12) The length l, width w and height h of a box change with time. Find the rate at which the volume is change when $l=4, w=6$ and $h=8, l$ and w are increasing at a rate of $10 \mathrm{~m} / \mathrm{s}$ and h is decreasing at a rate of $1 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& V=l \cdot w \cdot h \\
& \begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d l} \cdot \frac{d l}{d t}+\frac{\partial V}{d w} \cdot \frac{d w}{d t}+\frac{2 V}{d h} \cdot \frac{d h}{d t} \\
& =w h(10)+\operatorname{lh}(10)+l w(-1)
\end{aligned} \\
& \left.\frac{d V}{d t}\right|_{\substack{l=4 \\
w \\
h \\
h \\
=6}}=6 \cdot 8 \cdot 10+4 \cdot 8 \cdot 10-4 \cdot 6=480+320-24
\end{aligned}
$$

13) Let $f(x, y, z)=3 x^{2}+4 y^{3}+z$ and let $\mathrm{P}=(3,2,1)$
a) Find the gradient of f at P .

$$
\begin{aligned}
& \nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle 6 x, 12 y^{2}, 1\right\rangle \\
& \nabla f(3,2,1)=\langle 18,48,1\rangle
\end{aligned}
$$

b) Find the maximum rate of change of f at the given point and the direction in which it occurs.

$$
\text { max rate }=|\nabla f|=\sqrt{18^{2}+48^{2}+1^{2}}=\sqrt{2629} \cong 51.3
$$

in the direction $\langle 18,48,1\rangle$
c) Find the directional derivative of $f(x, y, z)$ in the direction of $v=<1,2,-2>$ at P.

$$
|v|=\sqrt{1+4+4}=\sqrt{9}=3
$$

$$
u=\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle
$$

$$
\begin{aligned}
D_{u} f=\nabla f \circ u= & \langle 18,48,1\rangle \cdot\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle=6+32-\frac{2}{3}=38-\frac{2}{3} \\
& =37 \frac{1}{3}=\frac{112}{3}
\end{aligned}
$$

