Deborah Chun

Associate Professor of Mathematics

West Virginia University Institute of Technology

Deborah Chun
Office
LRC 323J
Phone
304-929-1248
Email
deborah.chun(remove this)@mail.(remove this)wvu.edu

Publications

  1. N. Brettell, D. Chun, T. Fife, C. Semple, Matroids with a cyclic arrangement of circuits and cocircuits, (submitted).
  2. N. Brettell, R. Campbell, D. Chun, K. Grace, G. Whittle, On a generalisation of spikes, SIAM J. Discrete Mathematics, 33 (2019), 358–372. https://doi.org/10.1137/18M1182255
  3. C. Chun, D. Chun, T. Moss, S. Noble, The e-Exchange basis graph and matroid connectedness, Discrete Mathematics (2019), 723–725. https://doi.org/10.1016/j.disc.2018.10.045
  4. C. Chun, D. Chun, S. Noble, Inductive tools for connected delta-matroids and multimatroids, European Journal of Combinatorics, 63 (2017), 59–69. https://doi.org/10.1016/j.ejc.2017.02.005
  5. D. Chun, T. Moss, D. Slilaty, X. Zhou. Bicircular matroids representable over GF (4) and GF (5), Discrete Mathematics, 339 (2016) 2239–2248. https://doi.org/10.1016/j.disc.2016.03.017
  6. C. Chun, D. Chun, D. Mayhew, and S. van Zwam, Fan-extensions in fragile matroids, Electronic Journal of Combinatorics, 22 (2015) 52 pages. Link to article
  7. D. Chun, T. Moss, D. Slilaty, X. Zhou, Unavoidable minors of large 4-connected bicircular matroids, Annals of Combinatorics, 19 (2015) 95–105. https://doi.org/10.1007/s00026-015-0256-y
  8. D. Chun, Matroids with every two elements in a 4-circuit. Ars Combinatoria, 112 (2013), 189–191. Link to manuscript
  9. D. Chun and J. Oxley, Capturing two elements in unavoidable minors of 3-connected binary matroids, Advances in Applied Mathematics, 50 (2013) 155–177. https://doi.org/10.1016/j.aam.2012.04.005
  10. D. Chun, J. Oxley, and G. Whittle, Capturing matroid elements in unavoidable 3-connected minors, European Journal of Combinatorics, 33 (2012) 1100–1112. https://doi.org/10.1016/j.ejc.2012.01.012
  11. M. Bilinski, K. J. Choi, D. Chun, G. Ding, S. Dziobiak, R. Farnham, P. Iverson, S. Leu, L. Warshauer. Bandwidth of trees of diameter at most four. Discrete Mathematics, 312 (2012) 1947–1951. https://doi.org/10.1016/j.disc.2012.03.006
  12. D. Chun, Deletion-contraction to form a polymatroid. Discrete Mathematics, 309 (2009) 2592–2595. https://doi.org/10.1016/j.disc.2008.04.036
  13. D. Chun, M. Laviollette, M. Schubmehl, A Multiple Regression Model to Predict Zebra Mussel Population Growth. The UMAP Journal, 22.4 (2001) 367–383.