and a space (i.e., ’ ’).
All capitalization should match the original input.

Sample Input
6;Apple;banana;Carrot;grapes;kiwi;Lettuce
7;ZEBRAS;horse;Platypus;pig;Dog;CAT;pigglet
99

Sample Output
Lettuce, kiwi, graphs, Carrot, banana, Apple
ZEBRAS, Platypus, piglet, pig, horse, Dog, CAT

2015 WVU Tech High School Programming Competition Problem E: Sorting 7



Problem F
Palindrome Checker

A palindrome is a sequence of characters that is symmetrical. In other words, it is a string that is
read identically from left to right as well as from right to left. For example, the number 12321 is a
palindrome, while the number 1234 is not a palindrome. Write a program that inputs an integer and
outputs whether or not the number is a palindrome.

Input
Each input will be an integer ranging from 1 to 1000000000. An input of 0 indicates that the program
should terminate.

Output
For each input, the output should be either Yes or No. Yes implies that the input integer is a
palindrome. No implies that the input integer is not a palindrome.

Sample Input Sample Output
12321 Yes
1234 No
0

2015 WVU Tech High School Programming Competition Problem F: Palindrome Checker 8



Problem G
Matrix Multiplication

A square matrix A is an n × n grid, where each element consists of a number. An example of a 3 × 3
matrix is shown below:  1 2 3

4 5 6
7 8 9


We denote each element of the matrix as Aij , where i is the row number, and j is the column number.
Using the above example,

A21 = 4.

Similar to numbers in general, we can add or subtract matrices. This is very simple since we add or
subtract the corresponding elements in each matrix. For example, if we want to add matrices A and B,
we simply add Aij and Bij , for all 1 ≤ i, j ≤ n.

Multiplying matrices is not as simple. Suppose we want to multiply matrices A and B and store the
result in matrix C, the formula is

cij =
∑

aik · bkj, 1 ≤ k ≤ n.

For example, suppose we have the matrices below:

A =

 1 2 3
4 5 6
7 8 9

 B =

 9 8 7
6 5 4
3 2 1


If we want to get c11, we would have to compute

a11b11 + a12b21 + a13b31.

You are asked to write a program that multiplies two n× n matrices, where 1 ≤ n ≤ 10.

Input
The first line of input is the number of rows and columns of the matrix, which we denote as n, where
1 ≤ n ≤ 10. The next 2n lines provide the data for both matrices. The first n lines give the rows of
the first matrix, and each row contains n integers. The remaining n lines give the rows of the second
matrix, and each row contains n integers. Each integer ranges from 0 to 100. If n = 0, then the program
should terminate.

Output
Output will consists of n rows, where each row contains n numbers. This is the product of multiplying
the two input matrices.

2015 WVU Tech High School Programming Competition Problem G: Matrix Multiplication 9



Sample Input Sample Output
3 30 24 18
1 2 3 84 69 54
4 5 6 138 114 90
7 8 9 5125 7125
9 8 7 2450 3300
6 5 4
3 2 1
2
50 75
25 30
80 90
15 35
0

2015 WVU Tech High School Programming Competition Problem G: Matrix Multiplication 10



Problem H
Ring Game

N people are playing game. They sit in a circle with N seats. The example below shows a circle with
6 players.

1

2

3

4

5

6

Starting from the person sitting on seat “1,” they count off clockwise by some number M . The person
who has this number loses and leaves the circle. Then, the rest continue playing the game by starting
from the person who is clockwise to the person who just left. The last person remaining is the winner.

Using the above example, if M = 3, the first person to be eliminated is the person seated at “3”, then
“6”, then “4”, then “2”, then “5.” This means the person seated at “1” is the winner.

Input
Each line of input contains two integers N (1 < N ≤ 5000) and M (1 < M < N ). N is the number of
players. M is the number to count before eliminating a player. A line with the input 0 0 indicates that
the program should terminate.

Output
For each line of input, the output will be a single integer indicating the number of the winning seat.

Sample Input Sample Output
6 3 1
10 6 3
150 25 123
0 0

2015 WVU Tech High School Programming Competition Problem H: Ring Game 11



Problem I
Faulty Odometer

You are given a car odometer which displays the miles traveled as an integer. However, the odometer
has a defect: It proceeds from the digit 3 to the digit 5, always skipping over the digit 4. This defect
shows up in all positions (the ones, the tens, the hundreds, etc.). For example, if the odometer displays
15339, and the car travels one mile, the odometer reading changes to 15350 instead of 15340.

Input
Each line of input contains a positive integer int the range of 1 to 999999999 which represents an
odometer reading. Leading zeros will not appear in the input. The end of input is indicated by a line
containing a single 0. You may assume that no odometer reading will contain the digit 4.

Output
Each line of input will produce exactly one line of output, which will contain: The odometer reading
from the input, a colon, one blank space, and the actual number of miles traveled by the car.

Sample Input Sample Output
13 13: 12
15 15: 13
2003 2003: 1461
2005 2005: 1462
239 239: 197
250 250: 198
1399 1399: 1052
1500 1500: 1053
999999 999999: 531440
0

2015 WVU Tech High School Programming Competition Problem I: Faulty Odometer 12



Problem J
Fibonacci Sequence

The Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

By definition, the first two numbers in the sequence, which we will denote as F1 and F2, are 1. We can
compute the nth Fibonacci number by computing

Fn = Fn−1 + Fn−2.

For example, F3 = F2 + F1 = 1 + 1 = 2. Further, F4 = F3 + F2 = 2 + 1 = 3.

You are asked to write a variation of the Fibonacci sequence. Instead of letting F1 and F2 be 1, we can
have any positive integer be F1 and F2. Your task is to compute the nth Fibonacci number, given the first
two numbers of the sequence. For example, if we set F1 = 3 and F2 = 6, then F3 = F2+F1 = 3+6 = 9.

Input
Each line of input will consist of three integers. The first two integers are the first two Fibonacci
numbers, and each number ranges from 1 to 1000. The third number is the nth Fibonacci number to
compute. Note that n can range from 3 to 75.

Output
Each line of input will produce a single number for the output. The number is the nth Fibonacci number
where the first two numbers of the input line are the first two Fibonacci numbers.

Sample Input Sample Output
3 6 3 9
3 6 4 15
12 16 10 796
0 0 0

2015 WVU Tech High School Programming Competition Problem J: Fibonacci Sequence 13


