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 Due to wall friction, propagation speeds of flames in tubes/channels can grow by several orders 
of magnitude. Such a flame acceleration may subsequently result in a deflgration-to-detonation 
transition (DDT). The DDT stays behind countless disasters in mines and power plants; and it can 
be utilized, constructively, in novel energy efficient setups such as pulse-detonation engines. 

 For decades, there was a limited theoretical understanding of the DDT mechanism because of the 
common opinion that flame acceleration is impossible without turbulence: the lack of knowledge 
about turbulence and turbulent flames prevented a rigorous DDT formulation to be developed. 

 It was next realized that turbulence plays a supplementary role in the acceleration scenario such 
that even laminar flames can accelerate and initiate detonation due to wall friction [1,2]. 

 Based on this constructive idea, conceptually-laminar, rigorous formulations to quantify the flame 
acceleration scenario in channels and tubes have eventually been developed and validated [3,4]. 

 However, the formulations [3,4] employ a set of assumptions; this thereby leads to the intrinsic 
limitations of the formulations, which have not been properly identified so far. 

 Identification of the intrinsic limitations and accuracy of the formulations [3,4] and quantification  
of their validity domains constitute the overall goal of the present work.     

 

The formulations [3,4] are based on the following approximations: (i) zero flame thickness; 
(ii) incompressible, near-isobaric combustion process;  

(iii) plane parallel flame generated flow in the fuel mixture;  

The average flame-generated flow velocity is related to the total burning rate as: 

The exponential state of the flame acceleration is exhibited 

Flame evaluation equation:  

Plane-parallel Navier-Stokes equation, 2D and cylindrical-axisymmetric 

The major result of the 2D formulation [3] is a 
coupling of the flame acceleration rate     to 
the thermal expansion ratio                     and a 
flame propagation Reynolds number 

 

 

 This equation can be solved analytically in the 
limit of             𝑖.𝑒.            with the acceleration 
rate 

 

 

 The major result of the formulation [4], for the 
cylindrical-axisymmetric coordinates, is the 
equation for the acceleration rate    : 

 
 

Within the 0th- and 1st-order approximations in 
µ−1 ≪ 1, this equation respectively yields the 
asymptotic result 
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Motivation & Objectives 

Analytical Formulations of Flame Acceleration in Channels/Tubes 

Flame Acceleration in 2-D channels Flame Acceleration in Cylindrical Tubes 
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The flame acceleration rate σ vs the flame propagation Reynolds number Re at the fixed thermal 
expansion ratio Θ (left); and σ  vs Θ at fixed Re (right). 

2D Results 

Contour scheme (the error isolines (in %)) 
demonstration is above in the Re-Θ diagram 

Cylindrical Results 

Contour scheme (the error isolines (in %)) 
demonstration in the Re-Θ diagram. 

Conclusion 
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The flame acceleration rate σ vs the flame propagation Reynolds number Re at the fixed thermal 
expansion ratio Θ (left); and σ  vs Θ at fixed Re (right). 

Contour scheme (the error isolines (in %)) 
demonstration is above in the Re-Θ diagram. 

The flame acceleration rate σ vs the flame propagation Reynolds number Re at the fixed thermal 
expansion ratio Θ (left); and σ  vs Θ at fixed Re (right). 
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 Results above show that the 0th-order approximation is inaccurate, even for realistically large Re and/or Θ.  
At the same time, the 1st-order approximation is reasonably accurate for a wide range of parameters.  
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Formulations [3,4] are revisited. Their intrinsic limitations are identified in the form of domains 
in a Re-Θ diagram. While the formulations are accurate for large Re  

 and Θ, the accuracy deteriorates at other conditions. Finally, this  
 analysis is supported by numerical simulations; see the figure on  
 the right. Here, the exponential (circles) regime of flame acceleration  
 is separated from a non-exponential regime (triangles) by the solid  
 line associated with a threshold thermal expansion ratio. 
 

Here 𝑈𝑤 is the total burning rate, 
and SL the normal flame velocity 
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