Announcement

- Exam schedule JUST determined: Feb 11, Mar 8, Apr 10, 5-7 PM, rooms TBD

Typical trigonometry problem

A person measures the height of a building by walking out a distance of 46.0 m from its base and shining a flashlight beam to its top. When the beam is elevated at an angle of 39.0° with respect to the horizontal, the beam just strikes the top of the building.
(a) If the flashlight is held at a height of 2.0 m , find the height of the building.
(b) Calculate the length of the light
 beam.

Chapter 2: Motion in one Dimension

- Velocity and motion diagrams
- 1d motion with constant acceleration
- Free fall

Displacement - Example

Change of the initial position of an object

Displacement: $\Delta x=x_{f}-x_{i} \quad \Delta x=-5.0 \mathrm{~m}-(+3.0 \mathrm{~m})=-8.0 \mathrm{~m}$
Other reference frame:

$$
\Delta x=x_{f}-x_{i} \quad \Delta x=-8.0 \mathrm{~m}-(0.0 \mathrm{~m})=-8.0 \mathrm{~m}
$$

Displacement vs. Path Length

Displacement is not the same as Path Length!
Displacement, Δx, depends only on the endpoints of the path, while the path length, 1 , depends on the actual route taken.

Thus: $1 \geqslant \Delta x$

Vectors vs. Scalars

There are two fundamentally different types of physical quantities:

1) Vectors
2) Scalars

A scalar quantity is fully characterized by its magnitude.

A vector must be characterized by magnitude and direction. It is represented by an arrow.

Do you know any examples for scalar and vector quantities?
Scalars: Mass, time, volume, distance
Vectors: Displacement, velocity, acceleration, flux
In 1 d we do not need vectors, since there is only 1 direction.

Velocity and Speed

The average velocity during a time interval, $\Delta \mathrm{t}$, is defined as the displacement, $\Delta \mathrm{x}$, during this time interval divided by $\Delta \mathrm{t}$:

$$
v_{\text {average }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

Velocity is a vector quantity, since it has a magnitude and a direction!
In contrast to velocity, the average speed is a scalar and defined as:

$$
\text { Average speed }=\frac{\text { path length }}{\text { elapsed time }}
$$

Speed is always a positive number. Velocity can be negative.
The unit of velocity and speed is m / s.

Graphical interpretation of velocity

- The average velocity between times t_{1} and t_{2} can be determined from a position-time graph.
- It equals the slope of the line joining the initial and final positions.

$$
\text { slope }=\frac{\text { change in vertical axis }}{\text { change in horizontal axis }}
$$

- Objects moving at constant velocity will result in straight line
 in such a plot.
- Slopes have units!

Average velocity - Example

Go from Morgantown to Pittsburgh in 2h and return back to Morgantown 3h after leaving.
Average velocity going to Pitt:

$$
\begin{aligned}
& x_{i}=0 \quad t_{i}=0 \\
& x_{f}=+70 \mathrm{mi} t_{f}=2 \mathrm{hrs}
\end{aligned}
$$

Average velocity coming back from Pitt:

$$
\begin{aligned}
& x_{i}=+70 \mathrm{mi} t_{i}=2 \mathrm{hrs} \\
& x_{f}=0 \mathrm{mi} t_{f}=3 \mathrm{hrs}
\end{aligned}
$$

Instantaneous velocity

The instantaneous velocity is the velocity at a particular moment in time, while the average velocity is the velocity averaged over a time interval.

There can be a huge difference between average and instantaneous velocity.

You can go from Morgantown to Pittsburgh by car in 2 h in many different ways:

1. You travel at $35 \mathrm{mi} / \mathrm{h}$ for 2 hours. In this case your average and instantaneous velocities are both $35 \mathrm{mi} / \mathrm{h}$
2. You travel at $10 \mathrm{mi} / \mathrm{h}$ for 1.5 hours and at $110 \mathrm{mi} / \mathrm{h}$ during the remaining 0.5 hours. Your average velocity will also be $35 \mathrm{mi} / \mathrm{h}$, but your instantaneous velocity will be $10 \mathrm{mi} / \mathrm{h}$ at every moment during the first 1.5 hours and $110 \mathrm{mi} / \mathrm{h}$ during the last 0.5 h .

Mathematical and graphical determination

- This graph illustrates the motion of an object whose velocity is changing in time (not a straight line).
- The slopes of the blue lines correspond to the average velocities during the respective time intervals.
- By reducing the time interval as much as possible around $t=1 \mathrm{~s}$, the instantaneous velocity at this time is determined.

- The instantaneous velocity corresponds to the slope of the tangent at $\mathrm{t}=1 \mathrm{~s}$.

$$
V \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}
$$

Acceleration

Acceleration is defined as the change of velocity during a time interval, $\Delta \mathrm{t}$.
Remember: Velocity is the change of position during Δt.
Again, there is an average and an instantaneous acceleration:

$$
\bar{a} \equiv \frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{\Delta v}{\Delta t} \quad a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

Acceleration is a vector quantity, since it has a magnitude and direction. Its unit is $\mathrm{m} / \mathrm{s}^{2}$.

The instantaneous acceleration of an object at time, t_{f}, is the slope of the tangent of the velocity-time graph at this time.

The slope of the green line is the instantaneous acceleration of the car at point @ (Eq. 2.5).

The slope of the blue line connecting \mathbb{P} and © is the average acceleration of the car during the time interval $\Delta t=t_{f}-t_{i}$ (Eq. 2.4).

Relating velocity and acceleration I

This car moves at
constant velocity (zero
acceleration).

This car has a constant acceleration in the direction of its velocity.

This car has a

 constant acceleration in the direction opposite its velocity.

If velocity and acceleration point into the same direction, the object will speed up. If they point into opposite directions, it will slow down.
An object's velocity can be zero instantaneously, while its acceleration is not zero!

Relating velocity and acceleration II

Which velocity-time and acceleration-time graphs match?

Hands on graphing work will be done in the lab.

What you learn from graphs

Type of graph	Slope gives:	Change of direction
Position vs Time	Velocity	At maximum or minimum
Velocity vs Time	Acceleration	When curve crosses axis
Acceleration vs Time	---	Can' t determine

Mathematical description of 1d motion with constant acceleration

An objects moves in one direction with constant acceleration [a(t) = const.].
$a(t)=$ const. results in a horizontal line in the a-t-graph.
How can we calculate $v(t)$ and $x(t)$?

$$
v(t)=v_{0}+a t \quad x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

- $\mathrm{v}(\mathrm{t})$ is a linear function and results in a straight line in the v -t-graph.
- $x(t)$ is a quadratic function and results in a parabola in the x-t-graph.

Mathematical description of 1d motion with constant acceleration

Other useful formula:

$$
\begin{array}{ll}
\Delta x(t)=\frac{1}{2}\left[v_{0}+v(t)\right] t & \Delta x(t)=x(t)-x_{0} \\
v^{2}(t) & =v_{0}^{2}+2 a \Delta x^{2}(t)
\end{array}
$$

These equations (this and previous slide) are only valid for 1 d motion with constant acceleration.

These formula are extremely important for solving many problems relevant for real life, homework, and exams.

Example problem

A car is traveling at $15 \mathrm{~m} / \mathrm{s}$, when it passes a trooper, who does not move. The trooper sets off in chase immediately with a constant acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How long does it take the trooper to overtake the car?
(b) How fast is the trooper going at that time?

Motorist: constant x-velocity

The police officer and motorist meet at the time t where their

Definition of free Fall

- Free Fall is the motion of an object under the influence of gravity alone (no other forces/accelerations).
- Such objects do not have to start from rest, but can have an initial velocity pointing upwards.

Example: A ball is thrown upwards. After the ball is thrown (no more acceleration in upward direction), it moves upwards. This is an example of free fall, since only gravity influences the ball's motion.

- The velocity change in each time interval is constant:

$$
a=\frac{\Delta v}{\Delta t}=-g=-9.81 m / s^{2}
$$

Graphing freely falling bodies $(a=-g=$ const. $)$
 $$
v_{y}=v_{0}-g t
$$
 $$
y=y_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

This is a linear function of t. The slope is negative $(-\mathrm{g})$.
\rightarrow Straight line in the $v_{y}-\mathrm{t}$-diagram.

This is the sum of a linear function and a quadratic function of t.
\rightarrow For low values of t, it is a straight line.
\rightarrow For high values of t, it is a parabola.

Example problem: Free Fall

A ball is thrown from the top of a building with an initial velocity
$t=2.04 \mathrm{~s}$ of $20.0 \mathrm{~m} / \mathrm{s}$ straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge of the roof on its way down. Determine
A. the time needed for the ball to reach its maximum height.
B. the maximum height itself.
C. the time needed for the ball to return to the height from which it was thrown and the velocity of the ball at that instant.
D. the time needed for the ball to reach the ground.
E. the velocity and position of the ball at $\mathrm{t}=5 \mathrm{~s}$.

Neglect air drag.

Some helpful equations: $\quad v(t)=v_{0}-g t$

$$
y(t)=y_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

```
ymax}=20.4\textrm{m
    v=0
```

$t=4.08 \mathrm{~s}$

Summary

- Velocity is the rate of change of position: $v=\Delta x / \Delta t$.
- Acceleration the rate of change of velocity: $a=\Delta v / \Delta t$.

a
- A constant acceleration results in:
- a horizontal line in the a-t-graph.
- a straight line in the v-t-graph.
- a parabola in the x-t graph.

- Free Fall is the motion of an object under the influence of gravity alone (no other forces/accelerations).
- Same for all objects without air drag, different with drag.
- Equations relevant for 1 d problems with constant acceleration:

$$
v(t)=v_{0}+a t \quad x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad \Delta x(t)=\frac{1}{2}\left[v_{0}+v(t)\right] t \quad v^{2}(t)=v_{0}^{2}+2 a \Delta x^{2}(t)
$$

