
HASHING
Objectives

CHAPTER 48

■ To know what hashing is for (§48.3).

■ To obtain the hash code for an object and design the hash function to map a key to
an index (§48.4).

■ To handle collisions using open addressing (§48.5).

■ To know the differences among linear probing, quadratic probing,
and double hashing (§48.5).

■ To handle collisions using separate chaining (§48.6).

■ To understand the load factor and the need
for rehashing (§48.7).

■ To implement MyHashMap using hashing (§48.8).

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–1

48–2 Chapter 48 Hashing

48.1 Introduction
The preceding chapters introduced search trees. An element can be found in O(logn) time in a
well-balanced search tree. Is there a more efficient way to search for an element in a con-
tainer? This chapter introduces a technique called hashing. You can use hashing to implement
a map or a set to search, insert, and delete an element in O(1) time.

48.2 Map
Recall that a map is a data structure that stores entries. Each entry contains two parts: key and
value. The key is also called a search key, which is used to search for the corresponding value.
For example, a dictionary can be stored in a map, where the words are the keys and the defin-
itions of the words are the values.

Note
A map is also called a dictionary, a hash table, or an associative array.

The Java collections framework defines the java.util.Map interface for modeling maps.
Three concrete implementations are java.util.HashMap, java.util.LinkedHashMap,
and java.util.TreeMap. java.util.HashMap is implemented using hashing,
java.util.LinkedHashMap using LinkedList, and java.util.TreeMap using red-
black trees. You will learn the concept of hashing and use it to implement a map in this chapter.
In the chapter exercises, you will implement LinkedHashMap and TreeMap.

48.3 What is Hashing?
If you know the index of an element in the array, you can retrieve the element using the index
in O(1) time. So, can we store the values in an array and use the key as the index to find the
value? The answer is yes—if you can map a key to an index. The array that stores the values
is called a hash table. The function that maps a key to an index in the hash table is called a
hash function. As shown in Figure 48.1, a hash function obtains an index from a key and uses
the index to retrieve the value for the key. Hashing is a technique that retrieves the value using
the index obtained from the key without performing a search.

How do you design a hash function that produces an index from a key? Ideally, we would
like to design a function that maps each search key to a different index in the hash table. Such
a function is called a perfect hash function. However, it is difficult to find a perfect hash

why hashing?

map
key
value

dictionary
hash table
associative array

hash table
hash function

hashing

perfect hash function

Hash function

i = hash(key)

0

1

2

i

N – 1

key value
An entry

.

.

.

.

.

FIGURE 48.1 A hash function maps a key to an index in the hash table.

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–2

48.4 Hash Functions and Hash Codes 48–3

function. When two or more keys are mapped to the same hash value, we say that a collision
has occurred. We will discuss how to deal with collisions later. Although there are ways to
deal with them, it is better to avoid collisions in the first place. So, you should design a fast
and easy-to-compute hash function that minimizes collisions.

48.4 Hash Functions and Hash Codes
A typical hash function first converts a search key to an integer value called a hash code, then
compresses the hash code into an index to the hash table.

Java’s root class Object has the hashCode method that returns an integer hash code. By
default, the method returns the memory address for the object. The general contract for the
hashCode is as follows:

■ You should override the hashCode method whenever the equals method is over-
ridden to ensure that two equal objects return the same hash code.

■ During the execution of a program, invoking the hashCode method multiple times
returns the same integer, provided that the object’s data are not changed.

■ Two unequal objects may have the same hash code, but you should implement the
hashCode method to avoid too many such cases.

48.4.1 Hash Codes for Primitive Types
For a search key of the type byte, short, int, and char, simply cast it to int. So, two dif-
ferent search keys of any one of these types will have different hash codes.

For a search key of the type float, use Float.floatToIntBits(key) as the hash
code. Note that floatToIntBits(float f) returns an int value whose bit representation
is the same as the bit representation for the floating number f. So, two different search keys of
the float type will have different hash codes.

For a search key of the type long, simply casting it to int would not be a good choice,
because all keys that differ in only the first 32 bits will have the hash code. To take the first 32
bits into consideration, divide the 64 bits into two halves and perform the exclusive-or opera-
tion to combine the two halves. This process is called folding. So, the hashing code is

int hashCode = (int)(key ^ (key >> 32));

Note that >> is the right-shift operator that shifts the bits 32 position to the right. For example,
1010110 >> 2 yields 0010101. The is the bitwise exclusive-or operator. It operates on two
corresponding bits of the binary operands. For example, 1010110 ^ 0110111 yields
1100001.

For a search key of the type double, first convert it to a long value using doubleToLongBits,
then perform a folding as follows:

long bits = Double.doubleToLongBits(key);
int hashCode = (int)(bits ^ (bits >> 32));

48.4.2 Hash Codes for Strings
Search keys are often strings. So, it is important to design a good hash function for strings. An
intuitive approach is to sum the Unicode of all characters as the hash code for the string. This
approach may work if two search keys in an application don’t contain same letters. But it will
produce a lot of collisions if the search keys contain the same letters such as tod and dot.

A better approach is to generate a hash code that takes the position of characters into con-
sideration. Specifically, let the hash code be

s0*b
1N-12

+ s1*b
1N-22

+
Á

+ sN-1

¿

collision

hash code

byte, short, int, char

float

long

folding

double

folding

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–3

48–4 Chapter 48 Hashing

where si is s.charAt(i). This expression is a polynomial for some positive b. So, this is
called a polynomial hash code. By Horner’s rule, it can be evaluated efficiently as follows:

This computation can cause an overflow for long strings. Arithmetic overflow is ignored in
Java. You should choose an appropriate value b to minimize collision. Experiments show that
the good choices for b are 31, 33, 37, 39, and 41. In the String class, the hashCode is over-
ridden using the polynomial hash code with b being 31.

48.4.3 Compressing Hash Codes
The hash code for a key can be a large integer that is out of the range for the hash-table index.
You need to scale it down to fit in the range of the index. Assume the index for a hash table is
between 0 and N-1. The most common way to scale an integer to between 0 and N-1 is to use

h(hashCode) = hashCode % N

To ensure that the indices are spread evenly, choose N to be a prime number greater than 2.
Ideally you should choose a prime number for N. However, it is time consuming to find a

large prime number. In the Java API implementation for java.util.HashMap, N is conve-
niently set to a value of power 2. To ensure the hashing is evenly distributed, a supplemental
hash function is also used along with the primary hash function. The supplemental function is
defined as follows:

private static int supplementalHash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);

}

^ and >>> are bitwise exclusive-or and right-shift operations. See Supplement Part III.D,
“Bitwise Operations,” on the Companion Website.

The primary hash function is defined as follows:

h(hashCode) = supplementalHash(hashCode) % N

Note that the function can also be written as

h(hashCode) = supplementalHash(hashCode) & (N – 1)

since N is a power of 2.

48.5 Handling Collisions Using Open Addressing
A collision occurs when two keys are mapped to the same index in a hash table. Generally,
there are two ways for handling collisions: open addressing and separate chaining.

Open addressing is to find an open location in the hash table in the event of collision.
Open addressing has several variations: linear probing, quadratic probing, and double
hashing.

48.5.1 Linear Probing
When a collision occurs during the insertion of an entry to a hash table, linear probing finds the
next available location sequentially. For example, if a collision occurs at hashTable[k % N],
check whether hashTable[(k+1) % N] is available. If not, check hashTable[(k+2) % N]
and so on, until an available cell is found, as shown in Figure 48.2.

1Á 11s0*b + s12b + s22b +
Á

+ sN-22b + sN-1

polynomial hash code

open addressing

separate chaining

linear probing

quadratic probing
double hashing

add entry

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–4

48.5 Handling Collisions Using Open Addressing 48–5

Note
When probing reaches the end of the table, it goes back to the beginning of the table. Thus, the
hash table is treated as if it were circular.

To search for an entry in the hash table, obtain the index, say k, from the hash function for the
key. Check whether hashTable[k % n] contains the entry. If not, check whether
hashTable[(k+1) % n] contains the entry, and so on, until it is found, or an empty cell is
reached.

To remove an entry from the hash table, search the entry that matches the key. If entry is
found, place a special marker to denote that the entry is available. Each cell in the hash table
has three possible states: occupied, available, or empty. Note that an empty cell is also avail-
able for insertion.

Linear probing tends to cause groups of consecutive cells in the hash table to be occupied.
Each group is called a cluster. Each cluster is actually a probe sequence that you must search
when retrieving, adding, or removing an entry. As clusters grow in size, they may merge into
even larger clusters, further slowing down the search time. This is a big disadvantage of linear
probing.

Pedagogical Note
Follow the link www.cs.armstrong.edu/liang/animation/HashingLinearProbingAnimation.html to see how to
hashing with linear probing works, as shown in Figure 48.3.

48.5.2 Quadratic Probing
Quadratic probing can avoid the clustering problem in linear probing. Linear probing looks at
the consecutive cells beginning at index k. Quadratic probing, on the other hand, looks at the
cells at indices (k + j2) % n, for i.e., k, (k + 1) % n, (k + 4) % n, (k + 9) % n,
and so on, as shown in Figure 48.4.

Quadratic probing works in the same way as linear probing except for the change of search
sequence. Quadratic probing avoids the clustering problem in linear probing, but it has its
own clustering problem, called secondary clustering; i.e., the entries that collide with an
occupied entry use the same probe sequence.

Linear probing guarantees that an available cell can be found for insertion as long as the
table is not full. However, there is no such guarantee for quadratic probing.

Á ,j Ú 0,

circular hash table

search entry

remove entry

cluster

0

1

2

3

4

5

6

7

8

9

10

key: 44

key: 4

key: 16

key: 28

key: 21

For simplicity, only the keys are
shown and the values are not
shown. Here N is 11 and
index = key % N.

New element with
key 26 to be inserted

Probe 3 times before
finding an empty

cell

FIGURE 48.2 Linear probe finds the next available location sequentially.

linear probing animation

secondary clustering

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–5

48–6 Chapter 48 Hashing

FIGURE 48.3 The animation tool shows how linear probing works.

0

1

2

3

4

5

6

7

8

9

10

key: 44

key: 4

key: 16

key: 28

key: 21

.

.

.

For simplicity, only the keys are
shown and not the e values. Here
N is 11 and index = key % N.

New element with
key 26 to be inserted

Quadratic probe 2
times before finding

an empty cell

FIGURE 48.4 Quadratic probe increases the next index in the sequence by j2 for
j 1, 2, 3, Á .=

48.5.3 Double Hashing
Another open addressing scheme that avoids the clustering problem is known as double
hashing. Starting from the initial index k, both linear probing and quadratic probing add an
increment to k to define a search sequence. The increment is 1 for linear probing and for
quadratic probing. These increments are independent of the keys. Double hashing uses a sec-
ondary hash function on the keys to determine the increments to avoid the clustering problem.

j2

double hashing

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–6

48.5 Handling Collisions Using Open Addressing 48–7

For example, let the primary hash function h and secondary hash function h' on a hash
table of size 11 be defined as follows:

h(k) = k % 11;
h'(k) = 7 – k % 7;

For a search key of 12, we have

h(12) = 12 % 11 = 1;
h'(k) = 7 – 12 % 7 = 2;

The probe sequence for key 12 starts at index 1 with an increment 2, as shown in Figure 48.5.

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 27

key: 23

h(12)

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 27

key: 23

h(12) + h'(12)

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 27

key: 23

h(12) + 2*h'(12)

.

.
.
.

.

.

FIGURE 48.5 The secondary hash function in a double hashing determines the increment of the next index in the probe
sequence.

The indices of the probe sequence are as follows: 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10. This
sequence reaches the entire table. You should design your functions to produce the probe
sequence that reaches the entire table. Note that the second function should never have a zero
value, since zero is not an increment.

0

1

2

3
4

5

6

7

8

9

10

key: 44

key: 28

key: 21

key: 26key: 4

key: 16

New element with
key 26 to be inserted

For simplicity, only the keys are
shown, and not the values. Here
N is 11 and index = key % N.

.

.

.

FIGURE 48.6 Separate chaining chains the entries with the same hash index in a bucket.

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–7

48–8 Chapter 48 Hashing

FIGURE 48.7 The animation tool shows how separate chaining works.

48.6 Handling Collisions Using Separate Chaining
The preceding section introduced handling collisions using open addressing. The open address-
ing scheme finds a new location when a collision occurs. This section introduces handling colli-
sions using separate chaining. The separate chaining scheme places all entries with the same
hash index into the same location, rather than finding new locations. Each location in the sepa-
rate chaining scheme is called a bucket. A bucket is a container that holds multiple entries.

You may implement a bucket using an array, ArrayList, or LinkedList. We will use
LinkedList for demonstration. You can view each cell in the hash table as the reference to
the head of a linked list, and elements in the linked list are chained starting from the head, as
shown in Figure 48.6.

48.7 Load Factor and Rehashing
Load factor measures how full the hash table is. It is the ratio of the size of the map to the

size of the hash table, i.e., where n denotes the number of elements and N the

number of locations in the hash table.
Note that is zero if the map is empty. For the open addressing scheme, is between 0 and

1; is 1 if the hash table is full. For the separate chaining scheme, can be any value. As
increases, the probability of collision increases. Studies show that you should maintain the
load factor under 0.5 for the open addressing scheme and under 0.9 for the separate chain-
ing scheme.

Keeping the load factor under a certain threshold is important for the performance of hash-
ing. In the implementation of java.util.HashMap class in the Java API, the threshold 0.75
is used. Whenever the load factor exceeds the threshold, you need to increase the hash-table

lll

ll

l =

n

N
,

l

bucket

implementing bucket

load factor

threshold

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–8

48.8 Implementing a Map Using Hashing 48–9

size and rehash all the entries in the map to the new hash table. Notice that you need to change
the hash functions, since the hash-table size has been changed. To reduce the likelihood of
rehashing, since it is costly, you should at least double the hash-table size. Even with periodic
rehashing, hashing is an efficient implementation for map.

Pedagogical Note
Follow the link www.cs.armstrong.edu/liang/animation/HashingUsingSeparateChainingAnimation.html to
see how to hashing with linear probing works, as shown in Figure 48.7.

48.8 Implementing a Map Using Hashing
Now you know the concept of hashing. You know how to design a good hash function to map
a key to an index in a hash table, how to measure performance using the load factor, and how
to increase the table size and rehash to maintain the performance. This section demonstrates
how to implement a map using separate chaining.

We design our custom Map interface to mirror java.util.Map with some minor varia-
tions. In the java.util.Map interface, the keys are distinct. However, a map may allow
duplicate keys. Our map interface allows duplicate keys. We name the interface MyMap and a
concrete class MyHashMap, as shown in Figure 48.8.

separate chaining animation

rehash

duplicate keys

MyHashMap<K, V>

+clear(): void

+containsKey(key: K): boolean

+containsValue(value: V): boolean

+entrySet(): Set<Entry<K, V>>

+get(key: K): V

+getAll(key: K): Set<V>

+isEmpty(): boolean

+keySet(): Set<K>

+put(key: K, value: V): V

+remove(key: K): void

+size(): int

+values(): Set<V>

Removes all entries from this map.

Returns true if this map contains an entry for the
 specified key.

Returns true if this map maps one or more keys to the
 specified value.

Returns a set consisting of the keys in this map.

Returns a set consisting of the entries in this map.

Returns a value for the specified key in this map.

Returns all values for the specified key in this map.

Returns true if this map contains no mappings.

Puts a mapping in this map.

Removes the entries for the specified key.

Returns the number of mappings in this map.

Returns a set consisting of the values in this map.

Concrete class that implements MyMap

Constructs an entry with the specified key and value.

Returns the key in the entry.

Returns the value in the entry.

-key: K

-value: V

+Entry(key: K, value: V)

+getkey(): Key

+getValue(): Value

MyMap.Entry<K, V>

«interface»
MyMap<K, V>

FIGURE 48.8 MyHashMap implements the MyMap interface.

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–9

48–10 Chapter 48 Hashing

The get(key) method gets one of the values that match the key. The getAll(key)
method retrieves all values that match the key.

How do you implement MyHashMap? If you use an ArrayList and store a new entry at
the end of the list, the search time will be O(n). If you implement MyHashMap using an AVL
tree, the search time will be O(logn). Nevertheless, you can implement MyHashMap using
hashing to obtain an O(1) time search algorithm. Listing 48.1 shows the MyMap interface and
Listing 48.2 implements MyHashMap using separate chaining.

LISTING 48.1 MyMap.java
1 public interface MyMap<K, V> {
2 /** Remove all of the entries from this map */
3 public void clear();
4
5 /** Return true if the specified key is in the map */
6 public boolean containsKey(K key);
7
8 /** Return true if this map contains the specified value */
9 public boolean containsValue(V value);
10
11 /** Return a set of entries in the map */
12 public java.util.Set<Entry<K, V>> entrySet();
13
14 /** Return the first value that matches the specified key */
15 public V get(K key);
16
17 /** Return all values for the specified key in this map */
18 public java.util.Set<V> getAll(K key);
19
20 /** Return true if this map contains no entries */
21 public boolean isEmpty();
22
23 /** Return a set consisting of the keys in this map */
24 public java.util.Set<K> keySet();
25
26 /** Add an entry (key, value) into the map */
27 public V put(K key, V value);
28
29 /** Remove an entry for the specified key */
30 public void remove(K key);
31
32 /** Return the number of mappings in this map */
33 public int size();
34
35 /** Return a set consisting of the values in this map */
36 public java.util.Set<V> values();
37
38 /** Define inner class for Entry */
39 public static class Entry<K, V> {
40 K key;
41 V value;
42
43 public Entry(K key, V value) {
44 this.key = key;
45 this.value = value;
46 }
47
48 public K getKey() {
49 return key;

interface MyMap

clear

containsKey

containsValue

entrySet

get

getAll

isEmpty

keySet

put

remove

size

values

Entry inner class

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–10

48.8 Implementing a Map Using Hashing 48–11

50 }
51
52 public V getValue() {
53 return value;
54 }
55
56 public String toString() {
57 return "[" + key + ", " + value + "]";
58 }
59 }
60 }

LISTING 48.2 MyHashMap.java
1 import java.util.LinkedList;
2
3
4 // Define the default hash-table size. Must be a power of 2
5 private static int DEFAULT_INITIAL_CAPACITY = 4;
6
7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
8 private static int MAXIMUM_CAPACITY = 1 << 30;
9
10 // Current hash-table capacity. Capacity is a power of 2
11 private int capacity;
12
13 // Define default load factor
14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
15
16 // Specify a load factor used in the hash table
17 private float loadFactorThreshold;
18
19 // The number of entries in the map
20 private int size = 0;
21
22 // Hash table is an array with each cell being a linked list
23 LinkedList<MyMap.Entry<K,V>>[] table;
24
25 /** Construct a map with the default capacity and load factor */
26
27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
28 }
29
30 /** Construct a map with the specified initial capacity and
31 * default load factor */
32
33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
34 }
35
36 /** Construct a map with the specified initial capacity
37 * and load factor */
38
39 if (initialCapacity > MAXIMUM_CAPACITY)
40 this.capacity = MAXIMUM_CAPACITY;
41 else
42 this.capacity = trimToPowerOf2(initialCapacity);
43
44 this.loadFactorThreshold = loadFactorThreshold;
45 table = new LinkedList[capacity];
46 }

public MyHashMap(int initialCapacity, float loadFactorThreshold) {

public MyHashMap(int initialCapacity) {

public MyHashMap() {

public class MyHashMap<K, V> implements MyMap<K, V> { class MyHashMap

default initial capacity

maximum capacity

current capacity

default load factor

load-factor threshold

size

hash table

no-arg constructor

constructor

constructor

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–11

48–12 Chapter 48 Hashing

47
48 /** Remove all of the entries from this map */
49
50 size = 0;
51 removeEntries();
52 }
53
54 /** Return true if the specified key is in the map */
55
56 if (get(key) != null)
57 return true;
58 else
59 return false;
60 }
61
62 /** Return true if this map contains the specified value */
63
64 for (int i = 0; i < capacity; i++) {
65 if (table[i] != null) {
66 LinkedList<Entry<K, V>> bucket = table[i];
67 for (Entry<K, V> entry: bucket)
68 if (entry.getValue().equals(value))
69 return true;
70 }
71 }
72
73 return false;
74 }
75
76 /** Return a set of entries in the map */
77
78 java.util.Set<MyMap.Entry<K, V>> set =
79 new java.util.HashSet<MyMap.Entry<K, V>>();
80
81 for (int i = 0; i < capacity; i++) {
82 if (table[i] != null) {
83 LinkedList<Entry<K, V>> bucket = table[i];
84 for (Entry<K, V> entry: bucket)
85 set.add(entry);
86 }
87 }
88
89 return set;
90 }
91
92 /** Return the first value that matches the specified key */
93
94 int bucketIndex = hash(key.hashCode());
95 if (table[bucketIndex] != null) {
96 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
97 for (Entry<K, V> entry: bucket)
98 if (entry.getKey().equals(key))
99 return entry.getValue();
100 }
101
102 return null;
103 }
104
105 /** Return all values for the specified key in this map */

public V get(K key) {

public java.util.Set<MyMap.Entry<K,V>> entrySet() {

public boolean containsValue(V value) {

public boolean containsKey(K key) {

public void clear() {clear

containsKey

containsValue

entrySet

get

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–12

48.8 Implementing a Map Using Hashing 48–13

106
107 java.util.Set<V> set = new java.util.HashSet<V>();
108 int bucketIndex = hash(key.hashCode());
109 if (table[bucketIndex] != null) {
110 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
111 for (Entry<K, V> entry: bucket)
112 if (entry.getKey().equals(key))
113 set.add(entry.getValue());
114 }
115
116 return set;
117 }
118
119 /** Return true if this map contains no entries */
120
121 return size == 0;
122 }
123
124 /** Return a set consisting of the keys in this map */
125
126 java.util.Set<K> set = new java.util.HashSet<K>();
127
128 for (int i = 0; i < capacity; i++) {
129 if (table[i] != null) {
130 LinkedList<Entry<K, V>> bucket = table[i];
131 for (Entry<K, V> entry: bucket)
132 set.add(entry.getKey());
133 }
134 }
135
136 return set;
137 }
138
139 /** Add an entry (key, value) into the map */
140
141 if (size >= capacity * loadFactorThreshold) {
142 if (capacity == MAXIMUM_CAPACITY)
143 throw new RuntimeException("Exceeding maximum capacity");
144
145 rehash();
146 }
147
148 int bucketIndex = hash(key.hashCode());
149
150 // Create a linked list for the bucket if it is not created
151 if (table[bucketIndex] == null) {
152 table[bucketIndex] = new LinkedList<Entry<K, V>>();
153 }
154
155 // Add an entry (key, value) to hashTable[index]
156 table[bucketIndex].add(new MyMap.Entry<K, V>(key, value));
157
158 size++; // Increase size
159
160 return value;
161 }
162
163 /** Remove the entries for the specified key */
164
165 int bucketIndex = hash(key.hashCode());

public void remove(K key) {

public V put(K key, V value) {

public java.util.Set<K> keySet() {

public boolean isEmpty() {

public java.util.Set<V> getAll(K key) { getAll

isEmpty

keySet

put

remove

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–13

48–14 Chapter 48 Hashing

166
167 // Remove the first entry that matches the key from a bucket
168 if (table[bucketIndex] != null) {
169 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
170 for (Entry<K, V> entry: bucket)
171 if (entry.getKey().equals(key)) {
172 bucket.remove(entry);
173 size--; // Decrease size
174 break; // Remove just one entry that matches the key
175 }
176 }
177 }
178
179 /** Return the number of mappings in this map */
180
181 return size;
182 }
183
184 /** Return a set consisting of the values in this map */
185
186 java.util.Set<V> set = new java.util.HashSet<V>();
187
188 for (int i = 0; i < capacity; i++) {
189 if (table[i] != null) {
190 LinkedList<Entry<K, V>> bucket = table[i];
191 for (Entry<K, V> entry: bucket)
192 set.add(entry.getValue());
193 }
194 }
195
196 return set;
197 }
198
199 /** Hash function */
200
201 return supplementalHash(hashCode) & (capacity - 1);
202 }
203
204 /** Ensure the hashing is evenly distributed */
205
206 h ^= (h >>> 20) ^ (h >>> 12);
207 return h ^ (h >>> 7) ^ (h >>> 4);
208 }
209
210 /** Return a power of 2 for initialCapacity */
211
212 int capacity = 1;
213 while (capacity < initialCapacity) {
214 capacity <<= 1;
215 }
216
217 return capacity;
218 }
219
220 /** Remove all entries from each bucket */
221
222 for (int i = 0; i < capacity; i++) {
223 if (table[i] != null) {
224 table[i].clear();
225 }

private void removeEntries() {

private int trimToPowerOf2(int initialCapacity) {

private static int supplementalHash(int h) {

private int hash(int hashCode) {

public java.util.Set<V> values() {

public int size() {size

values

hash

supplementalHash

trimToPowerOf2

removeEntries

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–14

48.8 Implementing a Map Using Hashing 48–15

226 }
227 }
228
229 /** Rehash the map */
230
231 java.util.Set<Entry<K, V>> set = entrySet(); // Get entries
232 capacity <<= 1; // Double capacity
233 table = new LinkedList[capacity]; // Create a new hash table
234 size = 0; // Clear size
235
236 for (Entry<K, V> entry: set) {
237 put(entry.getKey(), entry.getValue()); // Store to new table
238 }
229 }
240
241 /** Return a string representation for this map */
242
243 StringBuilder builder = new StringBuilder("[");
244
245 for (int i = 0; i < capacity; i++) {
246 if (table[i] != null && table[i].size() > 0)
247 for (Entry<K, V> entry: table[i])
248 builder.append(entry);
249 }
250
251 builder.append("]");
252 return builder.toString();
253 }
254 }

The MyHashMap class implements the MyMap interface using separate chaining. The parameters
that determine the hash-table size and load factors are defined in the class. The default initial
capacity is 4 (line 5) and the maximum capacity is (line 8). The current hash-table capacity
is designed as a power of 2 (line 11). The default load factor threshold is 0.75f (line 14). You
can specify a custom load-factor threshold when constructing a map. The custom load-factor
threshold is stored in loadFactorThreshold (line 17). The data field size denotes the num-
ber of entries in the map (line 20). The hash table is an array. Each cell in the array is a linked list
(line 23).

Three constructors are provided to construct a map. You can construct a default map with
the default capacity and load-factor threshold using the no-arg constructor (lines 26–28).
You can construct a map with the specified capacity and a default load-factor threshold (lines
32–34). You can construct a map with the specified capacity and load-factor threshold (lines
38–46).

The clear method removes all entries from the map (lines 49–52). It invokes
removeEntries() that deletes all entries in the buckets (lines 221–227). This method takes
O(capacity) time.

The get(key) method returns the value of the first entry with the specified key (lines
93–103). This method takes O(1) time.

The containsKey(key) method checks whether the specified key is in the map by by invok-
ing the get method (lines 55–60). Since get method takes O(1) time, the containsKey(key)
method takes O(1) time.

The containsValue(value) method checks whether the value is in the map (lines
63–74). This method takes time. It is actually O(capacity), since

The entrySet() method returns a set that contains all entries in the map (lines 77–90).
This method takes O(capacity) time.

capacity 7 size.
O1capacity + size2

230

public String toString() {

private void rehash() { rehash

toString

hash-table parameters

three constructors

clear

containsKey

containsValue

entrySet

get

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–15

48–16 Chapter 48 Hashing

TABLE 48.1 Time Complexities for Methods in
MyHashMap

Methods Time

clear() O(capacity)

containsKey(key: Key) O(l)

containsValue(value: V) O(capacity)

entrySet() O(capacity)

get(key: K) O(l)

getAll(key: K) O(l)

isEmpty() O(l)

keySet() O(capacity)

put(key: K, value: V) O(l)

remove(key: K) O(l)

size() O(l)

values() O(capacity)

rehash() O(capacity)

The getAll(key) method returns the value of all entries with the specified key (lines
106–117). This method takes O(1) time.

The isEmpty() method simply returns true if the map is empty (lines 120–122). This
method takes O(1) time.

The keySet() method returns all keys in the map as a set. The method finds the keys from
each bucket and add them to a set (lines 125–137). This method takes O(capacity) time.

The put(key, value) method adds a new entry into the map. The method first checks
whether the size exceeds the load-factor threshold (line 141). If so, invoke rehash() (line 145)
to increase the capacity and store entries into the new hash table.

The rehash() method first copies all entries in a set (line 231), doubles the capacity
(line 232), creates a new hash table (line 233), and clears the size (line 234). The method
then copies the entries into the new hash table (lines 236–238). The rehash method takes
O(capacity) time. If no rehash is performed, the put method takes O(1) time to add a new
entry.

The remove(key) method removes all entries with the specified key in the map (lines
164–177). This method takes O(1) time.

The size() method simply returns the size of the map (lines 180–182). This method takes
O(1) time.

The values() method returns all values in the map. The method examines each entry
from all buckets and add it to a set (lines 185–197). This method takes O(capacity) time.

The hash() method invokes the supplementalHash to ensure that the hashing is evenly
distributed to produce an index for the hash table (lines 200–208). This method takes O(1)
time.

Table 48.1 summarizes the time complexities of the methods in MyHashMap.
Since rehashing does not happen very often, the time complexity for the put method is

O(1). Note that the complexities of the clear, entrySet, keySet, values, and rehash

getAll

isEmpty

keySet

put

rehash

remove

size

values

hash

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–16

48.9 Set 48–17

methods depend on capacity, so to avoid poor performance for these methods you should
choose an initial capacity carefully.

Listing 48.3 gives a test program that uses MyHashMap.

LISTING 48.3 TestMyHashMap.java
1 public class TestMyHashMap {
2 public static void main(String[] args) {
3 // Create a map
4 MyMap<String, Integer> map = new MyHashMap<String, Integer>();
5 map.put("Smith", 30);
6 map.put("Anderson", 31);
7 map.put("Lewis", 29);
8 map.put("Cook", 29);
9
10 System.out.println("Entries in map: " + map);
11
12 System.out.println("The age for " + "Lewis is " +
13 map.get("Lewis").intValue());
14
15 System.out.println("Is Smith in the map? " +
16 map.containsKey("Smith"));
17 System.out.println("Is age 33 in the map? " +
18 map.containsValue(33));
19
20 map.remove("Smith");
21 System.out.println("Entries in map: " + map);
22
23 map.clear();
24 System.out.println("Entries in map: " + map);
25 }
26 }

create a map
put entries

display entries

get value

is key in map?

is value in map?

remove entry

set

Entries in map: [[Anderson, 31][Smith, 30][Lewis, 29][Cook, 29]]
The age for Lewis is 29
Is Smith in the map? true
Is age 33 in the map? false
Entries in map: [[Anderson, 31][Lewis, 29][Cook, 29]]
Entries in map: []

The program creates a map using MyHashMap (line 4), adds entries to the map (lines 5–8),
displays the entries (line 10), gets a value for a key (line 13), checks whether the map contains
the key (line 16) and a value (line 18), removes an entry with the key “Smith” (line 20), and
redisplays the entries in the map (line 22).

48.9 Set
A set is a data structure that stores distinct values. The Java collections framework defines the
java.util.Set interface for modeling sets. Three concrete implementations are
java.util.HashSet, java.util.LinkedHashSet, and java.util.TreeSet.
java.util.HashSet is implemented using hashing, java.util.LinkedHashSet using
LinkedList, and java.util.TreeSet using red-black trees.

You can implement MyHashSet using the same approach for implementing MyHashMap.
The only difference is that key/value pairs are stored in the map, while elements are stored in
the set.

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–17

48–18 Chapter 48 Hashing

Removes all elements from this set.

Returns true if the element is in the set.

Adds the element to the set and returns true if the element is added
 successfully.

Removes the element from the set and returns true if the set
 contained the element.

Returns true if this set contains no elements.

Returns the number of elements in this set.

Returns an iterator for the elements in this set.

Concrete class that implements MySet.MyHashSet<E>

+clear(): void

«interface»
MySet<E>

+iterator(): java.util.Iterator<E>

+size(): int

+isEmpty(): boolean

+remove(e: E): boolean

+add(e: E): boolean

+contains(e: E): boolean

FIGURE 48.9 MyHashSet implements the MySet interface.

We design our custom Set interface to mirror java.util.Set with some minor varia-
tions. The java.util.Set interface extends java.util.Collection. Our set interface is
the root interface. We name the interface MySet and a concrete class MyHashSet, as shown
in Figure 48.9.

MySet

MyHashSet

Listing 48.4 shows the MySet interface and Listing 48.5 implements MyHashSet using
separate chaining.

LISTING 48.4 MySet.java
1 public interface MySet<E> {
2 /** Remove all elements from this set */
3 public void clear();
4
5 /** Return true if the element is in the set */
6 public boolean contains(E e);
7
8 /** Add an element to the set */
9 public boolean add(E e);
10
11 /** Remove the element from the set */
12 public boolean remove(E e);
13
14 /** Return true if the set contains no elements */
15 public boolean isEmpty();
16
17 /** Return the number of elements in the set */
18 public int size();
19
20 /** Return an iterator for the elements in this set */
21 public java.util.Iterator iterator();
22 }

LISTING 48.5 MyHashSet.java
1 import java.util.LinkedList;
2
3 public class MyHashSet<E> implements MySet<E> {

clear

contains

add

remove

isEmpty

size

iterator

class MyHashSet

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–18

48.9 Set 48–19

4 // Define the default hash-table size. Must be a power of 2
5 private static int DEFAULT_INITIAL_CAPACITY = 16;
6
7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
8 private static int MAXIMUM_CAPACITY = 1 << 30;
9
10 // Current hash-table capacity. Capacity is a power of 2
11 private int capacity;
12
13 // Define default load factor
14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
15
16 // Specify a load-factor threshold used in the hash table
17 private float loadFactorThreshold;
18
19 // The number of entries in the set
20 private int size = 0;
21
22 // Hash table is an array with each cell that is a linked list
23 private LinkedList<E>[] table;
24
25 /** Construct a set with the default capacity and load factor */
26
27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
28 }
29
30 /** Construct a set with the specified initial capacity and
31 * default load factor */
32
33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
34 }
35
36 /** Construct a set with the specified initial capacity
37 * and load factor */
38
39 if (initialCapacity > MAXIMUM_CAPACITY)
40 this.capacity = MAXIMUM_CAPACITY;
41 else
42 this.capacity = trimToPowerOf2(initialCapacity);
43
44 this.loadFactorThreshold = loadFactorThreshold;
45 table = new LinkedList[capacity];
46 }
47
48 /** Remove all elements from this set */
49
50 size = 0;
51 removeElements();
52 }
53
54 /** Return true if the element is in the set */
55
56 int bucketIndex = hash(e.hashCode());
57 if (table[bucketIndex] != null) {
58 LinkedList<E> bucket = table[bucketIndex];
59 for (E element: bucket)
60 if (element.equals(e))
61 return true;
62 }
63

public boolean contains(E e) {

public void clear() {

public MyHashSet(int initialCapacity, float loadFactorThreshold) {

public MyHashSet(int initialCapacity) {

public MyHashSet() {

default initial capacity

maximum capacity

current capacity

default max load factor

load-factor threshold

size

hash table

no-arg constructor

constructor

constructor

clear

contains

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–19

48–20 Chapter 48 Hashing

64 return false;
65 }
66
67 /** Add an element to the set */
68
69 if (contains(e))
70 return false;
71
72 if (size > capacity * loadFactorThreshold) {
73 if (capacity == MAXIMUM_CAPACITY)
74 throw new RuntimeException("Exceeding maximum capacity");
75
76 rehash();
77 }
78
79 int bucketIndex = hash(e.hashCode());
80
81 // Create a linked list for the bucket if it is not created
82 if (table[bucketIndex] == null) {
83 table[bucketIndex] = new LinkedList<E>();
84 }
85
86 // Add e to hashTable[index]
87 table[bucketIndex].add(e);
88
89 size++; // Increase size
90
91 return true;
92 }
93
94 /** Remove the element from the set */
95
96 if (!contains(e))
97 return false;
98
99 int bucketIndex = hash(e.hashCode());
100
101 // Create a linked list for the bucket if it is not created
102 if (table[bucketIndex] != null) {
103 LinkedList<E> bucket = table[bucketIndex];
104 for (E element: bucket)
105 if (e.equals(element)) {
106 bucket.remove(element);
107 break;
108 }
109 }
110
111 size--; // Decrease size
112
113 return true;
114 }
115
116 /** Return true if the set contains no elements */
117
118 return size == 0;
119 }
120
121 /** Return the number of elements in the set */
122
123 return size;
124 }

public int size() {

public boolean isEmpty() {

public boolean remove(E e) {

public boolean add(E e) {add

remove

isEmpty

size

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–20

48.9 Set 48–21

125
126 /** Return an iterator for the elements in this set */
127
128 return new MyHashSetIterator(this);
129 }
130
131 /** Inner class for iterator */
132
133 // Store the elements in a list
134 private java.util.ArrayList<E> list;
135 private int current = 0; // Point to the current element in list
136 MyHashSet<E> set;
137
138 /** Create a list from the set */
139 public MyHashSetIterator(MyHashSet<E> set) {
140 this.set = set;
141 list = setToList();
142 }
143
144 /** Next element for traversing? */
145 public boolean hasNext() {
146 if (current < list.size())
147 return true;
148
149 return false;
150 }
151
152 /** Get the current element and move cursor to the next */
153 public E next() {
154 return list.get(current++);
155 }
156
157 /** Remove the current element and refresh the list */
158 public void remove() {
159 // Delete the current element from the hash set
160 set.remove(list.get(current));
161 list.remove(current); // Remove the current element from the list
162 }
163 }
164
165 /** Hash function */
166
167 return supplementalHash(hashCode) & (capacity - 1);
168 }
169
170 /** Ensure the hashing is evenly distributed */
171
172 h ^= (h >>> 20) ^ (h >>> 12);
173 return h ^ (h >>> 7) ^ (h >>> 4);
174 }
175
176 /** Return a power of 2 for initialCapacity */
177
178 int capacity = 1;
179 while (capacity < initialCapacity) {
180 capacity <<= 1;
181 }
182
183 return capacity;
184 }

private int trimToPowerOf2(int initialCapacity) {

private static int supplementalHash(int h) {

private int hash(int hashCode) {

private class MyHashSetIterator implements java.util.Iterator<E> {

public java.util.Iterator<E> iterator() { iterator

inner class

hash

supplementalHash

trimToPowerOf2

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–21

48–22 Chapter 48 Hashing

185
186 /** Remove all e from each bucket */
187
188 for (int i = 0; i < capacity; i++) {
189 if (table[i] != null) {
190 table[i].clear();
191 }
192 }
193 }
194
195 /** Rehash the set */
196
197 java.util.ArrayList<E> list = setToList(); // Copy to a list
198 capacity <<= 1; // Double capacity
199 table = new LinkedList[capacity]; // Create a new hash table
200 size = 0;
201
202 for (E element: list) {
203 add(element); // Add from the old table to the new table
204 }
205 }
206
207 /** Copy elements in the hash set to an array list */
208 private java.util.ArrayList<E> setToList() {
209 java.util.ArrayList<E> list = new java.util.ArrayList<E>();
210
211 for (int i = 0; i < capacity; i++) {
212 if (table[i] != null) {
213 for (E e: table[i]) {
214 list.add(e);
215 }
216 }
217 }
218
219 return list;
220 }
221
222 /** Return a string representation for this set */
223
224 java.util.ArrayList<E> list = setToList();
225 StringBuilder builder = new StringBuilder("[");
226
227 // Add the elements except the last one to the string builder
228 for (int i = 0; i < list.size() - 1; i++) {
229 builder.append(list.get(i) + ", ");
230 }
231
232 // Add the last element in the list to the string builder
233 if (list.size() == 0)
234 builder.append("]");
235 else
236 builder.append(list.get(list.size() - 1) + "]");
237
238 return builder.toString();
239 }
240 }

public String toString() {

private void rehash() {

private void removeElements() {

rehash

setToList

toString

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–22

48.9 Set 48–23

The MyHashSet class implements the MySet interface using separate chaining. Imple-
menting MyHashSet is very similar to implementing MyHashMap except for the following
differences:

1. The elements are stored in the hash table for MyHashSet, but the entries (key/value
pairs) are stored in the hash table for MyHashMap.

2. The elements are all distinct in MyHashSet, but two entries may have the same keys in
MyHashMap.

Three constructors are provided to construct a set. You can construct a default set with the
default capacity and load factor using the no-arg constructor (lines 26–28). You can construct
a set with the specified capacity and a default load factor (lines 32–34). You can construct a
set with the specified capacity and load factor (lines 38–46).

The clear method removes all entries from the map (lines 49–52). It invokes
removeElements() that deletes all elements in the buckets (lines 187–193). This method
takes O(capacity) time.

The contains(element) method checks whether the specified element is in the set by
examining whether the designated bucket contains the element (lines 55–65). This method
takes O(1) time.

The add(element) method adds a new element into the set. The method first checks
whether the size exceeds the load-factor threshold (line 72). If so, invoke rehash() (line 76)
to increase the capacity and store entries into the new hash table.

The rehash() method first copies all elements in a list (line 197), doubles the capacity
(line 198), obtains a new threshold (line 198), and creates a new hash table (line 199), and
clears the size (line 200). The method then copies the entries into the new hash table (lines
202–203). The rehash method takes O(capacity) time. If no rehash is performed, the add
method takes O(1) time to add a new element.

The remove(element) method removes the specified element in the set (lines 95–114).
This method takes O(1) time.

The size() method simply returns the size of the set (lines 122–124). This method takes
O(1) time.

The iterator() method returns an instance of java.util.Iterator. The
MyHashSetIterator class implements java.util.Iterator to create a forward iterator.
When a MyHashSetIterator is constructed, it copies all the elements in the set to a list
(line 141). The variable current points to the element in the list. Initially, current is 0 (line
135), which points to the first element in the list. MyHashSetIterator implements the
methods hasNext(), next(), and remove() in java.util.Iterator. Invoking
hasNext() returns true if current < list.size(). Invoking next() returns the current
element and moves current to point to the next element (line 153). Invoking remove()
removes the current element in the iterator from the set.

The hash() method invokes the supplementalHash to ensure that the hashing is evenly
distributed to produce an index for the hash table (lines 166–174). This method takes O(1)
time.

Table 48.2 summarizes the time complexity of the methods in MyHashSet.
Listing 48.6 gives a test program that uses MyHashSet.

LISTING 48.6 TestMyHashSet.java
1 public class TestMyHashSet {
2 public static void main(String[] args) {
3 // Create a MyHashSet
4 MySet<String> set = new MyHashSet<String>();
5 set.add("Smith");
6 set.add("Anderson");

MyHashSet vs. MyHashMap

three constructors

clear

contains

add

rehash

remove

size

iterator

hash

create a set
add elements

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–23

48–24 Chapter 48 Hashing

TABLE 48.2 Time Complexities for Methods
in MyHashMap

Methods Time

clear() O(capacity)

contains(e: E) O(l)

add(e: E) O(l)

remove(e: E) O(l)

isEmpty() O(l)

size() O(l)

iterator() O(capacity)

rehash() O(capacity)

7 set.add("Lewis");
8 set.add("Cook");
9
10 System.out.println("Elements in set: " + set);
11 System.out.println("Number of elements in set: " + set.size());
12 System.out.println("Is Smith in set? " + set.contains("Smith"));
13
14 set.remove("Smith");
15 System.out.println("Elements in set: " + set);
16
17 set.clear();
18 System.out.println("Elements in set: " + set);
19 }
20 }

display elements
set size

remove element
display elements

clear set

associative array 48–2
clustering 48–5
dictionary 48–2
double hashing 48–4
hash code 48–3
hash function 48–2
hash map 48–2
hash set 48–18
hash table 48–2

linear probing 48–4
load factor 48–8
open addressing 48–4
perfect hash function 48–2
polynomial hash code 48–4
rehashing 48–8
secondary clustering 48–5
separate chaining 48–4

Elements in set: [Smith, Lewis, Anderson, Cook]
Number of elements in set: 4
Is Smith in set? true
Elements in set: [Lewis, Anderson, Cook]
Elements in set: []

The program creates a set using MyHashSet (line 4), adds elements to the set (lines 5–8), dis-
plays the elements (line 10), gets the size (line 11), checks whether the set contains the ele-
ment (line 12), removes an element (line 14), and clears the set (line 17).

KEY TERMS

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–24

Review Questions 48–25

CHAPTER SUMMARY

1. A map is a data structure that stores entries. Each entry contains two parts: key and
value. The key is also called a search key, which is used to search for the correspond-
ing value. You can implement a map to obtain O(1) time complexity on search,
retrieval, insertion, and deletion, using the hashing technique.

2. A set is a data structure that stores elements. You can use the hashing technique to imple-
ment a set to achieve O(1) time complexity on search, insertion, and deletion for a set.

3. Hashing is a technique that retrieves the value using the index obtained from key with-
out performing a search. A typical hash function first converts a search key to an integer
value called a hash code, then compresses the hash code into an index to the hash table.

4. A collision occurs when two keys are mapped to the same index in a hash table. Gener-
ally, there are two ways for handling collisions: open addressing and separate chaining.

5. Open addressing is finding an open location in the hash table in the event of collision.
Open addressing has several variations: linear probing, quadratic probing, and double
hashing.

6. The separate chaining scheme places all entries with the same hash index into the
same location, rather than finding new locations. Each location in the separate chain-
ing scheme is called a bucket. A bucket is a container that holds multiple entries.

REVIEW QUESTIONS

Sections 48.1–48.5
48.1 What is a hash function? What is a perfect hash function? What is a collision?

48.2 What is a hash code? What is the hash code for Byte, Short, Integer, and
Character?

48.3 How is the hash code for a Float object computed?

48.4 How is the hash code for a Long object computed?

48.5 How is the hash code for a Double object computed?

48.6 How is the hash code for a String object computed?

48.7 How is a hash code compressed to an integer representing the index in a hash
table?

48.8 What is open addressing? What is linear probing? What is quadratic probing?
What is double hashing?

48.9 Describe the clustering problem for linear probing.

48.10 What is the secondary clustering?

48.11 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120,
39, 45, and 40, using linear probing.

48.12 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120,
39, 45, and 40, using quadratic probing.

48.13 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120,
39, 45, and 40, using double hashing with the following functions:

h(k) = k % 11;
h'(k) = 7 – k % 7;

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–25

48–26 Chapter 48 Hashing

48.14 Suppose the size of the table is 10. What is the probe sequence for a key 12
using the following double hashing functions?

h(k) = k % 10;
h'(k) = 7 – k % 7;

Sections 48.6–48.8
48.15 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44,

120, 39, 45, and 40, using separate chaining.

48.16 In Listing 48.5, the remove method in the iterator removes the current element
from the set. It also removes the current element from the internal list (line 165):

// Remove the current element from the list
list.remove(current);

Why is it necessary?

PROGRAMMING EXERCISES

48.1** (Implementing MyMap using open addressing with linear probing) Create a new
concrete class that implements MyMap using open addressing with linear prob-
ing. For simplicity, use f(key) = key % size as the hash function, where size
is the hash-table size. Initially, the hash-table size is 4. The table size is doubled
whenever the load factor exceeds the threshold (0.5).

48.2** (Implementing MyMap using open addressing with quadratic probing) Create a
new concrete class that implements MyMap using open addressing with qua-
dratic probing. For simplicity, use f(key) = key % size as the hash function,
where size is the hash-table size. Initially, the hash-table size is 4. The table
size is doubled whenever the load factor exceeds the threshold (0.5).

48.3** (Implementing MyMap using open addressing with double hashing) Create a new
concrete class that implements MyMap using open addressing with double prob-
ing. For simplicity, use f(key) = key % size as the hash function, where size
is the hash-table size. Initially, the hash-table size is 4. The table size is doubled
whenever the load factor exceeds the threshold (0.5).

48.4** (Modifying MyHashMap with distinct keys) Modify MyHashMap so that all
entries in it have different keys.

48.5** (Implementing MyHashSet using MyHashMap) Implement MyHashSet using
MyHashMap. Note that you can create entries with (key, key), rather than (key,
value).

48.6** (Animating linear probing) Write a Java applet that animates linear probing as
shown in Figure 48.3. You can change the initial size of the hash-table in the
applet. Assume the load-factor threshold is 0.75.

48.7** (Animating separate chaining) Write a Java applet that animates MyHashSet as
shown in Figure 48.7. You can change the initial size of the hash table. Assume
the load-factor threshold is 0.75.

M48_LIAN0807_08_SE_C48.QXD 11/19/09 7:04 AM Page 48–26

