Spring 2013

Show All Work

1) Describe in words or by graph the region of \mathbb{R}^{3} represented by the equation $y=x^{2}$ a parabolic cylinder along the z axis and surrounding the y-axis

2) Find the equation of a sphere if one of its diameters has endpoints $(6,1,4)$ and $(2,5,6)$

$$
\begin{gathered}
\text { Center is midpoint }\left(\frac{6+2}{2}, \frac{1+5}{2}, \frac{4+b}{2}\right)=(4,3,5) \\
r=\sqrt{\left.(6-4)^{2}+(1-3)^{2}+4-5\right)^{2}}=\sqrt{4+4+1}=3 \\
(x-4)^{2}+(y-3)^{2}+(z-5)^{2}=9
\end{gathered}
$$

3) Find $\overrightarrow{A B}$ if $\mathrm{A}=(1,3,-2)$ and $\mathrm{B}=(-1,4,7)$.

$$
\begin{aligned}
\overrightarrow{A B} & =\langle-1-1,4-3,7--2\rangle \\
& =\langle-2,1,9\rangle
\end{aligned}
$$

4) A car is stuck on a sheet of ice on a horizontal road. A tow truck drags the car off the ice using a chain that makes an angle of 20° with the road, and the tension in the chain is 1500 N . How much work is done by the truck in pulling the car 25 meters.

$$
\begin{aligned}
W & =\vec{F} \cdot \vec{D} \\
& =|\vec{F}| \cdot|\vec{D}| \cdot \cos \theta \\
& =1500 \mathrm{~N} \cdot 25 \mathrm{~m} \cdot \cos 20^{\circ} \\
& =35,238.5 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

