Math 441 Exam IV Fall 2011

Keu Name

1) Let T be the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ then A is a $\frac{2}{3}x \frac{2}{3}$ matrix.

Show All Work

2) Which of the following functions T: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ is not a linear transformation? Circle all that apply.

a) T(x, y) = (x + 2y, 3x - 4y)(b) T(x, y) = (1/x, 1/y)c) T(x, y) = (x, 0)T(x, y) = (x + y, xy) e) T(x, y) = (3x + 2, 7x + 1)

3) Let T be a linear transformation from P_2 to P_2 such that T(1) = x, T(x) = 1 + x, and $T(x^2) = x + x^2$. Then $T(2 + 4x + 3x^2) =$

$$T(2+4x+3x^{2}) = 2T(1)+4T(x) + 3T(x^{2})$$

= 2 x +4(1+x) + 3(x+x^{2})
= 2 x +4 +4x + 3x + 3x^{2}
= 4 +9x + 3x^{2}

4)

(true or false) Any linear function of the form f(x) = mx + b is a linear transformation from R into a) R. False

If T is a linear transformation from R^3 to R^5 then rank(T) + nullity(T) = _____ b)

If T: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ is given by T(x,y) = (2x + y, x + 2y) then the image of (1,5) is (7, 1)c)

d) If T:
$$\mathbf{R}^2 \rightarrow \mathbf{R}^2$$
 is given by $T(x,y) = (2x + y, x + 2y)$ then the preimage of (4,5) is $(1,2)$
 $2x + y = 4$
 $x + 2y = 5$
 $\begin{bmatrix} z & 1 & 4 \\ 1 & 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & -3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

e) There - FALSE T is a linear transformation with ker(T) = 0 if and only if for all u and v in V, T(u) = T(v) implies $\mathbf{u} = \mathbf{v}$.

TRUE

5) Which of the vector space below are isomorphic to R^4 ? Circle all that apply.

(a)	M22
b)	M _{3,1}
c)	P_4
(D)	P ₃
e)	C[0,4]