FOREST ECOLOGY

WHAT IS IT???

ECOLOGY

- •'OIKOS' (Gr.) household, home, place to live
- 'LOGIA' knowledge

•ECOLOGY – the study of organisms and their environment – and the interrelationships between the two.

TYPES OF ECOLOGICAL STUDY

- Plant ecology
- Animal Ecology
- Population Ecology
- Behavioral Ecology
- Ecophysiology
- Evolutionary Ecology
 These and other approaches are
 - These and other approaches are fragmentary and too compartmentalized.

ECOSYSTEM ECOLOGY

 a holistic and integrated ecological concept that combines living organisms and their physical environment into a system called an ecosystem. (A.G.Tansley, 1935)

DIVISION OF STUDY

- HOLISTIC ecosystem study viewing the entire system as greater than the sum of its parts
- REDUCTIONIST study the ecosystem parts (communities and processes) separately assuming the whole is the sum of its parts.

DIVISION OF STUDY

- VERTICAL Study a small area from ground through atmosphere
- •HORIZONTAL Study a broad landscape with its spatial variation

AQUATIC ECOSYSTEMS

GFRESHWATER ECOSYSTEMS

SALT WATER ECOSYSTEMS

WETLANDS

* Forests cover ~ 30% of earth's surface

What is a forest?

"Forests only exist in human minds. Groups of animals and plants that we call forests come together for a short time; then each species goes its separate way when conditions change."

T. M. Bonnicksen "America's Ancient Forests: From the Ice Age to the Age of Discovery." 2000

WHAT IS A FOREST?

- 'FOREST' denotes a collection of stands administered as an integrated unit, usually under one ownership.
- 'STAND' is a <u>contiguous</u> group of trees sufficiently uniform in <u>species composition</u>, <u>age structure, site quality, and condition</u> to be a <u>distinguishable</u> <u>unit.</u>

• 'PATCH' fundamental units of vegetation

FOREST ECOSYSTEMS Major types

- Coniferous (Cold/freeze resistant) –range of environments; boreal, montane
- <u>Temperate</u> in regions of moderate precipitation and mild temperatures. Hardwood and rain forest
- <u>Tropical</u> –in equatorial regions with a steady temperature (~23° C) and a wide variation in rainfall. (rain, montane and dry)

<section-header><section-header><text>

TROPICAL FORESTS

- <u>Tropical rain forests</u> temperatures constantly high (~26°C annual mean) Heavy rainfall throughout the year (~400 cm/yr = ~157 "/year)
- <u>Tropical montane forests</u> cooler on mountain slopes
- <u>Tropical dry</u> ~42% of tropical forests. Experience a dry period varying with latitude

UNITED STATES FORESTS (From USDA FS web site)				
<u>Location</u>	<u>% cover</u> range	<u>Total forest</u> <u>acres</u> <u>(x1000)</u>	<u>Timberland</u> <u>acres</u> (x1000)	
Eastern ME,NH,VT,WV,MA ,NY,CT,PA, RI,NJ,MD,DE,OH	59% 90%-30%	93,103	85,857	
Pacific West WA.OR.HI.CA.AK	43.16% 51.4 -34.9	219,287	72,214	
Inland West	25.33% 41.8-13.8	91.45	NA	

SUMMARY

•<u>Ecology</u> – the study of organisms and their environment

 <u>Ecosystem</u> – the combination of living organisms and their environment

•Climate common denominator of each ecosystem

SUMMARY

• Types of ecosystems:

 Grasslands, deserts, forests, wetlands, etc

Forest and stand definitions

Forest ecosystems:

- Coniferous (freeze resistant)
- Temperate –hardwood and rain
- Tropical dry, montane and rain

BIOGEOGRAPHY OF ECOSYSTEMS • The study of distributions of organisms, both past and present. • Goal: to describe and understand the many patterns of distribution of species

VEGETATION ZONATION

Climate-induced patterns of vegetation influenced by:

► Latitude

 Location of regions within a landmass (continents) affecting moisture
 Altitude [1000' (300m) = 100 miles (160 km) of latitude]

VEGETATION ZONATION North America

- Northern: broad west to east belts of vegetation are temperature dependent
- South of these belts vegetation zones lie north/south influenced by physiography
 of land
- <u>Physiography</u> = physical geography; study of earth's physical features

\$

ECOREGIONS

(R.G. Bailey - USDA-FS)

- ► Ecosphere: entire globe
- ► <u>Megascale</u>: <u>continental</u>
- ► <u>Macroscale</u>: <u>climate</u> oriented, <u>latitude</u>, elevation, subcontinental
- ► <u>Mesoscale</u>: <u>land form</u> units (landscape) scale of 10-100's of square miles
- Microscale: Local site factors

- Ecological tolerance
- Ecological efficiency

Ś

\$

ECOREGIONS HIERARCHICAL SCHEME Subdivisions of ecosystems based on the interaction of climate, soil, continental position and topography

ECOREGIONS

► <u>DIVISIONS</u>: subcategory of domains (14 divisions) Based on the

seasonality of precipitation or degree of coldness and dryness

► <u>PROVINCES</u>: vegetation regions having uniform regional climate

\$

ECOREGIONS

Name	Character	
Domain Division Division Province Section District Landtype association	Subcontinental area of related climates Single regional climate at the level of Köppen's types (Trewartha 19 Broad vegetation region with the same type or types of zonal soils Climatic climax at the level of Küchler's potential Part of a section having uniform geomorphology at the level of Hamm regions (1964) Group of neighboring landtypes with recurring pattern of landform vegetation associations	
7. Landtype	Group of neighboring phases with similar soil series or families wi at the level of Daubenmire's habitat types (1968)	
8. Landtype phase	Group of neighboring sites belonging to the same soil series with c	
9. Site	Single soil type or phase and single habitat type or phase	

SUMMARY

- Climate has a pronounced influence on the latitudinal and altitudinal distribution of vegetation
- Latitudinal changes result in continental zonation as in N. America and Africa
- Altitudinal changes in patterns of vegetation mimic latitudinal changes

SUMMARY

- ► Ecoregion scheme: refines biomes into hierarchies- applies to both terrestrial and ocean ecosystems
 - Domain, Division, etc. classification of Ecoregions
- Scale of ecological study
 - Megascale -continental
 - Macroscale region
 - Mesoscale landscape; landforms
 - Microscale local site

Ś

\$

THE PHYSICAL ENVIRONMENT

FATE OF SOLAR RADIATION

- Travels unimpeded to earth's atmosphere
- 100% strikes outer atmosphere
 - <u>Solar constant:</u> the amount of radiation reaching outer atmosphere = 2cal./cm2/min
 Fluctuations in solar constant due to variations in output of sun

FATE OF SOLAR RADIATION

- 50% absorbed by or reflected by atmosphere
- 5% reflected by earth's surface
 - <u>Albedo</u>: solar radiation reflected back from earth's surface (amount depends on reflecting surface)
- 45% absorbed by surface as short wave radiation
- · 29% radiated back as long wave radiation

ROTATIONAL EFFECTS

- Average global temperature is rising ~ 1.7° C/100years
- Not evenly distributed –some places are colder
- · Causes:
 - Enhanced greenhouse effect
 - Earth emerging from Little Ice Age (15th-mid-19th centuries)
- Solar output varies

Movement of Air Masses

- Air is constantly moving
- Air masses are huge bodies of air with gradual temperature and humidity changes
- Temperature and humidity based on surface over which they formed

Movement of Air Masses

- INTERTROPICAL CONVERGENCE ZONE: Heated, <u>low pressure</u> equatorial air <u>rises</u> high (15-20 KM) into the atmosphere and moves poleward – **ITCZ** shifts with season
 - Equatorial low pressure area very rainy
- Air cools at high altitudes and due to frictional drag <u>sinks</u> toward the surface at ~30° latitude forming a subtropical <u>high pressure</u> area
 Clear chies, sup and dry
 - Clear skies, sun and dry

Movement of Air Masses

- Zone of rising air around $60\,^\circ$ forms another low pressure area
 - Great variability in weather
- This air flows toward poles and equator
- The air aloft descends in the polar region where it cools
 - polar air sinking and high pressure
- This dense mass of cold air flows toward the equator

ROTATIONAL EFFECTS ON AIR MOVEMENT

OCEAN CURRENTS

- Surface waters of the oceans in constant motion
- Transport enormous quantities of water
- A mechanism for transport of heat from equator to arctic areas
- Movements of currents influenced by prevailing winds and the Coriolis Effect

WATER (HYDROLOGIC) CYCLE

All the rivers run into the sea;
Yet the sea is not full;
unto the place from whence the rivers come,
thither they return again.
(Ecclesiastes 1:7)
This unending circulation of earth's waters is the hydrologic cycle

WATER CYCLE

- Solar energy evaporates:
 320,000 km3 from ocean
 - 60,000 km3 from land
- 88% falls back in oceans as rain
- 96,000 km3 falls on land
- 2/3 evaporates; 1/3 runs off to sea

WATER CYCLE

- Precipitation on land moves back to the ocean by:
 - Infiltration
 - Runoff
 - Evapotranspiration

HUMIDITY & WATER VAPOR

- <u>Water vapor</u> (water in gaseous state) results from evaporation
- Water acts in air as an independent gas
- Pressure is proportional to temperature x density
- <u>Vapor pressure</u>: the amount of pressure exerted by water vapor independent of dry air
- Amount of water vapor in air is a function of temperature

HUMIDITY & WATER VAPOR

- <u>Saturation vapor pressure (SVP):</u> The pressure water exerts when the air is saturated
- <u>Relative humidity (RH)</u>: amount of water vapor as a % of SVP (At SVP RH = 100%)
- <u>Dew point</u>: The temperature at which SVP is achieved (Condensation occurs)

THE ADIABATIC PROCESS • <u>Adiabatic Process</u>: a volume of air compresses and warms or expands and cools with no interchange of energy with surroundings

THE ADIABATIC PROCESS

- <u>Lapse rate</u>: rate at which air temperature changes with height in an air column
- <u>Environmental lapse rate</u>: decrease in surrounding temperature as air rises
- <u>Dry adiabatic lapse rate</u>: unsaturated air changes 10° C for every 1000 meters of altitude change
- RH increases as air rises if saturation occurs as air cools clouds form

THE ADIABATIC PROCESS

- <u>Moist adiabatic process</u>: Saturated air cools more slowly because conversion of vapor to liquid releases <u>latent heat</u> slowing the cooling process.
- Moist adiabatic rate = ~ 6° C /1000 m.

SUMMARY

- Rotational effects: Tilt, wobble, elliptical orbit
- Seasonal changes
- Movement of air masses
- Coriolis Effect
- Ocean currents

SUMMARY

- Water cycle
- Water vapor
- Relative Humidity
- Pressure proportional to temperature times density
- The adiabatic process

PROPERTIES OF LIGHT Wavelengths of visible light 400 – 740 nanometers (microns) Light > 740 nm is <u>infrared (IR)</u> Light < 400 nm is <u>ultraviolet</u> (UV)

• Illuminance = measure of radiation

PROPERTIES OF LIGHT			
4 ⁰ 5	\$ \$\$ 50 50 50 10		
S	Visible Near infrared	Far infrared	
00 280	500 1,000 5,00 Wavelength, (n	m)	
UV absorbed by ozone layer	<u>Photon</u> = unit o	flight	

FUNCTIONS OF LIGHT

- Energy for photosynthesis
 - Green plant chloroplast reaction center contains two chlorophyll molecules
 - Photon excites molecules low to high energy state
 - Split water molecule to oxygen

FUNCTIONS OF LIGHT

-Photoregulation

- Provides signals enabling plants to respond and adapt to environmental changes
- Photosensory systems process information about the properties of light

PROPERTIES OF LIGHT

- <u>Photosynthetically active radiation</u> (<u>PAR</u>): wavelengths used in photosynthesis
- PAR: measure of total number of photons within the visible spectrum striking a surface
- Used to study effects of radiant energy on plants

PROPERTIES OF LIGHT

- Intensity: how much
- Duration: how long
- Directionality: what direction

PROPERTIES OF LIGHT

• <u>Intensity</u> – varies daily and seasonally; influenced by <u>angle of</u> <u>incidence</u>

PROPERTIES OF LIGHT

- <u>Angle of incidence</u>: the angle at which radiation strikes a surface
- The greater the angle the greater the area covered and the less the intensity at any given point
- Lanbert's cosine law: irradiation of a surface varies with the cosine of the angle of incidence

PROPERTIES OF LIGHT

• <u>Duration</u> – seasonal ; function of latitude

<section-header><list-item><list-item><list-item>

PROPERTIES OF LIGHT Physiography

- North and south facing slopes
 South facing slopes
 - South-facing slopes receive the most solar energy (N. hemisphere)
 - North-facing slopes receive the least
- Microclimate different based on aspect

FATE OF LIGHT Plant foliage absorption

- · High absorptivity in visible and ultraviolet range - reflect 6-12 % visible light
- · Very low absorption in far-infrared range -~70% reflected
- Leaves use red & blue photons thus reflect and appear green
- ~4-5 % of gross solar energy absorbed
- ~1-2 % total solar energy used in photosynthesis

FATE OF LIGHT

- Remaining light is transmitted through leaves depending on thickness and structure of foliage
- · Amount of light at any depth in canopy is function of the number of leaves above that point

FATE OF LIGHT

- Relative illumination (RI) within forest
 - Leafless deciduous trees 50-80 %
 - Even-aged pine - 10-15 %
 - Temperate hardwood - <1-5 %
 - Tropical rain forest - 0.1-2.0 %

LEAF AREA

- Foliage density leaf area best means to quantify differences in productivity among forest ecosystems
- Leaf area is a direct measure of the photosynthetically-active surface area converting light to energy
- LEAF AREA INDEX (LAI)
 - LAI = leaf area m² /ground area m² LAI of 3 means there are three square meters of leaves for every square meter of ground

 - (average 5; range 1-23)

SUNFLECKS

- Direct sun light sweeps across the floor as the day progresses
- Radiation nearly half of full sunlight
- Duration brief 5.7-7.1 minutes
- Can be used for effective photosynthesis if plants can respond rapidly

FOREST FLOOR LIGHT

- Canopy leaves transmit 10-25 % of visible radiation they receive.
- May be selective for wavelength; light is poor in red/blue light
- Understory light:
 - Sunflecks
 - Diffuse light filtered through canopy
 - Full light in canopy gaps

HEAT & TEMPERATURE

- Solar radiation controls temperature near the surface of the earth
- Terrestrial radiation and air movements critical to the level and distribution of temperature
- Heating of daytime surface layers most intense where greatest IR radiation is received

HEAT & TEMPERATURE Types of heat transfer

- <u>Radiation</u>: direct transfer of heat such as sunlight, fire, metabolism
- <u>Conduction</u>: direct transfer of heat from one substance to another
- <u>Convection</u>: transfer of heat by circulation of fluid or gas

HEAT & TEMPERATURE

- <u>Cardinal temperature:</u> the range within which physiologic functions can occur
 - Thermal limits for vascular plant = +60° to - 60° C (-30°F-120°F)
- <u>Optimum temperature</u>: that temperature at which physiologic functions are optimized

HEAT & TEMPERATURE

 Moist material dissipates heat via evaporation

•Water vapor decreases incoming solar energy

•Mineral and organic soil poor heat conductors

= thermal energy lost

HEAT & TEMPERATURE

- By day solar energy heats earth's surface and the air above it
- Heat gains exceed heat losses
- Evaporation results in cooling

HEAT & TEMPERATURE

• At night the surface air loses more radiant energy than it receives.

- Layer of cooler surface air deepens resulting in nighttime inversion
- Net cooling at night

<u>Thermoperiod</u>: difference between day and night temperatures

HEAT & TEMPERATURE

Surface temperature dependent upon

- Amount of vegetation and litter
- Color: black absorbs best
- Moisture: dissipates heat *via* evaporation
- Wind speed : most important in dissipation of heat

HEAT & TEMPERATURE

• Temperature at surface dependent upon:

- Topography
- Aspect
- Altitude

TEMPERATURE EXTREMES

HEAT INJURY

- <u>Heat kill</u>: Temperatures to 45°C (140°F), disrupts cell metabolism
- <u>Sun scald</u>: In thin barked trees when suddenly exposed to high temperatures, necrosis of the bark
- <u>Water stress</u>: Dehydration due to water loss in response to heat

TEMPERATURE EXTREMES

• COLD INJURY

- Freezing:
 - rapid freezing forms ice crystals within protoplasm of cells
 - Rapid thawing causes disruption of cell membranes
 - Slow freezing may also kill some plants
 Intercellular water freezes causing dehydration
- Winter drought:

• COLD INJURY - Frost crack/frost rib

Asymmetrical contraction , upon freezing plant tissues contract

SUMMARY - LIGHT

- Light is essential to most life and is the only thing the forester can manipulate Photosynthesis, Photoregulation
- Light can be <u>reflected</u>, <u>absorbed</u> or <u>transmitted</u>
- Properties of light
 - Intensity
 - Duration
 - Direction

SUMMARY - LIGHT

- Photosynthetically Active Radiation (PAR)
- Fate of light through forest canopy
- Leaf Area Index
- Understory Light
 - Sunflecks
 - Diffuse light

SUMMARY

- All organisms live in a thermal environment characterized by heat and temperature
- · Heat is a form of energy
- Temperature is a measure of a material's tendency to give up heat
- Heat gains equal heat losses

SUMMARY

- Types of heat transfer
 - Radiation given off directly
 - Convection moved with air currents
 - Conduction transfers through adjacent material

SUMMARY

- Factors controlling surface temperature
 - Color
 - Soil
 - Vegetation
 - Moisture
 - Air movement
 - Aspect

SUMMARY

- Extremes of temperature
 - Heat injury
 - Cold injury

CLIMATE & WEATHER

- CLIMATE: characteristic patterns, means, and extremes of weather evaluated over many years
- CLIMATE: is a product of weather, which is air in motion driven by uneven heating

CLIMATE & WEATHER

- Atmosphere and oceans combine to produce climate
- Water warms and cools more slowly than land thus moderating temperatures
- Ocean currents transport heat
- North Pole warmer than South Pole

CLIMATE CHANGE

- World's climates are constantly changing
 - Orbital variation
 - Emergence from Little Ice Age (15th mid 19th centuries)
 - Natural oscillations natural variations between pressure areas
 - Changes in solar output
 - Enhanced greenhouse effect

CLIMATE & WEATHER

- <u>MACROCLIMATE</u>: Massive circulation patterns of atmosphere and ocean currents as well as major land forms determine climate pattern of large regions
- MESOCLIMATE: physiography influences regional climate
- <u>MICROCLIMATE</u>: The distinctive climate of a particular place. Microclimate influences the spatial patterning of local ecosystems and their species composition

CLIMATE AND PHYSIOGRAPHY

- Maritime or oceanic climates – air masses arise over oceans
- Continental climates - air masses that formed over continents or lost their moisture over mountains

CLIMATE AND PHYSIOGRAPHY

WEATHER

- WEATHER: constantly changing atmospheric conditions prevailing at a particular place and time
- WEATHER: a result of the physical interactions between sunlight, air and water and local physiography

WEATHER

- Front: boundary between different air masses named for the air behind it
- Warm air masses (rising)– lowpressure systems (cyclone)
- Cool air masses (sinking) high pressure systems (anticyclone)

WEATHER

- Pressure gradient: difference between the pressure at the center of a system and the air outside the system
- Air flows along this gradient
- The steeper the gradient the stronger the winds

WEATHER

High and low pressure

systems

Low-pressure spiral

WEATHER

- Air masses meet:
 - Do not merge because they are at different temperatures and densities
 - Denser air moves beneath the less dense air
 - Winds in warm front / low pressure system stronger

WEATHER

• JET STREAM Narrow ribbons of

fast moving air that circle the earth west to east

Produced by difference in temperature between air masses

PRECIPITATION

Modes of precipitation

- <u>Convection</u> warm updrafts form clouds
- <u>Orographic</u> air forced over topographic features
- <u>Cyclonic</u> frontal storms, the most common in the temperate area

PRECIPITATION

• <u>Hail</u>: begins as a raindrop, rises and freezes, grows by collecting supercooled water that freezes onto it. Sizes dependent on number of circuits in the cloud

• Hail defoliates

PRECIPITATION

- FOG is a cloud at ground level
 - <u>Radiation fog</u> –night time when surface radiation cools the surface and air layer above it. Fog forms if air is moisture laden. (Valley fog)
 - Advection fog warm air moves over cold water
 - Fog a valuable part of total water for vegetation
- <u>DEW</u> nighttime condensation as earth surface cools

PRECIPITATION

- SNOW: ice crystals adhere to one another, 6 - sided
 - Snow fall is distinct from rain.
 - Frozen water is unavailable to plants
 - Snow can be protective, can be damaging
- ICE and SLEET: rain or melted snow flakes that freeze between the cloud and ground, limb breakage
- FROST: dew-point below freezing, kills plants

WEATHER

- WIND: The movement of air away from areas of high pressure to areas of low pressure
- WIND SPEED: proportional to the pressure gradient
- Air spirals into a low pressure center

WEATHER

- Ocean Winds always stronger than wind over land; less friction
 - Strongest winds in the Antarctic Ocean where they circle the earth unimpeded.
- Seasonal Winds
 - Sirocco spring time from Africa to Europe
 - Bora winter from Russia to Mediterranean

WEATHER Extreme Events • Lightning - Thunder the audible result - Large amounts of water/ ice reach temps of -30° C - Cloud becomes bipolar - strikes when charge is high enough - Discharge can be

extremely strong

WEATHER Extreme Events

- Direct Effects of Lightning
 - Death or serious injury to trees
 - Strips (Blows) bark away
 - Cambial damage
 - may not be visible
 - Amount of damage related to strength of charge

WEATHER Extreme Events

- Indirect Effects of Lightning
 - Fire especially in dry climates
 - Nitrogen fixation
 5lbs/ac/yr
 - Predisposes tree to insect damage

SUMMARY

- CLIMATE: Patterns of weather evaluated over time
- Atmosphere, oceans and topography combine to produce climate
- Causes of changing climate – Orbital variation, greenhouse effect, changes in solar output, natural oscillations,

SUMMARY

- Classification:
 - Macro- (continental),
 - meso (physiography),
 - micro- (local factors)
- Oceanic/ Maritime climates
- Continental climates

SUMMARY

- Weather constantly changing atmospheric conditions prevailing at a particular place and time
- Front boundary between air masses
- Warm fronts low pressure
- Cold fronts high pressure
- Air masses do not merge

SUMMARY

- Precipitation:
 - Convection warm updrafts
 - Orographic air forced over topographic features
 - Cyclonic frontal storms, most common in this area

SUMMARY

- Forms of precipitation:
 - Rain
 - Hail
 - Fog/ Dew
 - Snow
 - Ice /Sleet
- Effects of each on vegetation

SUMMARY

- Wind: movement of air from areas of high pressure to areas of low pressure
 - Ocean winds
 - Seasonal winds
 - Daily winds (land-sea breezes)
 - Drainage wind

SUMMARY

- Extreme weather events
 - Hurricane
 - Tornado
 - Lightning
 - Direct effects of lightning
 - Indirect effects of lightning